Recent Progress on the Strominger-Yau-Zaslow conjecture

Yu-Shen Lin

Boston University

BU University-Keio University-Tsinghua University Workshop Jun 27, 2021

Outline of the Talk

- SYZ Conjecture & Set-up of the Geometry
- SYZ Fibrations of Del Pezzo Surfaces and their Dual Fibrations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2/16

• Application: Discovery of New Ricci-Flat Metrics

The Easter Egg

Calabi-Yau Manifolds

A complex *n*-fold X is a Calabi-Yau manifold if it has

- holomorphic volume form Ω . $K_X := \wedge^n T^* X \cong \mathcal{O}_X$
- a Kähler form ω s.t. $\omega^n = c_n \Omega \wedge \overline{\Omega}$. Ricci-flat

- Elliptic curves, complex tori and K3 surfaces.
- degree 5 hypersurface in ℙ⁴ (quintic 3-fold).
 This follows from Yau's proof of Calabi conjecture.
- (Tian-Yau '90) If Y is Fano & $D \in |-K_Y|$ smooth, then $X = Y \setminus D$ is CY.

★ロト ★課 ト ★注 ト ★注 ト 一注

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit **special Lagrangian** torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.

Conjecture (Strominger-Yau-Zaslow '96)

- Calabi-Yau manifolds admit **special Lagrangian** torus fibration near large complex structure limit.
- Mirror Calabi-Yau are constructed by dual torus fibration.
- (Harvey-Lawson '82) A submanifold L in X is special Lagrangian if ω|_L = 0, ImΩ|_L = 0.
- (Duistermaat '80) Any compact fibre of a Lagrangian fibration is topologically a torus.

The SYZ conjecture is important in various aspects:

- It gives a geometric description of Calabi-Yau manifolds.
- It provides a recipe to construct the mirror \check{X} .
- (Leung-Yau-Zaslow) It gives a guidance of how branes mirror to each other in the homological mirror symmetry.

•
$$X = \mathbb{C}/\langle 1, \tau \rangle$$
 with $\omega = \frac{i}{2}dz \wedge d\bar{z}$, $\Omega = dz$, $\tau \in i\mathbb{R}_+$. Then
 $X \to S^1$
 $z \mapsto \text{Im}z$

• (Harvey-Lawson '82) $X' \rightarrow B$ Calabi-Yau surface with elliptic fibration, then a suitable HK ration X admits a special Lagrangian fibration.

HyperKähler Geometry on K3 Surfaces

- Calabi-Yau surfaces are hyperKähler, i.e.
 - X admits a Kähler form ω.
 - (ω, Ω) induces an S²-family of complex structures.

Then holomorphic curves in $X \Leftrightarrow$ special Lagrangians in X_{ϑ} .

Previous Results

- (Gross '99) Topological torus fibration on quintic 3-folds.
- (Gross '00) Examples for toric Calabi-Yau manifolds.
- (Symington-Leung '03) Almost toric symplectic 4-folds.
- (Joyce '03) Some local model with codimesion one discriminant locus.
- (Castano-Bernard, Matessi '06) Lagrangian fibrations on quintic.
-
- (Li '19) Weak SYZ conjecture on Fermat hypersurfaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆

Y=Fano surface or RES, $D \in |-K_Y|$ smooth. Then $X = Y \setminus D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

Y=Fano surface or RES, $D \in |-K_Y|$ smooth. Then $X = Y \setminus D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

This solves conjectures of Yau and Auroux '07.

- $Y = \mathbb{P}^2$, with 3 nodal singular fibres.
- **②** For generic (Y, D) with Y RES, there are 12 singular fibres.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Y=Fano surface or RES, $D \in |-K_Y|$ smooth. Then $X = Y \setminus D$ admits a special Lagrangian fibration with a special Lagrangian section with respect to the Tian-Yau metric.

This solves conjectures of Yau and Auroux '07.

- $Y = \mathbb{P}^2$, with 3 nodal singular fibres.
- **2** For generic (Y, D) with Y RES, there are 12 singular fibres.

10/16

Theorem (Collins-Jacob-L. '20)

Dual Special Lagrangian Fibration on the mirror of X.

Mirrors can be connected by two HK rotations.

Step 1: Model Special Lagrangian Tori

<ロト < 団 > < 目 > < 目 > < 目 > 目) へ つ へ つ へ つ へ つ へ つ い く 回 > < 目 > く 目 > 11 / 16

Step 2: Lagrangian Mean Curvature Flow

Let L be a graded Lagrangian submanifold in X, i.e.,
 ∃ the phase θ : L → ℝ is the function such that

$$\Omega|_L = e^{i\theta} vol_L.$$

L is a special Lagrangian if θ is a constant.

Step 2: Lagrangian Mean Curvature Flow

Let L be a graded Lagrangian submanifold in X, i.e.,
 ∃ the phase θ : L → ℝ is the function such that

$$\Omega|_L = e^{i\theta} vol_L.$$

L is a special Lagrangian if θ is a constant.

• The mean curvature $\vec{H} = J\nabla\theta$ and the mean curvature flow is given by evolving family of immersions $F_t : L \to X$ with

$$\frac{\partial}{\partial t}F_t=\vec{H}.$$

- (Smoczyk) Maslov zero Lagrangian condition is preserved under mean curvature flow in Kähler–Einstein manifolds.
- Smooth Convergent Limit of LMCF gives Special Lagrangians.

Step 3: HK Rotation & Techniques of J-Holo Curves

• \check{X} HK rotation of X and L becomes an elliptic curve.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Step 3: HK Rotation & Techniques of J-Holo Curves

- \check{X} HK rotation of X and L becomes an elliptic curve.
- Deformation of L in \check{X} is open & closed.
 - (McLean, Voisin) Deformation of smooth holo. Lagrangian is unobstructed.
 - (closedness) Gromov-Sachs-Uhlenbech compactness theorem for the degenerate geometry.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

13/16

(openness) Analyze the possible singular fibres and their deformations.

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

<ロ> (四) (四) (三) (三) (三) (三)

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .
- The special Lagrangian tori in X hyperKähler rotate back to X to be special Lagrangian tori but with phase π/2.

イロト イロト イヨト イヨト 三日

Given (\check{Y}, \check{D}) , there exists an extra \mathbb{R} -family of Ricci-flat metrics on \check{X} with Hein's metrics are indexed by \mathbb{Z} .

- Take \check{X} as in the 2nd theorem which is complete hyperKähler.
- If HK metric on \check{X} is Hein's metric, then there exists a special Lagrangian fibration on \check{X} .
- D ≃ C/(Z ⊕ aZi), a ∈ R₊ and leads to a contradiction for general choice of D.

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

15/16

such that E is preserved.

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

such that E is preserved.

The corresponding rational elliptic surface Ỹ is extremal I₉I₁³.
Δ̃ is meromorphic.

(日) (圖) (E) (E) (E)

Fun application in algebraic geometry:

Theorem (? classical result) Let $E \subseteq \mathbb{P}^2$ be a smooth cubic curve. Then there exists $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \subseteq Aut(\mathbb{P}^2)$

such that E is preserved.

- The corresponding rational elliptic surface Ỹ is extremal I₉I₁³.
 Δ̃ is meromorphic.
- $\ \, {\bf 3}\mathbb Z_3\oplus\mathbb Z_3\in {\rm Aut}(\check{Y}) \ {\rm preserving} \ \check{\Omega} \ {\rm and} \ \check{\omega}. \ {\rm Uniqueness} \ {\rm theorem}!$
- The corresponding automorphisms of X extend over E.

THANK YOU!

<ロト 4日 ト 4 目 ト 4 目 ト 目 の 9 9 9 16 / 16