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f: N — P :proper :< VK C P:compact, f~1(K): compact
A function is a C°°-mapping to R (i.e. P = R).

Assume that mfd’s are C°°, second countable & have no 9.



§.1 Introduction

& Notations
e /N, P : manifolds

C>*®°(N,P):={f: N — P:C°-mapping}
We endow C°(IN, P) with the “Whitney C°°-topology”

(Roughly speaking, two mappings are close to each other under this topol-

ogy iff they have close differentials.)

e Diff (IN) C C°°(N, N) : set of self-diffeomorphisms
Diff (IN) is endowed with the relative topology

e For f € C*°(N, P), Cp:= {x € N | rank(dfz) < dim P}.



O Definition of stability

Definition
e f,g € C°(N, P) are right-left equivalent (f ~ g)
<> Jd® € Diff(N),d¢ € Diff (P) s.t. g=¢ o fo ®.

o f € C°°(N, P) is stable (w.r.t. the Whitney topology)
< JU C C°°(N, P) :nbhd. of f (w.r.t. the Whitney topology)
s.t. Vg € U is right-left equivalent to f.

It is in general difficult to check whether a given mapping is

stable or not!!



f :stable : & JIU C C°°(N, P) :nbhd. of fs.t. g~ f for Vg € U.

& Simple examples (1/2)

fn € C°(R,R) defined by fn(x) := x™.

Claim 1. fi = idyr is stable.

Proof : Define U := {g € C®(R,R) |Vt € R, g'(t) > }}. Then,
e 4 is an open nbhd. of fj.

e By the inverse func., intermediate val. & mean val. theorems,
U C Diff(R), in particular f1 ~g (g=go f10idr) for Vg € U.

Thus, fi is stable. []



f :stable :< JIU C C°°(N, P) :nbhd. of f s.t. g~ f for Vg € U.

$ Simple examples (2/2)

Claim 2. f3 (in general f, for n > 3) is not stable.

Proof (for n = 3) : Define g € C®(R,R) by gi(x) := =3 + p(x)tx,
where p € C*°(R,R), p(x) =1 for |x| < 1, p(x) = 0 for |x| > 2.

e For 0 < Vt K 1, g¢ has no critical points, in particular g % f3.

e R>t+— g € C°(R,R) is continuous, and thus
VU C C°(R,R) : open nbhd. of f3, 3t > 0s.t. gt € U.
Thus, fg is not stable. []

How about f»...7 It is not so easy to show that it is stable...



O Definition of infinitesimal stability
['(E) : set of sections of a vector bundle E.

Definition

f € C°°(N, P) is infinitesimally stable

<= I(f*TP) =df«(T'(I'N)) + f*(I'(TP)), where

dfs : T(TN) — L(f*TP) is defined by df«(&) := df o &.
f*:T(TP) — I'(f*TP) is defined by f*(n) :=no f.

Remark (Motivation for infinitesimal stability)
L; : Diff (N) x Diff (P) — C*°(N, P), L¢(®,¢) := ¢o fo®@ 1.
e stability < image of Lf contains a nbhd. of f.

e inf. stability < the “differential (dLy)q,,idp)" 1S SUrjective.




£ :inf. stable :< T(f*TP) = df«(T(TN)) + f*(T(TP)).

S Simple examples (again)
fn € C®(R,R) defined by fp(x) := z™.
Claim 3. f» is infinitesimally stable.

Proof : We can identify I'(TR) = I'(f5TR) = C*°(R, R).

Under these identifications, (df2)«(£) = 2z¢& and f3 (&) = £(x?).

Since &(x) = £(0) —I—/ — (E(tx)) dt = £(0) + w/ —(ta:)dt

for £ € C°°(R,R), D(f3TR) = (df2)«(T(TR)) + f3(T(TR)).

[]



& Stability for proper mappings (1/2)
Theorem (Mather 1970)
For f € C°(N, P) :proper mapping, stability, infinitesimal

stability, strong stability and “local stability” are all equivalent.

Definition f € C°°(IV, P):strongly stable
<= JdU C C*°(N, P) : neighborhood of f

3(0,0) : U — Diff(N) x Diff (P) : continuous map
s.t. Vg elU, 6(g) ogo O(g) = f.




& Stability for proper mappings (2/2)
We will only give several properties of “local stability”.

e |local stability is the weakest condition of the four stabilities.

i.e. (inf.) stable = locally stable for general (possibly non-proper) f.

e In general, it is (relatively) easy to check local stability (Mather).
e.g. f: N — R: (possibly non-proper) function is locally stable

< f  Morse function, that is,

0° f
— Vo € Cy, det (x) #* 0.
Ba:,,;accj i

— f|Cf :injective.

Thus, it iIs easy to check stability of proper mappings!!



O Motivating problem 1

Problem 1

How can we detect (strong) stability of non-proper functions?
e.g. Is f € C®(R?,R) defined by f(x,y) = x? — y? stable?
Note that f is infinitesimally stable but NOT strongly stable!!

(will be seen later)




$ Remarks on problem 1 (1/2)

Problem 1

How can we detect (strong) stability of non-proper functions?

e.g. f(z,y) = x* — y? : stable?

e f:inf. stable & f:loc. stable & f|Cf : proper (Mather).

In particular, infinitesimal stability is easily checked.

(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!



$ Remarks on problem 1 (2/2)

Problem 1

How can we detect (strong) stability of non-proper functions?

e.g. f(x,y) = x? — y? : stable?

e (Dimca)

f € C*°(R,R) : stable

& f:locally stable & f(Cy) N (S(f) U L(f)) =0, where

L(f) = ¢

5(f) = -

(

y €R|y= lim f(z)or lim f(w)}

T —r OO

Thus, it

sequence in Cf without }

lim xr;) ER |[{x;f ¢
: f(z;) |{ i} accumulation points

 2— 00

is (somewhat) easy to check stability of f € C°°(R, R).



f € C®(R,R) :stable < f:locally stable & f(C¢) N (S(f) UL(f)) = 0.
L(f) = { tim £}, 5 ={ fim fep) [fwy: 550" 1 WO

accumulation pt's

Example f:R — R, f(x) := exp(x) sin x.
k
Since f(k)(a:) — 2k/2 exp(x) sin (ac + Zﬂ-) it is easy to see:

4 3
'Cf:{(nl_ )WER‘TLEZ},

e f:Morse func. (i.e. f|Cf 1inj. & Vx € Cy, f(z)(m) % 0).
Furthermore, S(f) = L(f) = {0} & 0 & f(C;) = f :stable

On the other hand, (f|Cf)_1([—1, 1]) : infinite discrete set
= f:NOT infinitesimally stable (- flcf : not proper).



$ Motivating problem 2

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable = infinitesimally stable?



$ Remarks on problem 2 (1/3)

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable = infinitesimally stable?

e f :strongly stable = f:stable (obvious).
e f:stable = f:locally stable (Mather).

e f:inf. stable & f:loc. stable & f|Cf . proper (Mather).



& Remarks on problem 2 (2/3)
e f :strongly stable = f:quasi-proper (du Plessis-Vosegaard)

f :quasi-proper :< 3V C P : neighborhood of f(Cp) s.t.
fly—1vy : F7H(V) — V i proper
e.g. exp(x)sinx & r2 — y2 :NOT quasi-proper

e Using the results we have explained, we can show:

stable| €75 "aple
A F A

N ‘\;“ls. :

locally [& inf.

stable | =777~ 2| stable




$ Remarks on problem 2 (3/3)

Problem 2
How are the four stabilities related for non-proper functions?

In particular, strongly stable = infinitesimally stable?

o f € C°°(IN,P) is strongly and infinitesimally stable if and
only if f is locally stable, quasi-proper and f(Cf) is closed
(du-Plessis-Vosegaard)

Still, we have no reasonable condition implying only strong

stability...



& Motivating problems (Summary)
1. detecting (strong) stability of non-proper functions.
e.g. Is f(x,y) = % — y? stable?
Note that f: NOT quasi-proper (thus NOT strongly stable).

2. strongly stable = infinitesimally stable?

The other implications are known to be True/False as follows:

stable| €75 F0HE
ALK A

$ _1 .

locally [& inf.

stable | =777~ 2| stable




§.2 Main result

Theorem (H.)
f € C°°(IN,R) : Morse function.
7(f) := {y € R | f: “end-trivial” at y}.

(the definition of end-triviality will be given soon...)

1. f(Cg) C7(f) = f:stable.
2. f :strongly stable < f :quasi-proper

f :duasi-proper :& IV C P :neighborhood of f(Cy) s.t.
fly—1vy : F7H(V) — V i proper



S Remarks on the main result

e As we explained, f :strongly stable = f :quasi-proper
for f € C°°(N, P) (du Plessis-Vosegaard)

We indeed show the converse of it for the case P = R.

e Dimca’s condition (f(Cy¢) N (S(f) UL(F)) =0) is
equivalent to ours (f(Cy) C 7(f)). Indeed,
7(f) =R\ (S(f) U L(f)) for f € C=(R,R), where

7

L(f)—<y€R|y— lim_f(2) or lim_ ()}

r—ro0

5(f) = { lim f(z;) e R \{wi} =

27— 00

sequence in Cf without }
accumulation points '



S End-triviality
V C N :neighborhood of the end:< N \ V : compact

Definition f € C°°(N,P), y € P.
f is end-trivial at y if AW C P : neighborhood of v,
4V C N :open neighborhood of the end s.t.

° f—l(y) NV contains no critical points of f,

e 3% : (fl(y)NV)x W = f~1(W) N V : diffeomorphism
st. fo®d=py: (f~Hy)NV)x W — W :projection

Roughly, end-triviality at y implies that f is the projection

“around the end of f~!(nbhd. of y)".



dW C P :nbhd. of y, AV C N :open nbhd. of the end s.t.

e f~1(y) NV contains no critical points of f,

e 3®: (f~l(y)NV) x W = fF~1(W) NV :diffeomorphism
st. fo® =py: (FL(y)NV) x W — W :projection

Example The fig. is contours of f(x,y) := x? — y? in R?.

Blue : outside of (sufficiently large) disk k&—/////
(which is V)
Red : preimage of nbhd. of 0 € R
(which is f=1(W) for y = 0)
One can regard f = p2 on BlueNRed.
(i.e. 9 with the desired property)
N\

Thus, f is end-trivial at 0 € R.



& Main result (Again)

Theorem (H.)

f € C°°(N,R) : Morse function.

7(f) := {y € R | f:end-trivial at y}.

1. f(C¢) C 7(f) = f:stable.

2. f:strongly stable < f :quasi-proper

f :quasi-proper :& 3V C P :neighborhood of f(Cy) s.t.
fly—1qvy s F7H(V) — V i proper



§.3 Applications

O detecting stability
Example f € C®(R?R), f(z,y) = x? — y2.
Cy = {0} and 0 € 7(f) (as we checked) = f is stable.

In general, end-triviality of semi-algebraic mappings has been

studied in detail.

Definition f € C°°(R",R) :semi-algebraic, y € R.

f satisfies the Malgrange condition at y
<= 36 > 0, de > 0, IV C R"™:nbhd. of the end s.t.

||| - [V f(z)|| > e forany z € f~y —d,y+d)NV.
Here, V f is the gradient of f.




Theorem (Folklore?) f € C°°(R™,R) : semi-algebraic.
If f satisfies the Malgrange condition at y € R, then f is

end-trivial at vy .

Corollary 1 (H.) f € C>°(R™,R) : Morse & semi-algebraic.

f is stable if it satisfies the Malgrange condition at Vy &€ f(Cf).

Corollary 2 (H.) f € C°°(R™,R) : semi-algebraic.
33 C R"™: Lebesgue measure zero set s.t.

Va = (a1,...,an) € R™\ X, the function
n

fa(@1y ... wn) = f(@1,..., fn) + ) a;x;
1=1

IS stable.



$ strong & infinitesimal stability

Corollary 3 (H.)

The function f(x) = exp(—x?) sinx is strongly stable but
NOT infinitesimally stable.

We indeed show that f: Morse function, quasi-proper
& f|Cf :NOT proper.

(f € C°°(N,R) :inf. stable & f:Morse & f|Cf . proper (Mather))



& Related topics (1/2)

e A sufficient condition for topological strong stability (for

general N & P) is given by Murolo, du Plessis and Trotman.

e du Plessis-VVosegaard studied stability under another topol-
ogy TV of C°°(N, P) (which is stronger than the Whitney
topology). They indeed showed:

Theorem (du Plessis-VVosegaard)
Under the topology 7V, for a quasi-proper mapping,

strong stability, stability, " quasi-infinitesimal stability’” and

local stability are all equivalent.




& Related topics (2/2)

e Little is known about stability for dim P > 1.

For example, the following problem is still open.

Problem : Is there a non-proper stable mapping in C*°(R, R?)?
(w.r.t. the Whitney topology)

Indeed, even the following simple (but non-proper) embedding
is not stable!! (du Plessis-VVosegaard):
f:R—=R?  f(x) = (exp(z),0).

Note that f is quasi-proper, locally stable (in particular strongly

stable w.r.t. TV °°).



$ Summary (what we gave)

e A sufficient condition for (strong) stability of f € C°°(IV,R).

e [ he answers to the following questions:

1. Is f(x,y) = x? — y? stable? Yes!

2. strongly stable = infinitesimally stable? NoO!

Thank you for your attention!!



