Stability of non-proper functions

Kenta Hayano (Keio University)

1, July 2021

Boston-Keio-Tsinghua workshop 2021

(arXiv:1809.02332)

\[f : \mathbb{N} \to P : \text{proper} \iff \forall K \subset P : \text{compact}, \ f^{-1}(K) : \text{compact} \]

A function is a \(C^\infty \)-mapping to \(\mathbb{R} \) (i.e. \(P = \mathbb{R} \)).

Assume that mfd's are \(C^\infty \), second countable & have no \(\partial \).
§.1 Introduction

♦ Notations

- N, P : manifolds

\[C^\infty(N, P) := \{ f : N \to P : C^\infty\text{-mapping} \} \]

We endow $C^\infty(N, P)$ with the “Whitney C^∞-topology”

(Roughly speaking, two mappings are close to each other under this topology iff they have close differentials.)

- $\text{Diff}(N) \subset C^\infty(N, N)$: set of self-diffeomorphisms

 $\text{Diff}(N)$ is endowed with the relative topology

- For $f \in C^\infty(N, P)$, $C_f := \{ x \in N \mid \text{rank}(df_x) < \text{dim } P \}$.
Definition of stability

Definition

- \(f, g \in C^\infty(N, P) \) are right-left equivalent (\(f \sim g \))
 \[\iff \exists \Phi \in \text{Diff}(N), \exists \phi \in \text{Diff}(P) \text{ s.t. } g = \phi \circ f \circ \Phi. \]

- \(f \in C^\infty(N, P) \) is stable (w.r.t. the Whitney topology)
 \[\iff \exists \mathcal{U} \subset C^\infty(N, P) : \text{nbhd. of } f \text{ (w.r.t. the Whitney topology)} \]
 s.t. \(\forall g \in \mathcal{U} \) is right-left equivalent to \(f \).

It is in general difficult to check whether a given mapping is stable or not!!
\[f : \text{stable} \iff \exists U \subset C^\infty(N, P) : \text{nbhd. of } f \text{ s.t. } g \sim f \text{ for } \forall g \in U. \]

\[\Diamond \text{ Simple examples (1/2)} \]

\[f_n \in C^\infty(\mathbb{R}, \mathbb{R}) \text{ defined by } f_n(x) := x^n. \]

\textbf{Claim 1.} \(f_1 = \text{id}_\mathbb{R} \) is stable.

\textbf{Proof :} Define \(U := \left\{ g \in C^\infty(\mathbb{R}, \mathbb{R}) \mid \forall t \in \mathbb{R}, \ g'(t) > \frac{1}{2} \right\}. \) Then,

\begin{itemize}
 \item \(U \) is an open nbhd. of \(f_1. \)
 \item By the inverse func., intermediate val. & mean val. theorems, \(U \subset \text{Diff}(\mathbb{R}), \) in particular \(f_1 \sim g \ (g = g \circ f_1 \circ \text{id}_\mathbb{R}) \) for \(\forall g \in U. \)
\end{itemize}

Thus, \(f_1 \) is stable. \(\square \)
f : stable $: \iff \exists U \subset C^\infty(N, P) : \text{nbhd. of } f \text{ s.t. } g \sim f \text{ for } \forall g \in U.$

◊ Simple examples (2/2)

Claim 2. f_3 (in general f_n for $n \geq 3$) is not stable.

Proof (for $n = 3$): Define $g_t \in C^\infty(\mathbb{R}, \mathbb{R})$ by $g_t(x) := x^3 + \rho(x)tx$, where $\rho \in C^\infty(\mathbb{R}, \mathbb{R})$, $\rho(x) \equiv 1$ for $|x| \leq 1$, $\rho(x) \equiv 0$ for $|x| \geq 2$.

• For $0 < \forall t \ll 1$, g_t has no critical points, in particular $g_t \not\sim f_3$.

• $\mathbb{R} \ni t \mapsto g_t \in C^\infty(\mathbb{R}, \mathbb{R})$ is continuous, and thus
 \[\forall U \subset C^\infty(\mathbb{R}, \mathbb{R}) : \text{open nbhd. of } f_3, \exists t > 0 \text{ s.t. } g_t \in U. \]

Thus, f_3 is not stable. □

How about f_2...? It is not so easy to show that it is stable...
Definition of infinitesimal stability

$\Gamma(E)$: set of sections of a vector bundle E.

Definition

$f \in C^\infty(N, P)$ is *infinitesimally stable*

\[\iff \Gamma(f^*TP) = df_*(\Gamma(TN)) + f^*(\Gamma(TP)), \]

where

$df_* : \Gamma(TN) \to \Gamma(f^*TP)$ is defined by $df_*(\xi) := df \circ \xi$.

$f^* : \Gamma(TP) \to \Gamma(f^*TP)$ is defined by $f^*(\eta) := \eta \circ f$.

Remark (Motivation for infinitesimal stability)

$L_f : \text{Diff}(N) \times \text{Diff}(P) \to C^\infty(N, P), L_f(\Phi, \phi) := \phi \circ f \circ \Phi^{-1}$.

- stability \iff image of L_f contains a nbhd. of f.
- inf. stability \iff the “differential $(dL_f)(\text{id}_N, \text{id}_P)$” is surjective.
\[f: \text{inf. stable } \iff \Gamma(f^*TP) = df_*(\Gamma(TN)) + f^*(\Gamma(TP)). \]

\[\diamond \text{ Simple examples (again) } \]

\[f_n \in C^\infty(\mathbb{R}, \mathbb{R}) \text{ defined by } f_n(x) := x^n. \]

Claim 3. \(f_2 \) is infinitesimally stable.

Proof: We can identify \(\Gamma(T\mathbb{R}) = \Gamma(f_2^*T\mathbb{R}) = C^\infty(\mathbb{R}, \mathbb{R}). \)

Under these identifications, \((df_2)_*(\xi) = 2x\xi \) and \(f_2^*(\xi) = \xi(x^2). \)

Since \(\xi(x) = \xi(0) + \int_0^1 \frac{d}{dt}(\xi(tx)) \, dt = \xi(0) + x \int_0^1 \frac{d\xi}{dt}(tx) \, dt \)

for \(\xi \in C^\infty(\mathbb{R}, \mathbb{R}), \ \Gamma(f_2^*T\mathbb{R}) = (df_2)_*(\Gamma(T\mathbb{R})) + f_2^*(\Gamma(T\mathbb{R})). \)
Stability for proper mappings (1/2)

Theorem (Mather 1970)

For \(f \in C^\infty(N, P) \): proper mapping, stability, infinitesimal stability, strong stability and “local stability” are all equivalent.

Definition \(f \in C^\infty(N, P) \): strongly stable

\[\iff \exists U \subset C^\infty(N, P) : \text{neighborhood of } f \]

\[\exists (\Theta, \theta) : U \to \text{Diff}(N) \times \text{Diff}(P) : \text{continuous map} \]

\[\text{s.t. } \forall g \in U, \theta(g) \circ g \circ \Theta(g) = f. \]
Stability for proper mappings (2/2)

We will only give several properties of “local stability”.

• local stability is the weakest condition of the four stabilities.
 i.e. (inf.) stable ⇒ locally stable for general (possibly non-proper) \(f \).

• In general, it is (relatively) easy to check local stability (Mather).
 e.g. \(f : \mathbb{N} \to \mathbb{R} \) (possibly non-proper) function is locally stable
 \(\iff f : \text{Morse function, that is,} \)
 \[- \forall x \in C_f, \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j} (x) \right)_{i,j} \neq 0. \]
 \[- f|_{C_f} : \text{injective.} \]

Thus, it is easy to check stability of proper mappings!!
Motivating problem 1

Problem 1
How can we detect (strong) stability of non-proper functions? e.g. Is $f \in C^\infty(\mathbb{R}^2, \mathbb{R})$ defined by $f(x, y) = x^2 - y^2$ stable? Note that f is infinitesimally stable but NOT strongly stable!! (will be seen later)
Remarks on problem 1 (1/2)

Problem 1
How can we detect (strong) stability of non-proper functions?
e.g. \(f(x, y) = x^2 - y^2 \): stable?

- \(f \): inf. stable \(\iff \) \(f \): loc. stable & \(f|_{C_f} \): proper (Mather).

In particular, infinitesimal stability is easily checked.
(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!
Remarks on problem 1 (2/2)

Problem 1

How can we detect (strong) stability of non-proper functions?
e.g. \(f(x, y) = x^2 - y^2 \): stable?

- (Dimca) \(f \in C^\infty(\mathbb{R}, \mathbb{R}) \): stable
 \[\iff f : \text{locally stable} \land f(C_f) \cap (S(f) \cup L(f)) = \emptyset, \]
 where

 \[L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\} \]

 \[S(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \text{sequence in } C_f \text{ without accumulation points} \right\} \]

 Thus, it is (somewhat) easy to check stability of \(f \in C^\infty(\mathbb{R}, \mathbb{R}). \)
\(f \in C^\infty(\mathbb{R}, \mathbb{R}) \) : stable \(\iff \) \(f \) : locally stable \& \(f(C_f) \cap (S(f) \cup L(f)) = \emptyset \).

\[
L(f) = \left\{ \lim_{x \to \pm \infty} f(x) \right\}, \quad S(f) = \left\{ \lim_{i \to \infty} f(x_i) \left| \{x_i\} : \text{seq. in } C_f \text{ w/o accumulation pt's} \right. \right\}
\]

Example \(f : \mathbb{R} \to \mathbb{R}, \ f(x) := \exp(x) \sin x \).

Since \(f^{(k)}(x) = \frac{2^k}{2} \exp(x) \sin \left(x + \frac{k\pi}{4}\right) \), it is easy to see:

- \(C_f = \left\{ \frac{(4n + 3)\pi}{4} \in \mathbb{R} \left| n \in \mathbb{Z} \right. \right\}, \)
- \(f \) : Morse func. (i.e. \(f|_{C_f} \) : inj. \& \(\forall x \in C_f, \ f^{(2)}(x) \neq 0 \)).

Furthermore, \(S(f) = L(f) = \{0\} \) \& \(0 \not\in f(C_f) \Rightarrow f \) : stable

On the other hand, \((f|_{C_f})^{-1}([-1, 1]) \) : infinite discrete set \(\Rightarrow f \) : NOT infinitesimally stable (\(\because f|_{C_f} \) : not proper).
Motivating problem 2

Problem 2
How are the four stabilities related for non-proper functions? In particular, strongly stable \Rightarrow infinitesimally stable?
Remarks on problem 2 (1/3)

Problem 2
How are the four stabilities related for non-proper functions?
In particular, strongly stable \Rightarrow infinitesimally stable?

- f : strongly stable $\Rightarrow f$: stable (obvious).
- f : stable $\Rightarrow f$: locally stable (Mather).
- f : inf. stable $\Leftrightarrow f$: loc. stable & $f|_{C_f}$: proper (Mather).
 Remarks on problem 2 (2/3)

• \(f \) : strongly stable \(\Rightarrow \) \(f \) : quasi-proper (du Plessis-Vosegaard)

\[f : \text{quasi-proper} \iff \exists V \subset P : \text{neighborhood of } f(C_f) \text{ s.t.} \]
\[f|_{f^{-1}(V)} : f^{-1}(V) \to V : \text{proper} \]

e.g. \(\exp(x) \sin x \) & \(x^2 - y^2 \): NOT quasi-proper

• Using the results we have explained, we can show:

\[
\begin{array}{ccc}
\text{stable} & \xrightarrow{F} & \text{strongly stable} \\
\text{T} & \xleftarrow{F} & \text{locally stable} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{stable} & \xrightarrow{F} & \text{strongly stable} \\
\text{T} & \xleftarrow{F} & \text{locally stable} \\
\end{array}
\]
Problem 2

How are the four stabilities related for non-proper functions? In particular, strongly stable \Rightarrow infinitesimally stable?

- $f \in C^\infty(N, P)$ is strongly and infinitesimally stable if and only if f is locally stable, quasi-proper and $f(C_f)$ is closed (du-Plessis-Vosegaard)

Still, we have no reasonable condition implying only strong stability...
Motivating problems (Summary)

1. detecting (strong) stability of non-proper functions.
 e.g. Is \(f(x, y) = x^2 - y^2 \) stable?
 Note that \(f \) : NOT quasi-proper (thus NOT strongly stable).

2. strongly stable \(\Rightarrow \) infinitesimally stable?
 The other implications are known to be True/False as follows:
§.2 Main result

Theorem (H.)

\(f \in C^\infty(N, \mathbb{R}) \) : Morse function.

\(\tau(f) := \{ y \in \mathbb{R} \mid f \) : “end-trivial” at \(y \}\} \).

(the definition of end-triviality will be given soon...)

1. \(f(C_f) \subset \tau(f) \Rightarrow f \) : stable.

2. \(f \) : strongly stable \(\iff f \) : quasi-proper

\(f \) : quasi-proper \(\iff \exists V \subset P \) : neighborhood of \(f(C_f) \) s.t.

\[
\left. f \right|_{f^{-1}(V)} : f^{-1}(V) \rightarrow V : proper
\]
 Remarks on the main result

- As we explained, $f : \text{strongly stable} \Rightarrow f : \text{quasi-proper}$ for $f \in C^\infty(N, P)$ (du Plessis-Vosegaard)
We indeed show the converse of it for the case $P = \mathbb{R}$.

- Dimca’s condition $(f(C_f) \cap (S(f) \cup L(f)) = \emptyset)$ is equivalent to ours $(f(C_f) \subset \tau(f))$. Indeed,
\[\tau(f) = \mathbb{R} \setminus (S(f) \cup L(f)) \text{ for } f \in C^\infty(\mathbb{R}, \mathbb{R}), \]
where
\[L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\}, \]
\[S(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \text{sequence in } C_f \text{ without accumulation points} \right\}. \]
* \textbf{End-triviality} \\
\[V \subset N : \text{neighborhood of the end} \iff N \setminus V : \text{compact} \]

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{Definition} \quad f \in C^\infty(N, P), \ y \in P. \\
\hline
\end{tabular}
\end{center}

\[f \] is \textbf{end-trivial} at \(y \) if \(\exists W \subset P : \text{neighborhood of} \ y, \]
\(\exists V \subset N : \text{open neighborhood of the end} \) s.t.
\begin{itemize}
 \item \(f^{-1}(y) \cap V \) contains no critical points of \(f \),
 \item \(\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V : \text{diffeomorphism} \)
\end{itemize}
\(\text{s.t. } f \circ \Phi = p_2 : (f^{-1}(y) \cap V) \times W \to W : \text{projection} \)

Roughly, end-triviality at \(y \) implies that \(f \) is the projection \(\text{“around the end of } f^{-1}(\text{nbhd. of } y)\text{”} \).
\[\exists W \subset P: \text{nbhd. of } y, \exists V \subset N: \text{open nbhd. of the end s.t.} \]

- \[f^{-1}(y) \cap V \text{ contains no critical points of } f, \]
- \[\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V : \text{diffeomorphism} \]
 \begin{align*}
 \text{s.t. } f \circ \Phi &= p_2 : (f^{-1}(y) \cap V) \times W \to W : \text{projection}
 \end{align*}

Example The fig. is contours of \[f(x, y) := x^2 - y^2 \text{ in } \mathbb{R}^2. \]

Blue: outside of (sufficiently large) disk (which is \(V \))

Red: preimage of nbhd. of \(0 \in \mathbb{R} \) (which is \(f^{-1}(W) \) for \(y = 0 \))

One can regard \(f = p_2 \) on \(\text{Blue} \cap \text{Red} \).

(i.e. \(\exists \Phi \) with the desired property)

Thus, \(f \) is end-trivial at \(0 \in \mathbb{R} \).
Main result (Again)

Theorem (H.)

\(f \in C^\infty(N, \mathbb{R}) \) : Morse function.

\(\tau(f) := \{ y \in \mathbb{R} \mid f : \text{end-trivial at } y \} \).

1. \(f(C_f) \subset \tau(f) \Rightarrow f : \text{stable} \).

2. \(f : \text{strongly stable} \iff f : \text{quasi-proper} \)

\(f : \text{quasi-proper} \iff \exists V \subset P : \text{neighborhood of } f(C_f) \text{ s.t.} \)

\[f|_{f^{-1}(V)} : f^{-1}(V) \rightarrow V : \text{proper} \]
§.3 Applications

◊ detecting stability

Example $f \in C^\infty(\mathbb{R}^2, \mathbb{R})$, $f(x, y) = x^2 - y^2$.

$C_f = \{0\}$ and $0 \in \tau(f)$ (as we checked) $\Rightarrow f$ is stable.

In general, end-triviality of semi-algebraic mappings has been studied in detail.

Definition $f \in C^\infty(\mathbb{R}^n, \mathbb{R}):$ semi-algebraic, $y \in \mathbb{R}$.

f satisfies the **Malgrange condition** at y

$\iff \exists \delta > 0, \exists \varepsilon > 0, \exists V \subset \mathbb{R}^n :$ nbhd. of the end s.t.

$$\|x\| \cdot \|\nabla f(x)\| > \varepsilon \text{ for any } x \in f^{-1}(y - \delta, y + \delta) \cap V.$$

Here, ∇f is the gradient of f.
Theorem (Folklore?) $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$: semi-algebraic. If f satisfies the Malgrange condition at $y \in \mathbb{R}$, then f is end-trivial at y.

Corollary 1 (H.) $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$: Morse & semi-algebraic. f is stable if it satisfies the Malgrange condition at $\forall y \in f(C_f)$.

Corollary 2 (H.) $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$: semi-algebraic. $\exists \Sigma \subset \mathbb{R}^n$: Lebesgue measure zero set s.t. $\forall a = (a_1, \ldots, a_n) \in \mathbb{R}^n \setminus \Sigma$, the function

$$f_a(x_1, \ldots, x_n) = f(x_1, \ldots, f_n) + \sum_{i=1}^{n} a_i x_i$$

is stable.
diamond strong & infinitesimal stability

Corollary 3 (H.)

The function $f(x) = \exp(-x^2) \sin x$ is strongly stable but NOT infinitesimally stable.

We indeed show that $f: \text{Morse function, quasi-proper}$

& $f|_{C_f}: \text{NOT proper}$.

($f \in C^\infty(N, \mathbb{R}) : \text{inf. stable } \Leftrightarrow f: \text{Morse} \& f|_{C_f}: \text{proper (Mather)})$
A sufficient condition for topological strong stability (for general N & P) is given by Murolo, du Plessis and Trotman. du Plessis-Vosegaard studied stability under another topology τV^∞ of $C^\infty(N, P)$ (which is stronger than the Whitney topology). They indeed showed:

Theorem (du Plessis-Vosegaard)

Under the topology τV^∞, for a quasi-proper mapping, strong stability, stability, "quasi-infinitesimal stability" and local stability are all equivalent.
Related topics (2/2)

- Little is known about stability for $\dim P > 1$.

For example, the following problem is still open.

Problem: Is there a non-proper stable mapping in $C^\infty(\mathbb{R}, \mathbb{R}^2)$? (w.r.t. the Whitney topology)

Indeed, even the following simple (but non-proper) embedding is not stable!! (du Plessis-Vosegaard):

$$f : \mathbb{R} \rightarrow \mathbb{R}^2, \quad f(x) = (\exp(x), 0).$$

Note that f is quasi-proper, locally stable (in particular strongly stable w.r.t. τV^∞).
Summary (what we gave)

- A sufficient condition for (strong) stability of $f \in C^\infty(N, \mathbb{R})$.
- The answers to the following questions:
 1. Is $f(x, y) = x^2 - y^2$ stable? **Yes!**
 2. strongly stable \Rightarrow infinitesimally stable? **No!**

Thank you for your attention!!