Stability of non-proper functions

Kenta Hayano (Keio University)

1, July 2021

Boston-Keio-Tsinghua workshop 2021

(arXiv:1809.02332)

f:N ightarrow P : proper : $\Leftrightarrow orall K\subset P$: compact, $f^{-1}(K)$: compact

A function is a C^{∞} -mapping to \mathbb{R} (i.e. $P = \mathbb{R}$).

Assume that mfd's are C^{∞} , second countable & have no ∂ .

§.1 Introduction

♦ Notations

• N, P : manifolds

 $C^\infty(N,P):=\{f:N o P\,\colon\, C^\infty ext{-mapping}\}$ We endow $C^\infty(N,P)$ with the ''Whitney $C^\infty ext{-topology''}$

(Roughly speaking, two mappings are close to each other under this topology iff they have close differentials.)

- $\mathrm{Diff}(N) \subset C^\infty(N,N)$: set of self-diffeomorphisms $\mathrm{Diff}(N)$ is endowed with the relative topology
- For $f \in C^{\infty}(N,P)$, $C_f := \{x \in N \mid \operatorname{rank}(df_x) < \dim P\}$.

♦ Definition of stability

Definition

- $f, g \in C^{\infty}(N, P)$ are right-left equivalent $(f \sim g)$: $\Leftrightarrow \exists \Phi \in \text{Diff}(N), \exists \phi \in \text{Diff}(P) \text{ s.t. } g = \phi \circ f \circ \Phi.$
- $f \in C^{\infty}(N, P)$ is **stable** (w.r.t. the Whitney topology) : $\Leftrightarrow \exists \mathcal{U} \subset C^{\infty}(N, P)$: nbhd. of f (w.r.t. the Whitney topology) s.t. $\forall g \in \mathcal{U}$ is right-left equivalent to f.

It is in general difficult to check whether a given mapping is stable or not!!

f : stable : $\Leftrightarrow \exists \mathcal{U} \subset C^{\infty}(N, P)$: nbhd. of f s.t. $g \sim f$ for $\forall g \in \mathcal{U}$.

\diamond Simple examples (1/2)

 $f_n \in C^\infty(\mathbb{R},\mathbb{R})$ defined by $f_n(x) := x^n$.

Claim 1. $f_1 = \operatorname{id}_{\mathbb{R}}$ is stable.

Proof : Define $\mathcal{U}:=\left\{g\in C^\infty(\mathbb{R},\mathbb{R}) \left| orall t\in \mathbb{R}, \ g'(t)>rac{1}{2}
ight\}$. Then,

- ${\mathcal U}$ is an open nbhd. of f_1 .
- By the inverse func., intermediate val. & mean val. theorems, $\mathcal{U} \subset \mathrm{Diff}(\mathbb{R})$, in particular $f_1 \sim g \ (g = g \circ f_1 \circ \mathrm{id}_{\mathbb{R}})$ for $\forall g \in \mathcal{U}$.

Thus, f_1 is stable.

f : stable : $\Leftrightarrow \exists \mathcal{U} \subset C^{\infty}(N, P)$: nbhd. of f s.t. $g \sim f$ for $\forall g \in \mathcal{U}$.

\diamond Simple examples (2/2)

Claim 2. f_3 (in general f_n for $n \ge 3$) is not stable.

Proof (for n = 3): Define $g_t \in C^{\infty}(\mathbb{R}, \mathbb{R})$ by $g_t(x) := x^3 + \rho(x)tx$, where $\rho \in C^{\infty}(\mathbb{R}, \mathbb{R})$, $\rho(x) \equiv 1$ for $|x| \leq 1$, $\rho(x) \equiv 0$ for $|x| \geq 2$.

- For $0 < orall t \ll 1$, g_t has no critical points, in particular $g_t \not\sim f_3$.
- $\mathbb{R} \ni t \mapsto g_t \in C^{\infty}(\mathbb{R}, \mathbb{R})$ is continuous, and thus $\forall \mathcal{U} \subset C^{\infty}(\mathbb{R}, \mathbb{R})$: open nbhd. of f_3 , $\exists t > 0$ s.t. $g_t \in \mathcal{U}$. Thus, f_3 is not stable.

How about f_2 ...? It is not so easy to show that it is stable...

♦ Definition of infinitesimal stability

 $\Gamma(E)$: set of sections of a vector bundle E.

Definition

 $f \in C^{\infty}(N, P)$ is infinitesimally stable

: $\Leftrightarrow \Gamma(f^*TP) = df_*(\Gamma(TN)) + f^*(\Gamma(TP))$, where

 $df_*: \Gamma(TN) o \Gamma(f^*TP)$ is defined by $df_*(\xi) := df \circ \xi$.

 $f^*: \Gamma(TP)
ightarrow \Gamma(f^*TP)$ is defined by $f^*(\eta) := \eta \circ f$.

Remark (Motivation for infinitesimal stability)

 $L_f: \operatorname{Diff}(N) \times \operatorname{Diff}(P) \to C^{\infty}(N, P), \ L_f(\Phi, \phi) := \phi \circ f \circ \Phi^{-1}.$

- stability \Leftrightarrow image of L_f contains a nbhd. of f.
- inf. stability \Leftrightarrow the "differential $(dL_f)_{(\mathrm{id}_N,\mathrm{id}_P)}$ " is surjective.

f: inf. stable : $\Leftrightarrow \Gamma(f^*TP) = df_*(\Gamma(TN)) + f^*(\Gamma(TP)).$

♦ Simple examples (again)

 $f_n \in C^\infty(\mathbb{R},\mathbb{R})$ defined by $f_n(x) := x^n$.

Claim 3. f_2 is infinitesimally stable.

Proof : We can identify $\Gamma(T\mathbb{R}) = \Gamma(f_2^*T\mathbb{R}) = C^\infty(\mathbb{R},\mathbb{R}).$

Under these identifications, $(df_2)_*(\xi) = 2x\xi$ and $f_2^*(\xi) = \xi(x^2)$.

Since
$$\xi(x) = \xi(0) + \int_0^1 \frac{d}{dt} (\xi(tx)) dt = \xi(0) + x \int_0^1 \frac{d\xi}{dt} (tx) dt$$

for $\xi \in C^\infty(\mathbb{R}, \mathbb{R})$, $\Gamma(f_2^*T\mathbb{R}) = (df_2)_*(\Gamma(T\mathbb{R})) + f_2^*(\Gamma(T\mathbb{R})).$

\diamond Stability for proper mappings (1/2)

Theorem (Mather 1970)

For $f \in C^\infty(N,P)$: proper mapping, stability, infinitesimal

stability, strong stability and "local stability" are all equivalent.

\diamond Stability for proper mappings (2/2)

We will only give several properties of "local stability".

- local stability is the weakest condition of the four stabilities. i.e. (inf.) stable \Rightarrow locally stable for general (possibly non-proper) f.
- In general, it is (relatively) easy to check local stability (Mather).
 e.g. f: N → ℝ: (possibly non-proper) function is locally stable
 ⇔ f: Morse function, that is,

$$\begin{split} &-\forall x\in C_f, \ \det\left(\frac{\partial^2 f}{\partial x_i\partial x_j}(x)\right)_{i,j}\neq 0.\\ &-f|_{C_f}: \text{injective.} \end{split}$$

Thus, it is easy to check stability of proper mappings!!

♦ Motivating problem 1

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. Is $f \in C^{\infty}(\mathbb{R}^2, \mathbb{R})$ defined by $f(x, y) = x^2 - y^2$ stable? Note that f is infinitesimally stable but **NOT** strongly stable!! (will be seen later)

\diamond Remarks on problem 1 (1/2)

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. $f(x,y)=x^2-y^2\,$: stable?

• f: inf. stable $\Leftrightarrow f$: loc. stable & $f|_{C_f}$: proper (Mather).

In particular, infinitesimal stability is easily checked.

(since it is easy to check local stability.)

However, it is in general difficult to check (strong) stability!

\diamond Remarks on problem 1 (2/2)

Problem 1

How can we detect (strong) stability of non-proper functions? e.g. $f(x,y)=x^2-y^2\,$: stable?

• (Dimca)
$$f \in C^{\infty}(\mathbb{R}, \mathbb{R})$$
 : stable
 $\Leftrightarrow f$: locally stable & $f(C_f) \cap (\mathcal{S}(f) \cup L(f)) = \emptyset$, where
 $L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\}$
 $\mathcal{S}(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \begin{array}{l} \text{sequence in } C_f \text{ without} \\ \text{accumulation points} \end{array} \right\}$

Thus, it is (somewhat) easy to check stability of $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$.

$$f \in C^{\infty}(\mathbb{R}, \mathbb{R}) : \text{stable} \Leftrightarrow f : \text{locally stable} \& f(C_f) \cap (\mathcal{S}(f) \cup L(f)) = \emptyset.$$
$$L(f) = \left\{ \lim_{x \to \pm \infty} f(x) \right\}, \ \mathcal{S}(f) = \left\{ \lim_{i \to \infty} f(x_i) \ \left| \{x_i\} : \frac{\text{seq. in } C_f \text{ w/o}}{\text{accumulation pt's}} \right. \right\}$$

Example $f:\mathbb{R} o\mathbb{R},\;f(x):=\exp(x)\sin x.$

Since
$$f^{(k)}(x) = 2^{k/2} \exp(x) \sin\left(x + \frac{k\pi}{4}\right)$$
, it is easy to see:
• $C_f = \left\{ \frac{(4n+3)\pi}{4} \in \mathbb{R} \ \middle| \ n \in \mathbb{Z} \right\}$,

• f: Morse func. (i.e. $f|_{C_f}$: inj. & $\forall x \in C_f$, $f^{(2)}(x) \neq 0$). Furthermore, $\mathcal{S}(f) = L(f) = \{0\}$ & $0 \not\in f(C_f) \Rightarrow f$: stable

On the other hand, $(f|_{C_f})^{-1}([-1,1])$: infinite discrete set

 $\Rightarrow f: \text{NOT}$ infinitesimally stable (: $f|_{C_f}: \text{not proper}).$

♦ Motivating problem 2

Problem 2

How are the four stabilities related for non-proper functions?

In particular, strongly stable \Rightarrow infinitesimally stable?

\diamond Remarks on problem 2 (1/3)

Problem 2

How are the four stabilities related for non-proper functions? In particular, strongly stable \Rightarrow infinitesimally stable?

- f: strongly stable \Rightarrow f: stable (obvious).
- f: stable \Rightarrow f: locally stable (Mather).
- f: inf. stable \Leftrightarrow f: loc. stable & $f|_{C_f}$: proper (Mather).

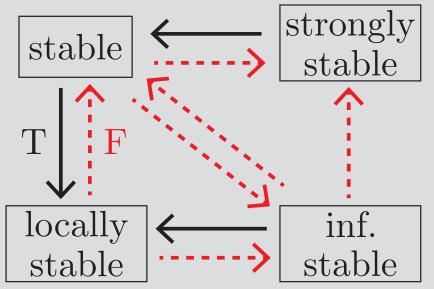
\diamond Remarks on problem 2 (2/3)

- f: strongly stable \Rightarrow f: quasi-proper (du Plessis-Vosegaard)
 - f : quasi-proper : $\Leftrightarrow \exists V \subset P$: neighborhood of $f(C_f)$ s.t.

$$f|_{f^{-1}(V)}:f^{-1}(V)
ightarrow V$$
 : proper

e.g. $\exp(x)\sin x$ & x^2-y^2 : NOT quasi-proper

• Using the results we have explained, we can show:



\diamond Remarks on problem 2 (3/3)

Problem 2

How are the four stabilities related for non-proper functions? In particular, strongly stable \Rightarrow infinitesimally stable?

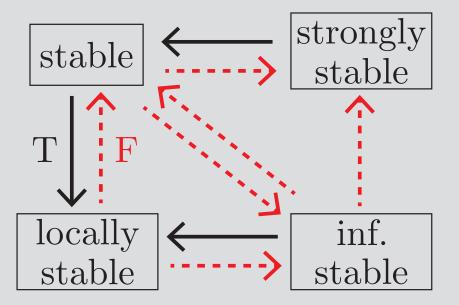
• $f \in C^{\infty}(N, P)$ is strongly and infinitesimally stable if and only if f is locally stable, quasi-proper and $f(C_f)$ is closed (du-Plessis-Vosegaard)

Still, we have no reasonable condition implying only strong stability...

♦ Motivating problems (Summary)

- 1. detecting (strong) stability of non-proper functions. e.g. Is $f(x,y) = x^2 - y^2$ stable? Note that f: **NOT** quasi-proper (thus **NOT** strongly stable).
- 2. strongly stable \Rightarrow infinitesimally stable?

The other implications are known to be True/False as follows:



§.2 Main result

Theorem (H.)

 $f \in C^\infty(N, \mathbb{R})$: Morse function.

 $au(f):=\{y\in \mathbb{R}\mid f$: "end-trivial" at $y\}.$

(the definition of end-triviality will be given soon...)

1.
$$f(C_f) \subset \tau(f) \Rightarrow f$$
 : stable.

2. f : strongly stable \Leftrightarrow f : quasi-proper

f: quasi-proper : $\Leftrightarrow \exists V\subset P$: neighborhood of $f(C_f)$ s.t. $f|_{f^{-1}(V)}:f^{-1}(V)\to V$: proper

♦ Remarks on the main result

- As we explained, f:strongly stable $\Rightarrow f$:quasi-proper for $f \in C^{\infty}(N, P)$ (du Plessis-Vosegaard) We indeed show the converse of it for the case $P = \mathbb{R}$.
- Dimca's condition $(f(C_f) \cap (\mathcal{S}(f) \cup L(f)) = \emptyset)$ is equivalent to ours $(f(C_f) \subset \tau(f))$. Indeed, $\tau(f) = \mathbb{R} \setminus (\mathcal{S}(f) \cup L(f))$ for $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$, where $L(f) = \left\{ y \in \mathbb{R} \mid y = \lim_{x \to \infty} f(x) \text{ or } \lim_{x \to -\infty} f(x) \right\},$ $\mathcal{S}(f) = \left\{ \lim_{i \to \infty} f(x_i) \in \mathbb{R} \mid \{x_i\} : \frac{\text{sequence in } C_f \text{ without}}{\text{accumulation points}} \right\}.$

♦ End-triviality

 $V \subset N$: neighborhood of the end: $\Leftrightarrow N \setminus V$: compact

Definition $f \in C^{\infty}(N, P), y \in P$. f is **end-trivial** at y if $\exists W \subset P$: neighborhood of y, $\exists V \subset N$: open neighborhood of the end s.t. • $f^{-1}(y) \cap V$ contains no critical points of f, • $\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V$: diffeomorphism s.t. $f \circ \Phi = p_2 : (f^{-1}(y) \cap V) \times W \to W$: projection

Roughly, end-triviality at y implies that f is the projection

"around the end of f^{-1} (nbhd. of y)".

 $\exists W \subset P$:nbhd. of y, $\exists V \subset N$:open nbhd. of the end s.t.

• $f^{-1}(y) \cap V$ contains no critical points of f,

• $\exists \Phi : (f^{-1}(y) \cap V) \times W \to f^{-1}(W) \cap V$: diffeomorphism s.t. $f \circ \Phi = p_2 : (f^{-1}(y) \cap V) \times W \to W$: projection

Example The fig. is contours of $f(x,y) := x^2 - y^2$ in \mathbb{R}^2 .

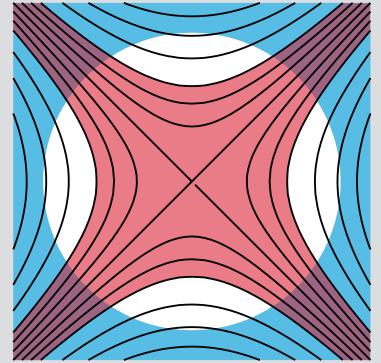
Blue : outside of (sufficiently large) disk (which is V)

Red : preimage of nbhd. of $0 \in \mathbb{R}$ (which is $f^{-1}(W)$ for y=0)

One can regard $f = p_2$ on Blue \cap Red.

(i.e. $\exists \Phi$ with the desired property)

Thus, f is end-trivial at $0 \in \mathbb{R}$.



♦ Main result (Again)

Theorem (H.)

 $f\in C^\infty(N,\mathbb{R})$: Morse function.

$$au(f):=\{y\in \mathbb{R}\mid f:$$
end-trivial at $y\}.$

1.
$$f(C_f) \subset \tau(f) \Rightarrow f$$
 : stable.

2. f : strongly stable \Leftrightarrow f : quasi-proper

f: quasi-proper : $\Leftrightarrow \exists V\subset P$: neighborhood of $f(C_f)$ s.t. $f|_{f^{-1}(V)}:f^{-1}(V)\to V$: proper

§.3 Applications

\diamondsuit detecting stability

Example $f\in C^\infty(\mathbb{R}^2,\mathbb{R})$, $f(x,y)=x^2-y^2$.

 $C_f = \{0\}$ and $0 \in \tau(f)$ (as we checked) $\Rightarrow f$ is stable.

In general, end-triviality of semi-algebraic mappings has been studied in detail.

 $\begin{array}{ll} \textbf{Definition} & f \in C^{\infty}(\mathbb{R}^n,\mathbb{R}) : \text{semi-algebraic}, \ y \in \mathbb{R}. \\ f \text{ satisfies the Malgrange condition at } y \\ :\Leftrightarrow \exists \delta > 0, \ \exists \varepsilon > 0, \ \exists V \subset \mathbb{R}^n : \text{nbhd. of the end s.t.} \\ & \|x\| \cdot \|\nabla f(x)\| > \varepsilon \text{ for any } x \in f^{-1}(y - \delta, y + \delta) \cap V. \\ \text{Here, } \nabla f \text{ is the gradient of } f. \end{array}$

Theorem (Folklore?) $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$: semi-algebraic.

If f satisfies the Malgrange condition at $y \in \mathbb{R}$, then f is end-trivial at y .

Corollary 1 (H.) $f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$: Morse & semi-algebraic.

f is stable if it satisfies the Malgrange condition at $\forall y \in f(C_f)$.

Corollary 2 (H.)
$$f \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$$
 : semi-algebraic.
 $\exists \Sigma \subset \mathbb{R}^n$: Lebesgue measure zero set s.t.
 $\forall a = (a_1, \dots, a_n) \in \mathbb{R}^n \setminus \Sigma$, the function
 $f_a(x_1, \dots, x_n) = f(x_1, \dots, f_n) + \sum_{i=1}^n a_i x_i$
is stable

♦ strong & infinitesimal stability

Corollary 3 (H.)

The function $f(x) = \exp(-x^2) \sin x$ is strongly stable but NOT infinitesimally stable.

We indeed show that f : Morse function, quasi-proper

& $f|_{C_f}$: NOT proper.

 $(f \in C^{\infty}(N, \mathbb{R})$: inf. stable \Leftrightarrow f : Morse & $f|_{C_{f}}$: proper (Mather))

\diamond Related topics (1/2)

- A sufficient condition for topological strong stability (for general $N \And P$) is given by Murolo, du Plessis and Trotman.
- du Plessis-Vosegaard studied stability under another topology τV^{∞} of $C^{\infty}(N,P)$ (which is stronger than the Whitney topology). They indeed showed:

Theorem (du Plessis-Vosegaard)

Under the topology τV^{∞} , for a quasi-proper mapping, strong stability, stability, "quasi-infinitesimal stability" and local stability are all equivalent.

\diamond Related topics (2/2)

• Little is known about stability for $\dim P > 1$. For example, the following problem is still open.

Problem : Is there a non-proper stable mapping in $C^{\infty}(\mathbb{R}, \mathbb{R}^2)$? (w.r.t. the Whitney topology)

Indeed, even the following simple (but non-proper) embedding is not stable!! (du Plessis-Vosegaard):

$$f:\mathbb{R} o\mathbb{R}^2$$
, $f(x)=(\exp(x),0)$.

Note that f is quasi-proper, locally stable (in particular strongly stable w.r.t. τV^{∞}).

♦ Summary (what we gave)

- A sufficient condition for (strong) stability of $f \in C^{\infty}(N,\mathbb{R})$.
- The answers to the following questions:

1. Is
$$f(x,y) = x^2 - y^2$$
 stable? Yes!

2. strongly stable \Rightarrow infinitesimally stable? No!

Thank you for your attention!!