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f : N → P : proper :⇔ ∀K ⊂ P : compact, f−1(K) : compact

A function is a C∞-mapping to R (i.e. P = R).

Assume that mfd’s are C∞, second countable & have no ∂.



§.1 Introduction

♦ Notations

• N,P : manifolds

C∞(N,P ) := {f : N → P :C∞-mapping}
We endow C∞(N,P ) with the “Whitney C∞-topology”

(Roughly speaking, two mappings are close to each other under this topol-

ogy iff they have close differentials.)

• Diff(N) ⊂ C∞(N,N) : set of self-diffeomorphisms

Diff(N) is endowed with the relative topology

• For f ∈ C∞(N,P ), Cf := {x ∈ N | rank(dfx) < dimP}.



♦ Definition of stability

Definition

• f, g ∈ C∞(N,P ) are right-left equivalent (f ∼ g)

:⇔ ∃Φ ∈ Diff(N), ∃φ ∈ Diff(P ) s.t. g = φ ◦ f ◦ Φ.

• f ∈ C∞(N,P ) is stable (w.r.t. the Whitney topology)

:⇔∃U ⊂ C∞(N,P ) : nbhd. of f (w.r.t. the Whitney topology)

s.t. ∀g ∈ U is right-left equivalent to f .

It is in general difficult to check whether a given mapping is

stable or not!!



f : stable :⇔ ∃U ⊂ C∞(N,P ) : nbhd. of f s.t. g ∼ f for ∀g ∈ U .

♦ Simple examples (1/2)

fn ∈ C∞(R,R) defined by fn(x) := xn.

Claim 1. f1 = idR is stable.

Proof : Define U :=
{
g ∈ C∞(R,R)

∣∣∣∀t ∈ R, g′(t) > 1
2

}
. Then,

• U is an open nbhd. of f1.

• By the inverse func., intermediate val. & mean val. theorems,

U ⊂ Diff(R), in particular f1 ∼ g (g = g ◦ f1 ◦ idR) for ∀g ∈ U .

Thus, f1 is stable. �



f : stable :⇔ ∃U ⊂ C∞(N,P ) : nbhd. of f s.t. g ∼ f for ∀g ∈ U .

♦ Simple examples (2/2)

Claim 2. f3 (in general fn for n ≥ 3) is not stable.

Proof (for n = 3) : Define gt ∈ C∞(R,R) by gt(x) := x3 + ρ(x)tx,

where ρ ∈ C∞(R,R), ρ(x) ≡ 1 for |x| ≤ 1, ρ(x) ≡ 0 for |x| ≥ 2.

• For 0 < ∀t� 1, gt has no critical points, in particular gt 6∼ f3.

• R 3 t 7→ gt ∈ C∞(R,R) is continuous, and thus

∀U ⊂ C∞(R,R) : open nbhd. of f3, ∃t > 0 s.t. gt ∈ U .

Thus, f3 is not stable. �

How about f2...? It is not so easy to show that it is stable...



♦ Definition of infinitesimal stability
Γ(E) : set of sections of a vector bundle E.

Definition

f ∈ C∞(N,P ) is infinitesimally stable

:⇔ Γ(f∗TP ) = df∗(Γ(TN)) + f∗(Γ(TP )), where

df∗ : Γ(TN)→ Γ(f∗TP ) is defined by df∗(ξ) := df ◦ ξ.

f∗ : Γ(TP )→ Γ(f∗TP ) is defined by f∗(η) := η ◦ f .

Remark (Motivation for infinitesimal stability)

Lf : Diff(N)×Diff(P )→ C∞(N,P ), Lf(Φ, φ) := φ◦f ◦Φ−1.

• stability ⇔ image of Lf contains a nbhd. of f .

• inf. stability⇔ the “differential (dLf)(idN ,idP )” is surjective.



f : inf. stable :⇔ Γ(f∗TP ) = df∗(Γ(TN)) + f∗(Γ(TP )).

♦ Simple examples (again)

fn ∈ C∞(R,R) defined by fn(x) := xn.

Claim 3. f2 is infinitesimally stable.

Proof : We can identify Γ(TR) = Γ(f∗2TR) = C∞(R,R).

Under these identifications, (df2)∗(ξ) = 2xξ and f∗2 (ξ) = ξ(x2).

Since ξ(x) = ξ(0) +

∫ 1

0

d

dt
(ξ(tx)) dt = ξ(0) + x

∫ 1

0

dξ

dt
(tx)dt

for ξ ∈ C∞(R,R), Γ(f∗2TR) = (df2)∗(Γ(TR)) + f∗2 (Γ(TR)). �



♦ Stability for proper mappings (1/2)

Theorem (Mather 1970)

For f ∈ C∞(N,P ) : proper mapping, stability, infinitesimal

stability, strong stability and “local stability” are all equivalent.

Definition f ∈ C∞(N,P ) : strongly stable

:⇔ ∃U ⊂ C∞(N,P ) : neighborhood of f

∃(Θ, θ) : U → Diff(N)×Diff(P ) : continuous map

s.t. ∀g ∈ U , θ(g) ◦ g ◦Θ(g) = f .



♦ Stability for proper mappings (2/2)

We will only give several properties of “local stability”.

• local stability is the weakest condition of the four stabilities.

i.e. (inf.) stable ⇒ locally stable for general (possibly non-proper) f .

• In general, it is (relatively) easy to check local stability (Mather).

e.g. f : N → R : (possibly non-proper) function is locally stable

⇔ f : Morse function, that is,

– ∀x ∈ Cf , det

(
∂2f

∂xi∂xj
(x)

)
i,j

6= 0.

– f |Cf : injective.

Thus, it is easy to check stability of proper mappings!!



♦ Motivating problem 1

Problem 1

How can we detect (strong) stability of non-proper functions?

e.g. Is f ∈ C∞(R2,R) defined by f(x, y) = x2 − y2 stable?

Note that f is infinitesimally stable but NOT strongly stable!!

(will be seen later)



♦ Remarks on problem 1 (1/2)

Problem 1

How can we detect (strong) stability of non-proper functions?

e.g. f(x, y) = x2 − y2 : stable?

• f : inf. stable ⇔ f : loc. stable & f |Cf : proper (Mather).

In particular, infinitesimal stability is easily checked.

(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!



♦ Remarks on problem 1 (2/2)

Problem 1

How can we detect (strong) stability of non-proper functions?

e.g. f(x, y) = x2 − y2 : stable?

• (Dimca) f ∈ C∞(R,R) : stable

⇔ f : locally stable & f(Cf) ∩ (S(f) ∪ L(f)) = ∅, where

L(f) =

{
y ∈ R

∣∣∣∣ y = lim
x→∞

f(x) or lim
x→−∞

f(x)

}
S(f) =

{
lim
i→∞

f(xi) ∈ R
∣∣∣∣ {xi} :

sequence in Cf without

accumulation points

}
Thus, it is (somewhat) easy to check stability of f ∈ C∞(R,R).



f ∈ C∞(R,R) : stable ⇔ f : locally stable & f(Cf) ∩ (S(f) ∪ L(f)) = ∅.

L(f) =

{
lim

x→±∞
f(x)

}
, S(f) =

{
lim
i→∞

f(xi)

∣∣∣∣{xi} :
seq. in Cf w/o

accumulation pt’s

}
Example f : R→ R, f(x) := exp(x) sinx.

Since f (k)(x) = 2k/2 exp(x) sin

(
x+

kπ

4

)
, it is easy to see:

• Cf =

{
(4n+ 3)π

4
∈ R

∣∣∣∣n ∈ Z
}

,

• f : Morse func. (i.e. f |Cf : inj. & ∀x ∈ Cf , f (2)(x) 6= 0).

Furthermore, S(f) = L(f) = {0} & 0 6∈ f(Cf)⇒ f : stable

On the other hand, (f |Cf)
−1([−1, 1]) : infinite discrete set

⇒ f : NOT infinitesimally stable (∵ f |Cf : not proper).



♦ Motivating problem 2

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable ⇒ infinitesimally stable?



♦ Remarks on problem 2 (1/3)

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable ⇒ infinitesimally stable?

• f : strongly stable ⇒ f : stable (obvious).

• f : stable ⇒ f : locally stable (Mather).

• f : inf. stable ⇔ f : loc. stable & f |Cf : proper (Mather).



♦ Remarks on problem 2 (2/3)

• f : strongly stable ⇒ f : quasi-proper (du Plessis-Vosegaard)

f : quasi-proper :⇔∃V ⊂ P : neighborhood of f(Cf) s.t.

f |f−1(V ) : f−1(V )→ V : proper

e.g. exp(x) sinx & x2 − y2 : NOT quasi-proper

• Using the results we have explained, we can show:



♦ Remarks on problem 2 (3/3)

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable ⇒ infinitesimally stable?

• f ∈ C∞(N,P ) is strongly and infinitesimally stable if and

only if f is locally stable, quasi-proper and f(Cf) is closed

(du-Plessis-Vosegaard)

Still, we have no reasonable condition implying only strong

stability...



♦ Motivating problems (Summary)

1. detecting (strong) stability of non-proper functions.

e.g. Is f(x, y) = x2 − y2 stable?

Note that f : NOT quasi-proper (thus NOT strongly stable).

2. strongly stable ⇒ infinitesimally stable?

The other implications are known to be True/False as follows:



§.2 Main result

Theorem (H.)

f ∈ C∞(N,R) : Morse function.

τ (f) := {y ∈ R | f : “end-trivial” at y}.
(the definition of end-triviality will be given soon...)

1. f(Cf) ⊂ τ (f)⇒ f : stable.

2. f : strongly stable ⇔ f : quasi-proper

f : quasi-proper :⇔∃V ⊂ P : neighborhood of f(Cf) s.t.

f |f−1(V ) : f−1(V )→ V : proper



♦ Remarks on the main result

• As we explained, f : strongly stable ⇒ f : quasi-proper

for f ∈ C∞(N,P ) (du Plessis-Vosegaard)

We indeed show the converse of it for the case P = R.

• Dimca’s condition (f(Cf) ∩ (S(f) ∪ L(f)) = ∅) is

equivalent to ours (f(Cf) ⊂ τ (f)). Indeed,

τ (f) = R \ (S(f) ∪ L(f)) for f ∈ C∞(R,R), where

L(f) =

{
y ∈ R

∣∣∣∣ y = lim
x→∞

f(x) or lim
x→−∞

f(x)

}
,

S(f) =

{
lim
i→∞

f(xi) ∈ R
∣∣∣∣ {xi} :

sequence in Cf without

accumulation points

}
.



♦ End-triviality

V ⊂ N : neighborhood of the end:⇔ N \ V : compact

Definition f ∈ C∞(N,P ), y ∈ P .

f is end-trivial at y if ∃W ⊂ P : neighborhood of y,

∃V ⊂ N : open neighborhood of the end s.t.

• f−1(y) ∩ V contains no critical points of f ,

• ∃Φ : (f−1(y) ∩ V )×W → f−1(W ) ∩ V : diffeomorphism

s.t. f ◦ Φ = p2 : (f−1(y) ∩ V )×W →W : projection

Roughly, end-triviality at y implies that f is the projection

“around the end of f−1(nbhd. of y)”.



∃W ⊂ P : nbhd. of y, ∃V ⊂ N : open nbhd. of the end s.t.

• f−1(y) ∩ V contains no critical points of f ,

• ∃Φ : (f−1(y) ∩ V )×W → f−1(W ) ∩ V : diffeomorphism

s.t. f ◦ Φ = p2 : (f−1(y) ∩ V )×W →W : projection

Example The fig. is contours of f(x, y) := x2 − y2 in R2.

Blue : outside of (sufficiently large) disk

(which is V )

Red : preimage of nbhd. of 0 ∈ R
(which is f−1(W ) for y = 0)

One can regard f = p2 on Blue∩Red.

(i.e. ∃Φ with the desired property)

Thus, f is end-trivial at 0 ∈ R.



♦ Main result (Again)

Theorem (H.)

f ∈ C∞(N,R) : Morse function.

τ (f) := {y ∈ R | f : end-trivial at y}.
1. f(Cf) ⊂ τ (f)⇒ f : stable.

2. f : strongly stable ⇔ f : quasi-proper

f : quasi-proper :⇔∃V ⊂ P : neighborhood of f(Cf) s.t.

f |f−1(V ) : f−1(V )→ V : proper



§.3 Applications

♦ detecting stability

Example f ∈ C∞(R2,R), f(x, y) = x2 − y2.

Cf = {0} and 0 ∈ τ (f) (as we checked) ⇒ f is stable.

In general, end-triviality of semi-algebraic mappings has been

studied in detail.

Definition f ∈ C∞(Rn,R) : semi-algebraic, y ∈ R.

f satisfies the Malgrange condition at y

:⇔ ∃δ > 0, ∃ε > 0, ∃V ⊂ Rn : nbhd. of the end s.t.

||x|| · ||∇f(x)|| > ε for any x ∈ f−1(y − δ, y + δ) ∩ V .

Here, ∇f is the gradient of f .



Theorem (Folklore?) f ∈ C∞(Rn,R) : semi-algebraic.

If f satisfies the Malgrange condition at y ∈ R, then f is

end-trivial at y .

Corollary 1 (H.) f ∈ C∞(Rn,R) : Morse & semi-algebraic.

f is stable if it satisfies the Malgrange condition at ∀y ∈ f(Cf).

Corollary 2 (H.) f ∈ C∞(Rn,R) : semi-algebraic.

∃Σ ⊂ Rn : Lebesgue measure zero set s.t.

∀a = (a1, . . . , an) ∈ Rn \ Σ, the function

fa(x1, . . . , xn) = f(x1, . . . , fn) +
n∑
i=1

aixi

is stable.



♦ strong & infinitesimal stability

Corollary 3 (H.)

The function f(x) = exp(−x2) sinx is strongly stable but

NOT infinitesimally stable.

We indeed show that f : Morse function, quasi-proper

& f |Cf : NOT proper.

(f ∈ C∞(N,R) : inf. stable ⇔ f : Morse & f |Cf : proper (Mather))



♦ Related topics (1/2)

• A sufficient condition for topological strong stability (for

general N & P ) is given by Murolo, du Plessis and Trotman.

• du Plessis-Vosegaard studied stability under another topol-

ogy τV∞ of C∞(N,P ) (which is stronger than the Whitney

topology). They indeed showed:

Theorem (du Plessis-Vosegaard)

Under the topology τV∞, for a quasi-proper mapping,

strong stability, stability, ”quasi-infinitesimal stability” and

local stability are all equivalent.



♦ Related topics (2/2)

• Little is known about stability for dimP > 1.

For example, the following problem is still open.

Problem : Is there a non-proper stable mapping in C∞(R,R2)?

(w.r.t. the Whitney topology)

Indeed, even the following simple (but non-proper) embedding

is not stable!! (du Plessis-Vosegaard):

f : R→ R2, f(x) = (exp(x), 0).

Note that f is quasi-proper, locally stable (in particular strongly

stable w.r.t. τV∞).



♦ Summary (what we gave)

• A sufficient condition for (strong) stability of f ∈ C∞(N,R).

• The answers to the following questions:

1. Is f(x, y) = x2 − y2 stable? Yes!

2. strongly stable ⇒ infinitesimally stable? No!

Thank you for your attention!!


