Stable map complexity and hyperbolic volumes of 3-manifolds

Masaharu Ishikawa

Keio University

30 June 2021 (IN BOSTON)

joint work with Yuya Koda (Hiroshima University)

Surface case (1/2)

M: a closed surface, $\chi(M) < 0$

 $f: M \to \mathbb{R}$: the projection in the figure:

c(f): the number of singular fibers of index 1.

The above map satisfies c(f)=2g and therefore we have

$$\operatorname{vol}(M) = 2\pi |\chi(M)| = 4(g-1)\pi = 2(c(f)-2)\pi$$

Surface case (2/2)

In general case, minimizing the number of singular fibers, we obtain the projection in the previous slide.

Idea of our study

 $\operatorname{vol}(M) = \min\{2(c(f)-2)\pi \mid f: M o \mathrm{R} \text{ is a Morse function}\}$

Main Result

Theorem (I.-Koda, 2017)

Let M be a closed, hyperbolic 3-manifold. If $\ell_{\min}>2\pi$ then we have the following inequalities:

$$2\mathrm{smc}(M)V_{\mathrm{oct}}\left(1-\left(rac{2\pi}{\ell_{\mathrm{min}}}
ight)^2
ight)^{3/2} \leq \mathrm{vol}(M) \leq 2\mathrm{smc}(M)V_{\mathrm{oct}}.$$

 $V_{
m oct} = 3.66...$: the hyperbolic volume of ideal regular octahedron

 $\operatorname{smc}(M)$: the minimal number of certain singular fibers of a stable map $f:M \to \mathrm{R}^2$

 ℓ_{\min} : some positive real number

Contents

- $\S 1$. Definition of $\operatorname{smc}(M)$
- §2. Stein factorization
- §3. Glue two regular ideal octahedra
- §4. Results

Stable map (1/3)

Definition

Let M and N be smooth manifolds. Two smooth maps $f:M\to N$ and $g:M\to N$ are said to be right-left equivalent if there exist diffeomorphisms $\phi:M\to M$ and $\psi:N\to N$ such that

$$egin{array}{ccc} M & \stackrel{\phi}{\longrightarrow} & M \ f igg| & g igg| \ N & \stackrel{\psi}{\longrightarrow} & N \end{array}$$

commutes.

Definition

A smooth map $f:M\to N$ is called a stable map if it is right-left equivalent to any smooth map g in a neighborhood of f in the space of smooth maps (with Whitney C^∞ topology).

Stable map (2/3)

EXAMPLE: A Morse function $f: M \to \mathbf{R}$ whose critical points have distinct critical values is a stable map.

Theorem (well-known)

Let M be a smooth 3-manifold and $f: M \to \mathbb{R}^2$ be a stable map to \mathbb{R}^2 . Then f is locally given in one of the following forms:

- (1) $(u, x, y) \mapsto (u, x)$
- (2) $(u,x,y)\mapsto (u,x^2+y^2)$... definite fold
- (3) $(u, x, y) \mapsto (u, x^2 y^2)$... indefinite fold
- (4) $(u, x, y) \mapsto (u, y^2 + ux x^3)$... cusp

Stable map (3/3)

(2)
$$(u,x,y)\mapsto (u,x^2+y^2)$$
 ... definite fold

(3)
$$(u, x, y) \mapsto (u, x^2 - y^2)$$
 ... indefinite fold

Theorem (Levin, 1965)

All cusps can be eliminated by a deformation of a stable map.

Singular fibers over a double point of f(Sing(f))

Definition

The singular fiber in the middle is called of type II^2 and the one on the right is of type II^3 .

Define a stable map for the pair (M, L)

Definition

Let M be a closed, orientable 3-manifold and L be a link in M. A map $f:(M,L)\to {\bf R}^2$ is called a stable map of (M,L) if

- $ullet f:M o {
 m R}^2$ is a stable map and
- L is contained in the set of definite folds of f.

Definition of smc(M, L)

 $\mathrm{II}^2(f)$: the set of singular fibers of f of type II^2

 $\mathrm{II}^3(f):$ the set of singular fibers of f of type II^3

|A|: the number of elements in the set A

Definition

(1) The complexity c(f) of a stable map $f:(M,L) \to \mathrm{R}^2$ is defined by

$$c(f) = |\mathrm{II}^2(f)| + 2|\mathrm{II}^3(f)|.$$

(2) $\operatorname{smc}(M,L) = \min\{c(f) \mid f: (M,L) \to \mathbf{R}^2 \text{ is a stable map}\}$ is called the stable map complexity of (M,L). We denote it by $\operatorname{smc}(M)$ if $L=\emptyset$.

Recall the main result

Main result (recall)

Let M be a closed, hyperbolic 3-manifold. If $\ell_{\min}>2\pi$ then we have the following inequalities:

$$2\mathrm{smc}(M)V_{\mathrm{oct}}\left(1-\left(rac{2\pi}{\ell_{\min}}
ight)^2
ight)^{3/2} \leq \mathrm{vol}(M) \leq 2\mathrm{smc}(M)V_{\mathrm{oct}}.$$

Theorem (Saeki, 1996).

Let M be a closed, orientable 3-manifold. Then, $\mathrm{smc}(M,L)=0$ if and only if (M,L) is a graph manifold with a graph link L.

§2. Stein factorization

— and Turaev's reconstruction of M—

There is a notion of shadow in low-dimensional topology, which is a polyhedron almost same as a Stein factorization. Turaev's reconstruction is a method to reconstruct 3 (and 4)-manifolds from that polyhedron.

Simple polyhedron

Definition

A polyhedron P is called a simple polyhedron if a neighborhood of each point in P is homeomorphic to one of the following five models:

In this talk, we assume that the boundary ∂P consists of a disjoint union of circles.

Stein factorization (1/4)

Def.

Let $f:M\to {\bf R}^2$ be a stable map. Define an equivalence relation \sim between two points $x,y\in M$ by

$$x \sim y \Leftrightarrow f(x) = f(y)$$
 and $x \in \mathcal{Y}$ and $y \in \mathcal{Y}$ lie on the same component of $f^{-1}(f(x))$.

The quotient space M/\sim is called the Stein factorization of f.

Stein factorization (2/4)

Indefinite fold

Stein factorization (3/4)

Singular fiber of type II^2

Stein factorization (4/4)

Singular fiber of type II^3

Reconstruction (1/3)

The neighborhood of a singular fiber of type II^2 in M

Reconstruction (2/3)

Deform as above so that the modified polyhedron is simple.

Definition (recall)

The complexity c(f) of a stable map $f:(M,L) o \mathrm{R}^2$ is defined by

$$c(f) = |II^{2}(f)| + 2|II^{3}(f)|.$$

Reconstruction (3/3)

The manifold M can be reconstructed from the Stein factorization with additional information assigned to each region, called a gleam: Let P be the Stein factorization of $f:M\to \mathbf{R}^2$.

- (1) Modify each vertex of type II^3 in P into two vertices of type II^2 . Denote it by P'.
- (2) Prepare a genus 3 handlebody for each vertex of P' and glue them according to the combinatorics of the singular set of P'. Let M' denote the obtained 3-manifold with boundary.
- Note: The piece of M corresponding to each region of P' is a circle bundle over the region. The gleam is a kind of the euler number of this bundle. ℓ_{min} is determined by this information.
 - (3) For each region R of P', glue $R \times S^1$ to M' according to the gleam, and then obtain M.

§3. Glue two regular ideal octahedra

[CT] F.Costantino and D.Thurston, 3-manifolds efficiently bound 4-manifolds, J. Topol. 1 (2008), 703–745.

2 regular ideal octahedra (1/3)

2 regular ideal octahedra (2/3)

2 regular ideal octahedra (3/3)

Lemma

Let $f:M\to \mathbf{R}^2$ be a stable map with Stein factorization P. The piece of M corresponding to a vertex of P has the hyperbolic volume $2V_{\mathrm{oct}}$. Therefore, $\mathrm{vol}(M')=2c(f)V_{\mathrm{oct}}$, where M' is the union of these pieces.

§4 Results

[IK] M.Ishikawa and Y.Koda, Stable maps and branched shadows of 3-manifolds, Math. Ann. 367 (2017), 1819-1863.

- Reconstruction of a stable map from a polyhedron
- ullet Explicit construction of stable maps for (S^3,L)

Proof of Main Theorem

The claim of the main theorem is

$$2\mathrm{smc}(M)V_{\mathrm{oct}}\left(1-\left(rac{2\pi}{\ell_{\mathrm{min}}}
ight)^2
ight)^{3/2} \leq \mathrm{vol}(M) \leq 2\mathrm{smc}(M)V_{\mathrm{oct}}.$$

Upperbound:

Note: The argument is same as what [CT] did for shadow complexity. Since M is hyperbolic, M is obtained from M' by gluing copies of $D^2 \times S^1$. Then, by Thurston's hyperbolic Dehn surgery theorem, we have $\operatorname{vol}(M) \leq \operatorname{vol}(M') = 2c(f)V_{\operatorname{oct}}$.

Lowerbound:

We use an inequality of Futer-Kalfagianni-Purcell.

Stable maps of links in S^3

Theorem (I.-Koda).

For each link in S^3 , there exists a stable map of $f:(S^3,L)\to {\bf R}^2$ satisfying the following conditions:

- the Stein factorization is contractible
- $|II^2(f)| \le$ the crossing number of L minus 2.
- $|\mathrm{II}^3(f)|=0$ and no cusp.

Example: figure eight knot

Example

Let $L=4_1$ be the figure eight knot in S^3 . The pair $(S^3,4_1)$ admits a stable map f with c(f)=1. Since 4_1 is hyperbolic, $\mathrm{smc}(S^3,4_1)>0$. Therefore, we have $\mathrm{smc}(S^3,4_1)=1$.

Closing remarks

- Gromov generalized the upperbound to the higher-dimensional case $f: M^n \to N^{n-1}$. [M.Gromov, Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), 743–841.]
- Recently, Furutani and Koda gave a complete characterization of the hyperbolic links in the 3-sphere that admit stable maps into the real plane with exactly one singular fiber of type II³.
 Such links are obtained from the link complements consisting of 10 ideal regular tetrahedra by Dehn filling. [R.Furutani, Y.Koda, Stable maps and hyperbolic links, arXiv:2103.00894 [math.GT]]

Thank you for your attention.