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Main Theorem

Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

Here ∂PΓ is the Poisson boundary of (Γ, µ) and ∂Y is the
geometric boundary of Y . ρ-equivariant means that
ρ(γ)φ(ξ) = φ(γξ) for γ ∈ Γ, ξ ∈ ∂PΓ.

The existence of such an equivariant boundary map often
implies a strong rigidity result on group actions.
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CAT(0) spaces

Y = (Y , d): a complete metric space
• c : [0,T ] → Y is a geodesic if ∀t, t ′ ∈ [0,T ],
d(c(t), c(t ′)) = |t − t ′|.

• Y is a CAT(0) space if every geodesic triangle is thinner
than Euclidean one.
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dY (pi, pj) = dR2(pi, pj), dY (q1, q2) ≤ dR2(q1, q2)

Ex 1. A simply connected Riemannian manifold with
nonpositive sectional curvature is CAT(0) space.

Ex 2. Trees, Euclidean buildings are CAT(0) spaces.
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Boundary of CAT(0) spaces

• c : [0,∞) → Y is a geodesic ray if ∀t, t ′ ∈ [0,∞),
d(c(t), c(t ′)) = |t − t ′|.

Note. Every isometry of Y extends to a homeo of ∂Y .



















































































Boundary of CAT(0) spaces

• c : [0,∞) → Y is a geodesic ray if ∀t, t ′ ∈ [0,∞),
d(c(t), c(t ′)) = |t − t ′|.
• Geodesic rays c , c ′ are asymptotic (c ∼ c ′) if ∃M > 0 s.t.
d(c(t), c ′(t)) ≤ M for ∀t ∈ [0,∞).

Note. Every isometry of Y extends to a homeo of ∂Y .
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Boundary of CAT(0) spaces

• Geodesic rays c , c ′ are asymptotic (c ∼ c ′) if ∃M > 0 s.t.
d(c(t), c ′(t)) ≤ M for ∀t ∈ [0,∞).
• The boundary of Y is defined by ∂Y = {geodesic rays}/ ∼.

Ex 1. In Rn, c ∼ c ′ iff c and c ′ are parallel; ∂Rn = Sn−1.
Ex 2. For hyperbolic n-space Hn, ∂Hn = Sn−1 :

Hn = {x ∈ Rn | |x | < 1}

gHn =
4

(1− |x |2)2
n∑

i=1

dxi
2

Note. Every isometry of Y extends to a homeo of ∂Y .



















































































Boundary of CAT(0) spaces

• Geodesic rays c , c ′ are asymptotic (c ∼ c ′) if ∃M > 0 s.t.
d(c(t), c ′(t)) ≤ M for ∀t ∈ [0,∞).
• The boundary of Y is defined by ∂Y = {geodesic rays}/ ∼.

Ex 1. In Rn, c ∼ c ′ iff c and c ′ are parallel; ∂Rn = Sn−1.
Ex 2. For hyperbolic n-space Hn, ∂Hn = Sn−1 :

Hn = {x ∈ Rn | |x | < 1}

gHn =
4

(1− |x |2)2
n∑

i=1

dxi
2

Ex 3. If Y is a tree, ∂Y is a Cantor set.

Note. Every isometry of Y extends to a homeo of ∂Y .



















































































Boundary of CAT(0) spaces

• Geodesic rays c , c ′ are asymptotic (c ∼ c ′) if ∃M > 0 s.t.
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Boundary maps in rigidity theory

Ex (Mostow Rigidity). If Γ,Λ < Isom(Hn) discrete, n ≥ 3,

Γ
isomorphic∼= Λ and Hn/Γ is compact. Then Hn/Γ

isometry∼= Hn/Λ.

f̄ : ∂Hn → ∂Hn is a ρ-equivariant conformal diffeo, and
recovers a ρ-equivariant isometry f0 : Hn → Hn, which
descends to an isometry h : Hn/Γ → Hn/Λ.

Since Hn/Γ is compact, Γξ
is dense in ∂Hn for any ξ ∈
∂Hn. Thus f̄ is comletely
determined by f̄ (ξ) for some
ξ ∈ ∂Hn.
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Random walk on a group and its Poisson boundary

Γ: a finitely generated group
Consider a random walk on Γ; µ : Γ× Γ → [0, 1] with

probability
∑

γ′∈Γ µ(γ, γ
′) = 1,

symmetric µ(γ, γ′) = µ(γ′, γ),
Γ-invariant µ(γγ′, γγ′′) = µ(γ′, γ′′),
irreducible {γ ∈ Γ | µ(e, γ) 6= 0} generates Γ.

• µ(γ, γ′) is the transition probability of γ → γ′.
• µn(γ, γ′) is the n-step transition probability of γ → γ′ after
n steps:

µn(γ, γ′) =
∑

γ1,...,γn−1∈Γ µ(γ, γ1)µ(γ1, γ2) . . . µ(γn−1, γ
′)

• The Poisson boundary of Γ w.r.t. µ is the probability space
describing the distribution of “∞-step random walk”:

∂PΓ “ = ” lim
n→∞

(Γ, µn(e, ·)).

If the random walk “diverges”, then ∂PΓ can be viewed as a
boundary at ∞ of Γ, and Γ acts on ∂PΓ.
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Main Theorem and Proof

Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.
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Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

This refines a theorem due to Bader-Duchesne-Lécuruex. Our
φ is canonical: φ is obtained as an extension of an orbit map
γ 7→ ρ(γ)p to ∂PΓ for p ∈ Y .



















































































Main Theorem and Proof

Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

Note 1. The map φ is not only measurable but Lipschitz
continuous w.r.t. “Tits metric”on ∂PΓ and ∂Y .



















































































Main Theorem and Proof

Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

Note 2. Under certain probablistic assumption on ρ(Γ), we can
drop the local compactness assumption on Y .



















































































Main Theorem and Proof

Γ: a finitely generated group with a random walk µ
Y : a locally compact CAT(0) space

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

Note 3. If Y is hyperbolic in the sense of Gromov, we don’t
have to assume Y to be locally compact, and F becomes the
image of a geodesic line.



















































































Main Theorem and Proof

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

Corollary (Haettel)

Y : a CAT(0) space, hyperbolic in the sense of Gromov
ρ : SL(n,Z) → Isom(Y ): a homomorphism, n ≥ 3.
Then either

ρ(Γ) fixes a point in ∂Y , or

ρ(Γ) leaves a geodesic line invariant.



















































































Main Theorem and Proof

Main Theorem (I.)

ρ : Γ → Isom(Y ): a homomorphism
If ρ(Γ) does not fix a point in ∂Y , then either

∃F ⊂ Y a flat subspace with ρ(Γ)(F ) = F , or

∃φ : ∂PΓ → ∂Y : a canonical ρ-equivariant map.

The proof uses a ρ-equivariant harmonic map f : Γ → Y .

ρ-equivariance: ρ(γ)f (γ′) = f (γγ′) for ∀γ, γ′ ∈ Γ,

harmonicity: f minimizes µ-energy Eµ

Eµ : f 7→
∫
γ∈Γ

d(f (e), f (γ))2dµ(e, γ)



















































































Main Theorem and Proof

Let (Ω,P) = (Γ, µ)× · · · × (Γ, µ)× . . . and set
ω = (ω1, ω2, . . . ) ∈ Ω, γn(ω) = ω1 . . . ωn ∈ Γ.
By Kingman’s subadditive ergodic theorem,

d(f (e), f (γn(ω)))

n
→ ∃C ∈ [0,∞) in L1(Ω,P).
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Let (Ω,P) = (Γ, µ)× · · · × (Γ, µ)× . . . and set
ω = (ω1, ω2, . . . ) ∈ Ω, γn(ω) = ω1 . . . ωn ∈ Γ.
By Kingman’s subadditive ergodic theorem,

d(f (e), f (γn(ω)))

n
→ ∃C ∈ [0,∞) in L1(Ω,P).

If C > 0, then by Karlsson-Margulis, f (γn(ω)) → ∃ξ ∈ ∂Y
a.a. ω ∈ (Ω,P).
If C = 0, then using the harmonicity of f , we can show that
the convex hull of f (Γ) is flat.



















































































Main Theorem and Proof

If C = 0, then using the harmonicity of f , we can show that
the convex hull of f (Γ) is flat.
Since f is µ-harmonic,

u : Y → R convex ⇒ ∆µf
∗u ≤ 0,

where

∆µh(γ) = h(γ)−
∫
γ′∈Γ

h(γγ′)dµ(γ, γ′).

If C = 0, ∃ξ ∈ Y ∪ ∂Y such that ∆f ∗u ≡ 0, where
u(p) = d(ξ, p) or u(p) = bξ(p), which means that u has the
weakest possible convexity, which leads us to see the convex
hull of f (Γ) is flat.


