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Main Theorem

I a finitely generated group with a random walk p
Y: a locally compact CAT(0) space

Main Theorem (1.)

p: I — lIsom(Y): a homomorphism
If p(T") does not fix a point in @Y, then either

m JF C Y a flat subspace with p(I')(F) = F, or
m Jy: Opl — OY: a canonical p-equivariant map.

Here Opl is the Poisson boundary of (I', ) and QY is the
geometric boundary of Y. p-equivariant means that

p(7)e(§) = p(1€) fory €T, € € Opl.
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Main Theorem (1.)

p: I — lIsom(Y): a homomorphism
If p(T") does not fix a point in @Y, then either
m JF C Y a flat subspace with p(I')(F) = F, or

m Jy: Opl — OY: a canonical p-equivariant map.

Here Opl is the Poisson boundary of (I', ) and QY is the
geometric boundary of Y. p-equivariant means that

p(7)p(§) = (7€) for vy €T, £ € OpT.
The existence of such an equivariant boundary map often

implies a strong rigidity result on group actions.
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CAT(0) spaces

Y = (Y,d): a complete metric space
e Y is a CAT(0) space if every geodesic triangle is thinner
than Euclidean one.
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dy (pi,p;) = drz(Pi, 17), dy (q1,42) < dp2(T1, R2)

Ex 1. A simply connected Riemannian manifold with
nonpositive sectional curvature is CAT(0) space.

Ex 2. Trees, Euclidean buildings are CAT(0) spaces.
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e Geodesic rays c, ¢’ are asymptotic (¢ ~ ¢’) if IM > 0 s.t.
d(c(t),c'(t)) < M for Vt € [0, o0).
e The boundary of Y is defined by 0Y = {geodesic rays}/ ~.

Ex 1. In R", ¢ ~ ¢’ iff c and ¢’ are parallel; OR" = S"~1,
Ex 2. For hyperbolic n-space H", 9H" = S"~! :

{XGR”HX’<1}

gun = Z dx;?

Ex 3. If Y is a tree, OY is a Cantor set.



Boundary of CAT(0) spaces

e Geodesic rays c, ¢’ are asymptotic (¢ ~ ¢’) if IM > 0 s.t.
d(c(t),c'(t)) < M for Vt € [0, o0).
e The boundary of Y is defined by 0Y = {geodesic rays}/ ~.

Note. Every isometry of Y extends to a homeo of 9Y'.
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Boundary maps in rigidity theory

Ex (Mostow Rigidity). If I'; A < Isom(H?") discrete, n > 3,
isomorphic isometry
= Aand H"/T is compact. Then H"/I = H"/A.
mf:OH" — 9H" is a p-equivariant conformal diffeo, and
recovers a p-equivariant isometry fo: H” — H", which
descends to an isometry h: H" /I — H"/A.

Since H" /T is compact, ¢
is dense in OH" for any £ €
OH". Thus f is comletely
determined by f(&) for some
¢ € OH".
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Random walk on a group and its Poisson boundary

[: a finitely generated group
e 1(7y,7') is the transition probability of v — /.
e 11"(7,7') is the n-step transition probability of v — ~/ after
n steps:

1) = 2 MO 72) - (Yae1,Y)
e The Poisson boundary of [ w.r.t. p is the probability space
describing the distribution of “co-step random walk”:

9pl" * =" lim (', p"(e, -)).

If the random walk “diverges”, then Opl can be viewed as a
boundary at co of I', and I acts on Opl".
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Main Theorem (I.)

p: T — lIsom(Y): a homomorphism
If p(I") does not fix a point in Y, then either

m JF C Y a flat subspace with p(I)(F) = F, or
m Jy: Op[ — OY: a canonical p-equivariant map.

Note 3. If Y is hyperbolic in the sense of Gromov, we don't
have to assume Y to be locally compact, and F becomes the
image of a geodesic line.



Main Theorem and Proof

Main Theorem (1.)

p: T — Isom(Y): a homomorphism
If p(I") does not fix a point in Y, then either
m JF C Y a flat subspace with p(I')(F) = F, or

m Jy: Op[ — OY: a canonical p-equivariant map.

Corollary (Haettel)
Y: a CAT(0) space, hyperbolic in the sense of Gromov
p: SL(n,Z) — lsom(Y): a homomorphism, n > 3.
Then either

m p(I) fixes a point in JY, or

m p(I) leaves a geodesic line invariant.



Main Theorem and Proof

Main Theorem (1.)

p: I — lIsom(Y): a homomorphism
If p(T") does not fix a point in @Y, then either
m JF C Y a flat subspace with p(I')(F) = F, or

m Jdy: Op[ — OY: a canonical p-equivariant map.

The proof uses a p-equivariant harmonic map f: [ — Y.
m p-equivariance: p(7)f(y') = f(yy/) for Vv, €T,
m harmonicity: f minimizes p-energy E,

Ef»—>/ )2d(e, )
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w=(w,wy...)EQ Y(w)=wr...w, €T.
By Kingman's subadditive ergodic theorem,

d(f(e), f(/yn(w))) 5 3C e [0’ OO) in Ll(Q,P).

If C >0, then by Karlsson-Margulis, f(v,(w)) — 3§ € IY
aa. we (Q,P).

If C =0, then using the harmonicity of f, we can show that
the convex hull of f(I') is flat.



Main Theorem and Proof

If C =0, then using the harmonicity of f, we can show that
the convex hull of £(I') is flat.
Since f is p-harmonic,

u:Y =R convex = A,f"u <0,

where
Aph(y) = h(v) - / h(yy)dp(y,7").-
y'er
If C=0, 3¢ € YUY such that Af*u =0, where
u(p) = d(&, p) or u(p) = be(p), which means that u has the
weakest possible convexity, which leads us to see the convex
hull of £(T') is flat.



