Boundary maps from finitely generated groups to CAT(0) spaces

Hiroyasu Izeki Keio University

2021.07.01 Boston/ 02 Beijing, Tokyo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Main Theorem

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

Here $\partial_P \Gamma$ is the Poisson boundary of (Γ, μ) and ∂Y is the geometric boundary of Y. ρ -equivariant means that $\rho(\gamma)\varphi(\xi) = \varphi(\gamma\xi)$ for $\gamma \in \Gamma$, $\xi \in \partial_P \Gamma$.

Main Theorem

 Γ : a finitely generated group with a random walk μ Y: a locally compact CAT(0) space

Main Theorem (I.)

ρ: Γ → Isom(Y): a homomorphism
If ρ(Γ) does not fix a point in ∂Y, then either
∃F ⊂ Y a flat subspace with ρ(Γ)(F) = F, or
∃φ: ∂_PΓ → ∂Y: a canonical ρ-equivariant map.

Here $\partial_P \Gamma$ is the Poisson boundary of (Γ, μ) and ∂Y is the geometric boundary of Y. ρ -equivariant means that $\rho(\gamma)\varphi(\xi) = \varphi(\gamma\xi)$ for $\gamma \in \Gamma$, $\xi \in \partial_P \Gamma$. The existence of such an equivariant boundary map often implies a strong rigidity result on group actions.

$$Y = (Y, d)$$
: a complete metric space
• $c : [0, T] \rightarrow Y$ is a geodesic if $\forall t, t' \in [0, T]$,
 $d(c(t), c(t')) = |t - t'|$.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ●

$$Y = (Y, d)$$
: a complete metric space
• $c : [0, T] \rightarrow Y$ is a geodesic if $\forall t, t' \in [0, T]$,
 $d(c(t), c(t')) = |t - t'|$.
• Y is a geodesic space if $\forall p, q \in Y$, \exists a geodesic c joining p
and q.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$Y = (Y, d)$$
: a complete metric space
• $c: [0, T] \rightarrow Y$ is a geodesic if $\forall t, t' \in [0, T]$,
 $d(c(t), c(t')) = |t - t'|$.
• Y is a geodesic space if $\forall p, q \in Y$, \exists a geodesic c joining p
and q.

• Y is a CAT(0) space if every geodesic triangle is thinner than Euclidean one.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$Y = (Y, d)$$
: a complete metric space
• $c: [0, T] \rightarrow Y$ is a geodesic if $\forall t, t' \in [0, T]$,
 $d(c(t), c(t')) = |t - t'|$.
• Y is a geodesic space if $\forall p, q \in Y$, \exists a geodesic c joining p
and q.

• Y is a CAT(0) space if every geodesic triangle is thinner than Euclidean one.

 $d_Y(p_i,p_j)=d_{R^2}(\overline{p_i},\overline{p_j}),$

 $d_Y(q_1, q_2) \le d_{R^2}(\overline{q_1}, \overline{q_2})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Y = (Y, d): a complete metric space

• Y is a CAT(0) space if every geodesic triangle is thinner than Euclidean one.

 $d_Y(p_i,p_j) = d_{R^2}(\overline{p_i},\overline{p_j}), \qquad \qquad d_Y(q_1,q_2) \leq d_{R^2}(\overline{q_1},\overline{q_2})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $E \times 1$. A simply connected Riemannian manifold with nonpositive sectional curvature is CAT(0) space.

Y = (Y, d): a complete metric space

• Y is a CAT(0) space if every geodesic triangle is thinner than Euclidean one.

 $d_Y(p_i,p_j) = d_{R^2}(\overline{p_i},\overline{p_j}), \qquad \qquad d_Y(q_1,q_2) \le d_{R^2}(\overline{q_1},\overline{q_2})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

 $E \times 1$. A simply connected Riemannian manifold with nonpositive sectional curvature is CAT(0) space.

Ex 2. Trees, Euclidean buildings are CAT(0) spaces.

•
$$c : [0, \infty) \to Y$$
 is a geodesic ray if $\forall t, t' \in [0, \infty)$,
 $d(c(t), c(t')) = |t - t'|.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

c: [0,∞) → Y is a geodesic ray if ∀t, t' ∈ [0,∞), d(c(t), c(t')) = |t - t'|.
Geodesic rays c, c' are asymptotic (c ~ c') if ∃M > 0 s.t. d(c(t), c'(t)) ≤ M for ∀t ∈ [0,∞).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $c: [0, \infty) \rightarrow Y$ is a geodesic ray if $\forall t, t' \in [0, \infty)$, d(c(t), c(t')) = |t - t'|.• Geodesic rays c, c' are asymptotic $(c \sim c')$ if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty).$
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Geodesic rays c, c' are asymptotic $(c \sim c')$ if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Geodesic rays c, c' are asymptotic (c ~ c') if ∃M > 0 s.t. d(c(t), c'(t)) ≤ M for ∀t ∈ [0, ∞).
The boundary of Y is defined by ∂Y = {geodesic rays}/ ~.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Ex 1. In \mathbb{R}^n , $c \sim c'$ iff c and c' are parallel; $\partial \mathbb{R}^n = S^{n-1}$.

Geodesic rays c, c' are asymptotic (c ~ c') if ∃M > 0 s.t. d(c(t), c'(t)) ≤ M for ∀t ∈ [0, ∞).
The boundary of Y is defined by ∂Y = {geodesic rays}/ ~.
Ex 1. In ℝⁿ, c ~ c' iff c and c' are parallel; ∂ℝⁿ = Sⁿ⁻¹.
Ex 2. For hyperbolic *n*-space ℍⁿ, ∂ℍⁿ = Sⁿ⁻¹ :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

• Geodesic rays c, c' are asymptotic $(c \sim c')$ if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$. • The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\} / \sim$. Ex 1. In \mathbb{R}^n , $c \sim c'$ iff c and c' are parallel; $\partial \mathbb{R}^n = S^{n-1}$. Ex 2. For hyperbolic *n*-space \mathbb{H}^n , $\partial \mathbb{H}^n = S^{n-1}$: $\mathbb{H}^n = \{ x \in \mathbb{R}^n \mid |x| < 1 \}$ $g_{\mathbb{H}^n} = \frac{4}{(1-|x|^2)^2} \sum_{i=1}^n dx_i^2$

Ex 3. If Y is a tree, ∂Y is a Cantor set.

- Geodesic rays c, c' are asymptotic $(c \sim c')$ if $\exists M > 0$ s.t. $d(c(t), c'(t)) \leq M$ for $\forall t \in [0, \infty)$.
- The boundary of Y is defined by $\partial Y = \{\text{geodesic rays}\}/\sim$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note. Every isometry of Y extends to a homeo of ∂Y .

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \ge 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \ge 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$. $\exists f: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$: a homotopy equivalence. f induces an isomorphism $\rho: \Gamma \to \Lambda$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ex (Mostow Rigidity). If Γ, Λ < Isom(ℍⁿ) discrete, n ≥ 3,
Γ ≅ Λ and ℍⁿ/Γ is compact. Then ℍⁿ/Γ ≅ ℍⁿ/Λ.
∃f: ℍⁿ/Γ → ℍⁿ/Λ: a homotopy equivalence. f induces an isomorphism ρ: Γ → Λ.
f lifts to a ρ-equiv map f̃: ℍⁿ → ℍⁿ (f̃(γx) = ρ(γ)f̃(x)).

- Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \ge 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$.
 - $\exists f : \mathbb{H}^n / \Gamma \to \mathbb{H}^n / \Lambda$: a homotopy equivalence. *f* induces an isomorphism $\rho : \Gamma \to \Lambda$.
 - f lifts to a ρ -equiv map $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ $(\tilde{f}(\gamma x) = \rho(\gamma)\tilde{f}(x)).$
 - By hyperbolicity of \mathbb{H}^n and cocompactness of Γ , \tilde{f} extends to a ρ -equivariant homeomorphism $\bar{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$.

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \geq 3$, isomorphic isometry \cong Λ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$. $\exists f: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$: a homotopy equivalence. f induces an isomorphism $\rho \colon \Gamma \to \Lambda$. • f lifts to a ρ -equiv map $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ $(\tilde{f}(\gamma x) = \rho(\gamma)\tilde{f}(x)).$ By hyperbolicity of \mathbb{H}^n and cocompactness of Γ , \tilde{f} extends to a ρ -equivariant homeomorphism $\overline{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$. • $f: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ is a conformal diffeomorphism, and recovers a ρ -equivariant isometry $f_0: \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \ge 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$. **•** $\overline{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ is a ρ -equivariant conformal diffeo, and recovers a ρ -equivariant isometry $f_0: \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ex (Mostow Rigidity). If $\Gamma, \Lambda < \text{Isom}(\mathbb{H}^n)$ discrete, $n \ge 3$, $\Gamma \cong \Lambda$ and \mathbb{H}^n/Γ is compact. Then $\mathbb{H}^n/\Gamma \cong \mathbb{H}^n/\Lambda$. **•** $\overline{f}: \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ is a ρ -equivariant conformal diffeo, and recovers a ρ -equivariant isometry $f_0: \mathbb{H}^n \to \mathbb{H}^n$, which descends to an isometry $h: \mathbb{H}^n/\Gamma \to \mathbb{H}^n/\Lambda$.

Since \mathbb{H}^n/Γ is compact, $\Gamma\xi$ is dense in $\partial \mathbb{H}^n$ for any $\xi \in \partial \mathbb{H}^n$. Thus \overline{f} is comletely determined by $\overline{f}(\xi)$ for some $\xi \in \partial \mathbb{H}^n$.

・ロト・日本・モート ヨー うんぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Γ: a finitely generated group Consider a random walk on Γ; μ: Γ × Γ → [0, 1] with probability $\sum_{\gamma' \in \Gamma} μ(\gamma, \gamma') = 1$, symmetric $μ(\gamma, \gamma') = μ(\gamma', \gamma)$, Γ-invariant $μ(\gamma\gamma', \gamma\gamma'') = μ(\gamma', \gamma'')$, irreducible { $\gamma \in Γ | μ(e, γ) \neq 0$ } generates Γ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Γ: a finitely generated group Consider a random walk on Γ; μ: Γ × Γ → [0, 1] with ■ probability $\sum_{\gamma' \in \Gamma} \mu(\gamma, \gamma') = 1$, ■ symmetric $\mu(\gamma, \gamma') = \mu(\gamma', \gamma)$, ■ Γ-invariant $\mu(\gamma\gamma', \gamma\gamma'') = \mu(\gamma', \gamma'')$, ■ irreducible { $\gamma \in \Gamma \mid \mu(e, \gamma) \neq 0$ } generates Γ. • $\mu(\gamma, \gamma')$ is the transition probability of $\gamma \to \gamma'$.

Γ: a finitely generated group Consider a random walk on Γ; μ: Γ × Γ → [0, 1] with ■ probability $\sum_{\gamma' \in Γ} μ(γ, γ') = 1$, ■ symmetric μ(γ, γ') = μ(γ', γ), ■ Γ-invariant μ(γγ', γγ'') = μ(γ', γ''), ■ irreducible { $γ \in Γ | μ(e, γ) \neq 0$ } generates Γ. ● μ(γ, γ') is the transition probability of γ → γ'. ● μ'(γ, γ') is the *n*-step transition probability of γ → γ' after *n* steps:

$$\mu^{n}(\gamma,\gamma')=\sum_{\gamma_{1},\ldots,\gamma_{n-1}\in\Gamma}\mu(\gamma,\gamma_{1})\mu(\gamma_{1},\gamma_{2})\ldots\mu(\gamma_{n-1},\gamma')$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\Gamma:$ a finitely generated group
- $\mu(\gamma, \gamma')$ is the transition probability of $\gamma \to \gamma'$.
- $\mu^n(\gamma, \gamma')$ is the *n*-step transition probability of $\gamma \to \gamma'$ after *n* steps:

$$\mu^{n}(\gamma,\gamma') = \sum_{\gamma_{1},\ldots,\gamma_{n-1}\in\Gamma} \mu(\gamma,\gamma_{1})\mu(\gamma_{1},\gamma_{2})\ldots\mu(\gamma_{n-1},\gamma')$$

• The Poisson boundary of Γ w.r.t. μ is the probability space describing the distribution of " ∞ -step random walk":

$$\partial_P \Gamma$$
 "=" $\lim_{n\to\infty} (\Gamma, \mu^n(e, \cdot)).$

If the random walk "diverges", then $\partial_P \Gamma$ can be viewed as a boundary at ∞ of Γ , and Γ acts on $\partial_P \Gamma$.

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ -equivariant map.

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ -equivariant map.

This refines a theorem due to Bader-Duchesne-Lécuruex. Our φ is canonical: φ is obtained as an extension of an orbit map $\gamma \mapsto \rho(\gamma)p$ to $\partial_P\Gamma$ for $p \in Y$.

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ -equivariant map.

Note 1. The map φ is not only measurable but Lipschitz continuous w.r.t. "Tits metric" on $\partial_P \Gamma$ and ∂Y .

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ -equivariant map.

Note 2. Under certain probablistic assumption on $\rho(\Gamma)$, we can drop the local compactness assumption on Y.

Γ: a finitely generated group with a random walk μ*Y*: a locally compact CAT(0) space

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or $\exists \varphi: \partial_P \Gamma \to \partial Y$: a canonical ρ -equivariant map.

Note 3. If Y is hyperbolic in the sense of Gromov, we don't have to assume Y to be locally compact, and F becomes the image of a geodesic line.

Main Theorem (I.)

 $\rho: \Gamma \to \text{Isom}(Y)$: a homomorphism If $\rho(\Gamma)$ does not fix a point in ∂Y , then either $\blacksquare \exists F \subset Y$ a flat subspace with $\rho(\Gamma)(F) = F$, or

■ $\exists \varphi : \partial_P \Gamma \rightarrow \partial Y$: a canonical ρ -equivariant map.

Corollary (Haettel)

Y: a CAT(0) space, hyperbolic in the sense of Gromov $\rho: SL(n, \mathbb{Z}) \rightarrow Isom(Y)$: a homomorphism, $n \ge 3$. Then either

- $\rho(\Gamma)$ fixes a point in ∂Y , or
- $\rho(\Gamma)$ leaves a geodesic line invariant.

Main Theorem (I.)

 $\begin{array}{l} \rho\colon \Gamma \to \mathsf{Isom}(Y) \colon \text{ a homomorphism} \\ \text{If } \rho(\Gamma) \text{ does not fix a point in } \partial Y, \text{ then either} \\ \bullet \exists F \subset Y \text{ a flat subspace with } \rho(\Gamma)(F) = F, \text{ or} \\ \bullet \exists \varphi \colon \partial_P \Gamma \to \partial Y \colon \text{ a canonical } \rho\text{-equivariant map.} \end{array}$

The proof uses a ρ -equivariant harmonic map $f: \Gamma \to Y$. ρ -equivariance: $\rho(\gamma)f(\gamma') = f(\gamma\gamma')$ for $\forall \gamma, \gamma' \in \Gamma$, harmonicity: f minimizes μ -energy E_{μ}

$$E_{\mu} \colon f \mapsto \int_{\gamma \in \Gamma} d(f(e), f(\gamma))^2 d\mu(e, \gamma)$$

Let
$$(\Omega, \mathbb{P}) = (\Gamma, \mu) \times \cdots \times (\Gamma, \mu) \times \ldots$$
 and set $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, $\gamma_n(\omega) = \omega_1 \ldots \omega_n \in \Gamma$.
By Kingman's subadditive ergodic theorem,

$$\frac{d(f(e),f(\gamma_n(\omega)))}{n} \to \exists C \in [0,\infty) \quad \text{in } L^1(\Omega,\mathbb{P}).$$

Let
$$(\Omega, \mathbb{P}) = (\Gamma, \mu) \times \cdots \times (\Gamma, \mu) \times \ldots$$
 and set $\omega = (\omega_1, \omega_2, \ldots) \in \Omega$, $\gamma_n(\omega) = \omega_1 \ldots \omega_n \in \Gamma$.
By Kingman's subadditive ergodic theorem,

$$\frac{d(f(e),f(\gamma_n(\omega)))}{n} \to \exists C \in [0,\infty) \quad \text{in } L^1(\Omega,\mathbb{P}).$$

If C > 0, then by Karlsson-Margulis, $f(\gamma_n(\omega)) \to \exists \xi \in \partial Y$ a.a. $\omega \in (\Omega, \mathbb{P})$. If C = 0, then using the harmonicity of f, we can show that the convex hull of $f(\Gamma)$ is flat.

If C = 0, then using the harmonicity of f, we can show that the convex hull of $f(\Gamma)$ is flat. Since f is μ -harmonic,

$$u\colon Y o \mathbb{R} ext{ convex } \Rightarrow \Delta_\mu f^* u \leq 0,$$

where

$$\Delta_{\mu}h(\gamma) = h(\gamma) - \int_{\gamma'\in\Gamma} h(\gamma\gamma')d\mu(\gamma,\gamma').$$

If C = 0, $\exists \xi \in Y \cup \partial Y$ such that $\Delta f^* u \equiv 0$, where $u(p) = d(\xi, p)$ or $u(p) = b_{\xi}(p)$, which means that u has the weakest possible convexity, which leads us to see the convex hull of $f(\Gamma)$ is flat.