Boundary maps from finitely generated groups to CAT(0) spaces

Hiroyasu Izeki
Keio University

2021.07.01 Boston/ 02 Beijing, Tokyo
Main Theorem

Γ: a finitely generated group with a random walk μ
Y: a locally compact CAT(0) space

Main Theorem (I.)

ρ: Γ → Isom(Y): a homomorphism
If ρ(Γ) does not fix a point in ∂Y, then either
- ∃F ⊂ Y a flat subspace with ρ(Γ)(F) = F, or
- ∃φ: ∂PΓ → ∂Y: a canonical ρ-equivariant map.

Here ∂PΓ is the Poisson boundary of (Γ, μ) and ∂Y is the geometric boundary of Y. ρ-equivariant means that ρ(γ)φ(ξ) = φ(γξ) for γ ∈ Γ, ξ ∈ ∂PΓ.
Main Theorem

\(\Gamma \): a finitely generated group with a random walk \(\mu \)
\(Y \): a locally compact CAT(0) space

Main Theorem (I.)

\(\rho : \Gamma \to \text{Isom}(Y) \): a homomorphism

If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either
- \(\exists F \subset Y \) a flat subspace with \(\rho(\Gamma)(F) = F \), or
- \(\exists \varphi : \partial_\rho \Gamma \to \partial Y \): a canonical \(\rho \)-equivariant map.

Here \(\partial_\rho \Gamma \) is the Poisson boundary of \((\Gamma, \mu)\) and \(\partial Y \) is the geometric boundary of \(Y \). \(\rho \)-equivariant means that
\(\rho(\gamma)\varphi(\xi) = \varphi(\gamma \xi) \) for \(\gamma \in \Gamma \), \(\xi \in \partial_\rho \Gamma \).

The existence of such an equivariant boundary map often implies a strong rigidity result on group actions.
CAT(0) spaces

\(Y = (Y, d) \): a complete metric space

- \(c: [0, T] \rightarrow Y \) is a \textbf{geodesic} if \(\forall t, t' \in [0, T] \), \(d(c(t), c(t')) = |t - t'| \).
CAT(0) spaces

$Y = (Y, d)$: a complete metric space

• $c: [0, T] \rightarrow Y$ is a geodesic if $\forall t, t' \in [0, T]$, $d(c(t), c(t')) = |t - t'|$.

• Y is a geodesic space if $\forall p, q \in Y$, \exists a geodesic c joining p and q.

Ex 1. A simply connected Riemannian manifold with nonpositive sectional curvature is CAT(0) space.

Ex 2. Trees, Euclidean buildings are CAT(0) spaces.
CAT(0) spaces

\[Y = (Y, d): \text{a complete metric space} \]

- \(c: [0, T] \rightarrow Y \) is a geodesic if \(\forall t, t' \in [0, T], \)
 \[d(c(t), c(t')) = |t - t'|. \]
- \(Y \) is a geodesic space if \(\forall p, q \in Y, \exists \) a geodesic \(c \) joining \(p \) and \(q \).
- \(Y \) is a CAT(0) space if every geodesic triangle is thinner than Euclidean one.

Ex 1. A simply connected Riemannian manifold with nonpositive sectional curvature is CAT(0) space.

Ex 2. Trees, Euclidean buildings are CAT(0) spaces.
CAT(0) spaces

\(Y = (Y, d) \): a complete metric space

- \(c: [0, T] \rightarrow Y \) is a **geodesic** if \(\forall t, t' \in [0, T], \)
 \[d(c(t), c(t')) = |t - t'|. \]
- \(Y \) is a **geodesic space** if \(\forall p, q \in Y, \exists \) a geodesic \(c \) joining \(p \) and \(q \).
- \(Y \) is a **CAT(0) space** if every geodesic triangle is thinner than Euclidean one.

\[
\begin{align*}
 d_Y(p_i, p_j) &= d_{R^2}(\overline{p_i}, \overline{p_j}), \\
 d_Y(q_1, q_2) &\leq d_{R^2}(\overline{q_1}, \overline{q_2})
\end{align*}
\]
CAT(0) spaces

\[Y = (Y, d): \text{a complete metric space} \]

- \(Y \) is a **CAT(0) space** if every geodesic triangle is thinner than Euclidean one.

Ex 1. A simply connected Riemannian manifold with nonpositive sectional curvature is CAT(0) space.
CAT(0) spaces

\(Y = (Y, d) \): a complete metric space

- \(Y \) is a **CAT(0) space** if every geodesic triangle is thinner than Euclidean one.

\[d_Y(p_i, p_j) = d_{R^2}(\overline{p_i}, \overline{p_j}), \quad d_Y(q_1, q_2) \leq d_{R^2}(\overline{q_1}, \overline{q_2}) \]

Ex 1. A simply connected Riemannian manifold with nonpositive sectional curvature is \(\text{CAT}(0) \) space.

Ex 2. Trees, Euclidean buildings are \(\text{CAT}(0) \) spaces.
Boundary of CAT(0) spaces

- $c : [0, \infty) \to Y$ is a geodesic ray if $\forall t, t' \in [0, \infty)$, \[d(c(t), c(t')) = |t - t'|. \]
Boundary of CAT(0) spaces

• $c : [0, \infty) \to Y$ is a geodesic ray if $\forall t, t' \in [0, \infty), \ d(c(t), c(t')) = |t - t'|$.
• Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.

Note. Every isometry of Y extends to a homeo of ∂Y.
Boundary of CAT(0) spaces

- $c: [0, \infty) \to Y$ is a geodesic ray if $\forall t, t' \in [0, \infty)$,

 \[d(c(t), c(t')) = |t - t'|.\]

- Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t.

 \[d(c(t), c'(t)) \leq M \text{ for } \forall t \in [0, \infty).\]

- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.
Boundary of CAT(0) spaces

- Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

Note. Every isometry of Y extends to a homeo of ∂Y.
Boundary of CAT(0) spaces

- Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

Ex 1. In \mathbb{R}^n, $c \sim c'$ iff c and c' are parallel; $\partial \mathbb{R}^n = S^{n-1}$.

Note. Every isometry of Y extends to a homeo of ∂Y.

Boundary of CAT(0) spaces

- Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/ \sim$.

Ex 1. In \mathbb{R}^n, $c \sim c'$ iff c and c' are parallel; $\partial \mathbb{R}^n = S^{n-1}$.

Ex 2. For hyperbolic n-space \mathbb{H}^n, $\partial \mathbb{H}^n = S^{n-1}$:

$$\mathbb{H}^n = \{x \in \mathbb{R}^n \mid |x| < 1\}$$

$$g_{\mathbb{H}^n} = \frac{4}{(1 - |x|^2)^2} \sum_{i=1}^{n} dx_i^2$$
Boundary of CAT(0) spaces

- Geodesic rays c, c' are asymptotic ($c \sim c'$) if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

Ex 1. In \mathbb{R}^n, $c \sim c'$ iff c and c' are parallel; $\partial \mathbb{R}^n = S^{n-1}$.

Ex 2. For hyperbolic n-space \mathbb{H}^n, $\partial \mathbb{H}^n = S^{n-1}$:

$$\mathbb{H}^n = \{x \in \mathbb{R}^n \mid |x| < 1\}$$

$$g_{\mathbb{H}^n} = \frac{4}{(1 - |x|^2)^2} \sum_{i=1}^{n} dx_i^2$$

Ex 3. If Y is a tree, ∂Y is a Cantor set.
Boundary of CAT(0) spaces

- Geodesic rays \(c, c' \) are asymptotic (\(c \sim c' \)) if \(\exists M > 0 \) s.t. \(d(c(t), c'(t)) \leq M \) for \(\forall t \in [0, \infty) \).
- The boundary of \(Y \) is defined by \(\partial Y = \{ \text{geodesic rays} \}/ \sim \).

Note. Every isometry of \(Y \) extends to a homeo of \(\partial Y \).
Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, isomorphic $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.
Boundary maps in rigidity theory

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, isomorphic $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

- $\exists f : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$: a homotopy equivalence. f induces an isomorphism $\rho : \Gamma \to \Lambda$.

\begin{align*}
\text{Ex (Mostow Rigidity).} & \quad \text{If } \Gamma, \Lambda \subset \text{Isom}(\mathbb{H}^n) \text{ discrete, } n \geq 3, \\
& \quad \text{isomorphic } \Gamma \cong \Lambda \text{ and } \mathbb{H}^n/\Gamma \text{ is compact. Then } \mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda. \\
& \quad \exists f : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda: \text{ a homotopy equivalence. } f \text{ induces an isomorphism } \rho : \Gamma \to \Lambda.
\end{align*}
Boundary maps in rigidity theory

Ex (Mostow Rigidity). If \(\Gamma, \Lambda \subset \text{Isom}(\mathbb{H}^n) \) discrete, \(n \geq 3 \), \(\Gamma \cong \Lambda \) and \(\mathbb{H}^n/\Gamma \) is compact. Then \(\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda \).

- \(\exists f : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda \): a homotopy equivalence. \(f \) induces an isomorphism \(\rho : \Gamma \to \Lambda \).
- \(f \) lifts to a \(\rho \)-equiv map \(\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n \) \((\tilde{f}(\gamma x) = \rho(\gamma)\tilde{f}(x)) \).
Boundary maps in rigidity theory

Ex (Mostow Rigidity). If $\Gamma,\Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, isomorphic $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

- $\exists f : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$: a homotopy equivalence. f induces an isomorphism $\rho : \Gamma \to \Lambda$.
- f lifts to a ρ-equiv map $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ ($\tilde{f}(\gamma x) = \rho(\gamma)\tilde{f}(x)$).
- By hyperbolicity of \mathbb{H}^n and cocompactness of Γ, \tilde{f} extends to a ρ-equivariant homeomorphism $\tilde{f} : \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.
Boundary maps in rigidity theory

Ex (Mostow Rigidity). If $\Gamma, \Lambda \leq \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, isomorphic $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

- $\exists f : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$: a homotopy equivalence. f induces an isomorphism $\rho : \Gamma \to \Lambda$.
- f lifts to a ρ-equiv map $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ ($\tilde{f}(\gamma x) = \rho(\gamma)\tilde{f}(x)$).
- By hyperbolicity of \mathbb{H}^n and cocompactness of Γ, \tilde{f} extends to a ρ-equivariant homeomorphism $\bar{f} : \partial\mathbb{H}^n \to \partial\mathbb{H}^n$.
- $\bar{f} : \partial\mathbb{H}^n \to \partial\mathbb{H}^n$ is a conformal diffeomorphism, and recovers a ρ-equivariant isometry $f_0 : \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h : \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

Since \mathbb{H}^n/Γ is compact, $\Gamma\xi$ is dense in $\partial\mathbb{H}^n$ for any $\xi \in \partial\mathbb{H}^n$. Thus \bar{f} is completely determined by $\bar{f}(\xi)$ for some $\xi \in \partial\mathbb{H}^n$.
Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

\[\bar{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n \] is a ρ-equivariant conformal diffeo, and recovers a ρ-equivariant isometry $f_0: \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

Since \mathbb{H}^n/Γ is compact, $\Gamma \bar{\xi}$ is dense in $\partial \mathbb{H}^n$ for any $\bar{\xi} \in \partial \mathbb{H}^n$. Thus \bar{f} is completely determined by $\bar{f}(\xi)$ for some $\xi \in \partial \mathbb{H}^n$.

Ex (Mostow Rigidity). If $\Gamma, \Lambda \triangleleft \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

\[\bar{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n \] is a ρ-equivariant conformal diffeomorphism, and recovers a ρ-equivariant isometry $f_0: \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

Since \mathbb{H}^n/Γ is compact, $\Gamma \xi$ is dense in $\partial \mathbb{H}^n$ for any $\xi \in \partial \mathbb{H}^n$. Thus \bar{f} is completely determined by $\bar{f}(\xi)$ for some $\xi \in \partial \mathbb{H}^n$.
Random walk on a group and its Poisson boundary

\(\Gamma: \) a finitely generated group

Consider a **random walk** on \(\Gamma; \) \(\mu: \Gamma \times \Gamma \to [0, 1] \) with

- probability \(\sum_{\gamma' \in \Gamma} \mu(\gamma, \gamma') = 1, \)
- symmetric \(\mu(\gamma, \gamma') = \mu(\gamma', \gamma), \)
- \(\Gamma \)-invariant \(\mu(\gamma \gamma', \gamma \gamma'') = \mu(\gamma', \gamma''), \)
- irreducible \(\{ \gamma \in \Gamma \mid \mu(e, \gamma) \neq 0 \} \) generates \(\Gamma. \)
Random walk on a group and its Poisson boundary

\(\Gamma \): a finitely generated group

Consider a random walk on \(\Gamma \); \(\mu : \Gamma \times \Gamma \to [0, 1] \) with

- probability \(\sum_{\gamma' \in \Gamma} \mu(\gamma, \gamma') = 1 \),
- symmetric \(\mu(\gamma, \gamma') = \mu(\gamma', \gamma) \),
- \(\Gamma \)-invariant \(\mu(\gamma\gamma', \gamma\gamma'') = \mu(\gamma', \gamma'') \),
- irreducible \(\{ \gamma \in \Gamma \mid \mu(e, \gamma) \neq 0 \} \) generates \(\Gamma \).

\(\mu(\gamma, \gamma') \) is the transition probability of \(\gamma \to \gamma' \).
Random walk on a group and its Poisson boundary

Γ: a finitely generated group

Consider a random walk on Γ; $\mu: \Gamma \times \Gamma \to [0, 1]$ with

- probability $\sum_{\gamma' \in \Gamma} \mu(\gamma, \gamma') = 1$,
- symmetric $\mu(\gamma, \gamma') = \mu(\gamma', \gamma)$,
- Γ-invariant $\mu(\gamma \gamma', \gamma \gamma'') = \mu(\gamma', \gamma'')$,
- irreducible $\{\gamma \in \Gamma \mid \mu(e, \gamma) \neq 0\}$ generates Γ.

- $\mu(\gamma, \gamma')$ is the transition probability of $\gamma \to \gamma'$.
- $\mu^n(\gamma, \gamma')$ is the n-step transition probability of $\gamma \to \gamma'$ after n steps:

$$\mu^n(\gamma, \gamma') = \sum_{\gamma_1, \ldots, \gamma_{n-1} \in \Gamma} \mu(\gamma, \gamma_1) \mu(\gamma_1, \gamma_2) \cdots \mu(\gamma_{n-1}, \gamma')$$
Random walk on a group and its Poisson boundary

Γ: a finitely generated group
- \(\mu(\gamma, \gamma') \) is the transition probability of \(\gamma \to \gamma' \).
- \(\mu^n(\gamma, \gamma') \) is the \(n \)-step transition probability of \(\gamma \to \gamma' \) after \(n \) steps:
 \[
 \mu^n(\gamma, \gamma') = \sum_{\gamma_1, \ldots, \gamma_{n-1} \in \Gamma} \mu(\gamma, \gamma_1) \mu(\gamma_1, \gamma_2) \cdots \mu(\gamma_{n-1}, \gamma')
 \]
- The Poisson boundary of \(\Gamma \) w.r.t. \(\mu \) is the probability space describing the distribution of "\(\infty \)-step random walk":
 \[
 \partial_P \Gamma = = \lim_{n \to \infty} (\Gamma, \mu^n(e, \cdot)).
 \]

If the random walk "diverges", then \(\partial_P \Gamma \) can be viewed as a boundary at \(\infty \) of \(\Gamma \), and \(\Gamma \) acts on \(\partial_P \Gamma \).
Main Theorem and Proof

Γ: a finitely generated group with a random walk μ
Y: a locally compact CAT(0) space

Main Theorem (I.)

$\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism
If $\rho(\Gamma)$ does not fix a point in ∂Y, then either

- $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or
- $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ-equivariant map.
Main Theorem and Proof

\[\Gamma: \text{a finitely generated group with a random walk } \mu \]
\[Y: \text{a locally compact CAT}(0) \text{ space} \]

Main Theorem (I.)

\[\rho: \Gamma \to \text{Isom}(Y): \text{a homomorphism} \]
If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either

- \(\exists F \subset Y \text{ a flat subspace with } \rho(\Gamma)(F) = F \), or
- \(\exists \varphi: \partial P \Gamma \to \partial Y: \text{a canonical } \rho\text{-equivariant map} \).

This refines a theorem due to Bader-Duchesne-Lécuruex. Our \(\varphi \) is canonical: \(\varphi \) is obtained as an extension of an orbit map \(\gamma \mapsto \rho(\gamma)p \) to \(\partial P \Gamma \) for \(p \in Y \).
Main Theorem and Proof

Γ: a finitely generated group with a random walk μ
Y: a locally compact CAT(0) space

Main Theorem (I.)

ρ: Γ → Isom(Y): a homomorphism
If ρ(Γ) does not fix a point in ∂Y, then either

- ∃F ⊂ Y a flat subspace with ρ(Γ)(F) = F, or
- ∃φ: ∂ₚΓ → ∂Y: a canonical ρ-equivariant map.

Note 1. The map φ is not only measurable but Lipschitz continuous w.r.t. “Tits metric” on ∂ₚΓ and ∂Y.
Main Theorem and Proof

\[\Gamma: \text{a finitely generated group with a random walk } \mu \]
\[Y: \text{a locally compact CAT(0) space} \]

Main Theorem (I.)

\[\rho: \Gamma \rightarrow \text{Isom}(Y): \text{a homomorphism} \]
If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either

- \(\exists F \subset Y \) a flat subspace with \(\rho(\Gamma)(F) = F \), or
- \(\exists \varphi: \partial P \Gamma \rightarrow \partial Y: \) a canonical \(\rho \)-equivariant map.

Note 2. Under certain probabilistic assumption on \(\rho(\Gamma) \), we can drop the local compactness assumption on \(Y \).
Main Theorem and Proof

Γ: a finitely generated group with a random walk \(\mu \)
Y: a locally compact CAT(0) space

Main Theorem (I.)

\(\rho: \Gamma \rightarrow \text{Isom}(Y) \): a homomorphism
If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either
- \(\exists F \subset Y \) a flat subspace with \(\rho(\Gamma)(F) = F \), or
- \(\exists \varphi: \partial_P \Gamma \rightarrow \partial Y \): a canonical \(\rho \)-equivariant map.

Note 3. If \(Y \) is hyperbolic in the sense of Gromov, we don’t have to assume \(Y \) to be locally compact, and \(F \) becomes the image of a geodesic line.
Main Theorem and Proof

Main Theorem (I.)

\[\rho : \Gamma \rightarrow \text{Isom}(Y) : \text{a homomorphism} \]

If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either

- \(\exists F \subset Y \) a flat subspace with \(\rho(\Gamma)(F) = F \), or
- \(\exists \varphi : \partial \rho \Gamma \rightarrow \partial Y \) : a canonical \(\rho \)-equivariant map.

Corollary (Haettel)

\(Y \): a CAT(0) space, hyperbolic in the sense of Gromov

\[\rho : \text{SL}(n, \mathbb{Z}) \rightarrow \text{Isom}(Y) : \text{a homomorphism, } n \geq 3. \]

Then either

- \(\rho(\Gamma) \) fixes a point in \(\partial Y \), or
- \(\rho(\Gamma) \) leaves a geodesic line invariant.
Main Theorem and Proof

Main Theorem (I.)

\[\rho : \Gamma \rightarrow \text{Isom}(Y) : \text{a homomorphism} \]

If \(\rho(\Gamma) \) does not fix a point in \(\partial Y \), then either

- \(\exists F \subset Y \) a flat subspace with \(\rho(\Gamma)(F) = F \), or
- \(\exists \varphi : \partial \rho \Gamma \rightarrow \partial Y \): a canonical \(\rho \)-equivariant map.

The proof uses a \(\rho \)-equivariant harmonic map \(f : \Gamma \rightarrow Y \).

- \(\rho \)-equivariance: \(\rho(\gamma)f(\gamma') = f(\gamma \gamma') \) for \(\forall \gamma, \gamma' \in \Gamma \),
- harmonicity: \(f \) minimizes \(\mu \)-energy \(E_\mu \)

\[E_\mu : f \mapsto \int_{\gamma \in \Gamma} d(f(e), f(\gamma))^2 d\mu(e, \gamma) \]
Main Theorem and Proof

Let \((\Omega, \mathbb{P}) = (\Gamma, \mu) \times \cdots \times (\Gamma, \mu) \times \cdots\) and set
\[\omega = (\omega_1, \omega_2, \ldots) \in \Omega, \quad \gamma_n(\omega) = \omega_1 \ldots \omega_n \in \Gamma.\]

By Kingman's subadditive ergodic theorem,

\[
\frac{d(f(e), f(\gamma_n(\omega)))}{n} \to \exists C \in [0, \infty) \quad \text{in } L^1(\Omega, \mathbb{P}).
\]
Main Theorem and Proof

Let \((\Omega, \mathbb{P}) = (\Gamma, \mu) \times \cdots \times (\Gamma, \mu) \times \cdots\) and set \(\omega = (\omega_1, \omega_2, \ldots) \in \Omega, \ \gamma_n(\omega) = \omega_1 \ldots \omega_n \in \Gamma.\)

By Kingman’s subadditive ergodic theorem,

\[
\frac{d(f(e), f(\gamma_n(\omega))))}{n} \rightarrow \exists C \in [0, \infty) \quad \text{in} \ L^1(\Omega, \mathbb{P}).
\]

If \(C > 0,\) then by Karlsson-Margulis, \(f(\gamma_n(\omega)) \rightarrow \exists \xi \in \partial Y\)
a.a. \(\omega \in (\Omega, \mathbb{P}).\)
If \(C = 0,\) then using the harmonicity of \(f,\) we can show that the convex hull of \(f(\Gamma)\) is flat.
Main Theorem and Proof

If $C = 0$, then using the harmonicity of f, we can show that the convex hull of $f(\Gamma)$ is flat.

Since f is μ-harmonic,

$$u : Y \to \mathbb{R} \text{ convex} \Rightarrow \Delta_\mu f^* u \leq 0,$$

where

$$\Delta_\mu h(\gamma) = h(\gamma) - \int_{\gamma' \in \Gamma} h(\gamma \gamma') d\mu(\gamma, \gamma').$$

If $C = 0$, $\exists \xi \in Y \cup \partial Y$ such that $\Delta f^* u \equiv 0$, where $u(p) = d(\xi, p)$ or $u(p) = b_\xi(p)$, which means that u has the weakest possible convexity, which leads us to see the convex hull of $f(\Gamma)$ is flat.