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Motivation: Circle Actions

An action of S1 on a closed manifold N, a : S1 × N → N, a(e iθ, n) = e iθ · n, gives a loop of
diffeomorphisms `(θ) : N → N, n 7→ e iθ · n.

Q: When is [`] nontrivial in π1(Diff(N))?

One extreme case: If the action is trivial, e iθ · n = n, then [`] = 0.

The other extreme case: The action is free: e iθ · n = n iff θ = 0 = 2π.

Then N is the total space of a line bundle N = L→ M = N/S1, and the action is rotation of the
fibers of L.

Example: (Hopf fibration) N = S2k+1 ⊂ Ck+1, e iθ · (z1, . . . , zk+1) = (e iθz1, . . . e iθzk=1),
N/S1 = CPk , L = γ canonical bundle.

Here the action is by isometries of S2k+1, and the loop is the nonzero element of
π1(SO(2k + 1)) = Z2.
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Motivation: Geometric Quantization

Geometric quantization: Start with a symplectic manifold (M, ω) with [ω] ∈ H2(M,Z). (So∫
Σ2 ω ∈ Z.) There exists a C-line bundle L→ M with connection, and with curvature Ω = 1

2π
ω.

The prequantum Hilbert space is the space of sections Γ(L).

The Fock space is the algebra
∞⊕
p=0

Γ(L⊗p).

There is a canonical gauge transformation/S1 action by rotating the fibers of each
Lp → M, e iθ · (m, `) = (m, e iθ`). (We’ll work with the associated circle bundles “Lp” inside Lp .)

Q: How does this action affect the quantization of this setup?

Partial Answer: Probably not at all, if this loop of diffeomorphisms of Lp is trivial in π1(Diff(Lp)).
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Motivation: Main Result

Theorem

Let (M4k , ω) be a closed integral symplectic manifold with associated line bundle L. For |p| � 0,
rotating the fibers is an element of infinite order in π1(Diff(Lp)) and in π1(Isom(Lp)).

Thus we can’t rule out gauge anomalies in the quantization of this gravity + EM theory.
(Correlators could change after a full rotation of the fibers.)

The proof will involve characteristic classes built from the Wodzicki residue
on the tangent bundle of the loop space L(Lp).
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State of affairs for Diff(N)

What is known about Diff(N)?

Diff(S1) ∼ Isom(S1) = O(2)

Diff(S2) ∼ O(3) [Smale 1958]

Diff0(T 2) ∼ T 2; components of Diff(Σg ), g > 1, are contractible. [Eells ... 1970s]

Diff(S3) ∼ O(4) [Hatcher 1983]

M3 not Seifert fibered ⇒ the components of Diff(M3) are contractible [Gabai ... 1990s]
[Baimler, Kleiner 2020]

dim M = 4: “nothing known” [Hatcher, 2012]; Diff(S4) 6∼ O(5) [Watanbe 2018]

Diff(Sn) 6∼ O(n + 1) for n ≥ 5 [Smale];
πi (Diff(Sn)) ∼ πi (O(n)) n Γ with |Γ| <∞ for n� i [Farrell-Hsiang, 1970s]

π1(Diff(S5)) = ?
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Current knowledge vs. our result

Theorem

Let (M4k , ω) be a closed integral symplectic manifold with associated line bundle L. For |p| � 0,
rotating the fibers is an element of infinite order in π1(Diff(Lp)) and in π1(Isom(Lp)).

Kähler Example: For (CP2k , ωFS ), L = S4k+1. S1 → L→ CP2k is the Hopf fibration, and
rotation of the fiber is the generator of π1(Isom(S4k+1)) = Z2. So we need |p| � 0.

Kähler Example: (CP2, ωFS ). Then L = S5, Lp ≈ S5/Zp is a lens space, and π1(Diff(Lp)) is
infinite for p 6= 1. [So π1(Diff(RP5)) is infinite, but no info on π1(Diff(S5))!]

Non-Kähler Example: (Kodaira-Thurston 1973) A twisted torus bundle T 2 → M4 → T 2. Then
π1(Diff(Lp)) is infinite for all p.

Note: If π1(S1 − fiber) ↪→ π1(Lp), as in this case, then an argument due to Mitsumatsu gives the
result.
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Relating π1(Diff(N)) and LN

Let N (= Lp) have an S1 action a : S1 × N → N. Then

Maps(S1 × N,N) = Maps(S1,Maps(N,N))︸ ︷︷ ︸
Diff(N) here

= Maps(N,Maps(S1,N))︸ ︷︷ ︸
LN

.

This gives
a↔ aD ↔ aL,

with aL : N → LN given by
aL(n) = the S1-orbit of n.

aL induces aL∗ : H4k+1(N)→ H4k+1(LM). Set [aL] = aL∗[N] ∈ H4k+1(LN).

Lemma

Let dim(N) = 4k + 1. Then [aD ] has infinite order in π1(Diff(N)) iff 0 6= [aL] ∈ H4k+1(LN) iff∫
[aL] α 6= 0, where α is a closed (4k + 1)-form on LN.
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Finding closed forms on LN

We have [aD ] ∈ π1(Diff(Lp)) given by rotating the fibers.

Lemma

Let dim(N) = 4k + 1. Then [aD ] ∈ π1(Diff(N)) has infinite order iff 0 6= [aL] ∈ H4k+1(LN) iff∫
[aL] α 6= 0, where α is a closed (4k + 1)-form on LN.

Q: Could α be a characteristic form Tr(Ωk ) for some connection with curvature two-form Ω on
TLN?

A: No, since Tr(Ωk ) has even degree.

Q: Could α be a Chern-Simons form, since these are odd degree classes?

Non-A: Since TLN has infinite dimensional fiber, Ω ∈ Λ2(LN,Hom(TLN,TLN)) takes values in
linear operators on the fiber. What does Tr mean? Operator trace is dubious, since this operator
may not be trace class. Even if this trace exist, they will be impossible to compute in general.

The operators will be ΨDOs, and the trace will be the Wodzicki residue.
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may not be trace class. Even if this trace exist, they will be impossible to compute in general.

The operators will be ΨDOs, and the trace will be the Wodzicki residue.
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TLN

N is an oriented Riemannian manifold. TγLN is the set of “vector fields along γ.”

γ

γs

= γ0

γ(θ0)

γs(θ0)
γ̇s(θ0)

γ̇(θ1)

γ(θ1) = γ(θ2)

γ̇(θ2)

So really TγLNn = Γ(γ∗TN) ∼= Γ(S1 × Rn → S1). This makes LN an infinite dimensional
Banach/Fréchet manifold.

The structure group of TN is GL(n,R); the structure group of TLN is
G = Maps(S1,GL(n,R)), the gauge group of γ∗TM = S1 × Rn → S1.
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Natural metrics on LN

Fix a loop γ ∈ LN. A tangent vector X ∈ TγLN = Γ(γ∗TN → S1) is

X : θ ∈ S1 7→ X (θ) ∈ Tγ(θ)N.

Put a Riemannian metric 〈 , 〉 on N. The L2 inner product on LN is

〈X ,Y 〉0 =
1

2π

∫
S1
〈X (θ),Y (θ)〉γ(θ)dθ, X ,Y ∈ Γ(γ∗TN).

A stronger metric is given by picking a Sobolev parameter s ≥ 0. The s-inner product on TγLN is

〈X ,Y 〉s =
1

2π

∫
S1
〈(1 + ∆)sX (θ),Y (θ)〉γ(θ)dθ, X ,Y ∈ Γ(γ∗TN).

Here ∆ = D∗D, D = D
dγ̇

, the covariant derivative along γ.

Now LN is a Hilbert/Riemannian manifold.

Think of s as an annoying regularization parameter. Meaningful results should be independent of
s.
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Natural connections on LN

The Sobolev-s metric makes LN a Riemannian manifold. The Levi-Civita connection ∇s on LN is
determined by

〈∇s
YX ,Z〉s = X 〈Y ,Z〉s + Y 〈X ,Z〉s − Z〈X ,Y 〉s

+〈[X ,Y ],Z〉s + 〈[Z ,X ],Y 〉s − 〈[Y ,Z ],X 〉s .

since the right hand side is a continuous linear functional of Z ∈ TγLN = Γ(γ∗TN) (for the right
topology on the space of sections).



Natural connections on LN

For s = 0, the Levi-Civita connection ∇0 is just the integrated version of the Levi-Civita
connection ∇N on N for its metric ḡ .

〈∇0
XY ,Z〉γ,L2 =

∫
γ
〈∇N

XY (θ),Z(θ)〉γ(θ),ḡdθ

=

∫
γ
〈X (Y ) + ωN

X (Y ),Z〉γ(θ),ḡdθ.

So

∇0
XY = X (Y ) + connection one− form

= X (Y ) + a bundle endormophism of TγLN.



Natural connections on LN

Let R̄ be the curvature tensor of ḡ .

Proposition

The s = 1 Levi-Civita connection is given by

∇1
XY (γ)(θ)

= ∇0
XY (γ)(θ) +

1

2
(1 + ∆)−1

[
−∇γ̇(R̄(X , γ̇)Y )(θ)

−R̄(X , γ̇)∇γ̇Y (θ)−∇γ̇(R̄(Y , γ̇)X )(θ)− R̄(Y , γ̇)∇γ̇X (θ)

+(R̄(X ,∇γ̇Y )γ̇)(θ) + (R̄(Y ,∇γ̇X )γ̇)(θ)
]
.

Thus
∇1

XY = [X (Y ) + a bundle endomorphism︸ ︷︷ ︸
ΨDO of order 0

] + [a ΨDO of order − 1].

The connection 1-form and curvature 2-form
ω1
X ∈ End(TγLN) = End(Γ(γ∗TN)),Ω1 = dω1 + ω1 ∧ ω1 are zeroth order ΨDOs acting on

Y ∈ TγLN = Γ(γ∗TN → S1).
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ΨDOs

Let Ω ⊂ Rn be a precompact domain.

For
∂α = (∂x1 )α1 · . . . · (∂xn )αn , ξα = ξα1

1 · . . . · ξ
αn
n ,

let D =
∑
|α|≤n0

aα(x)∂α : C∞c (Ω)→ C∞c (Ω) be a differential operator.

By Fourier transform and Fourier inversion,

Df (x) =
∑
|α|≤n0

aα(x)(∂α)(x) ==

∫
T∗Ω

e i(x−y)·ξσD(x , ξ)f (y) dy dξ

where the symbol of D is the polynomial σD(x , ξ) =
∑
|α|≤n0

1
i|α|

aα(x)ξα. σD ∼ |ξ|n0 as

|ξ| → ∞. ΨDOs are defined by the same integral, but with symbol

σ(x , ξ) ∼
∑

k∈Z≥0

an0−k (x)ξn0−k

growing like |ξ|n0 , where the order n0 of D can be any real number.

Slight generalization to vector valued linear operators:
D =

∑
|α|≤n0

aα(x)∂α : C∞c (Ω,Rm)→ C∞c (Ω,Rn) with aα(x) ∈ Hom(Rm,Rn).
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ΨDOs

Df (x) =

∫
T∗Ω

e i(x−y)·ξσD(x , ξ)f (y) dy dξ

This extends to linear operators on manifolds and then to operators on sections of bundles
E → N over closed manifolds. For x ∈ N, ξ ∈ T∗N, σ(x , ξ) ∈ Hom(Ex ,Ex ).

D is elliptic if σn0 (x , ξ) is invertible for ξ 6= 0. Standard Laplacian operators are elliptic, with
top symbol σ2(∆)(x , ξ) = |ξ|2Id, as are their inverses (Green’s operators) like (1 + ∆)−1,
with top symbol σ−2(∆−1)(x , ξ) = |ξ|−2Id.

Just like DO, ΨDO(E) forms a graded algebra, and includes all Green’s operators, heat
operators, and operators given by smooth kernels. Powers of elliptic operators, like (1 + ∆)s ,
are again ΨDOs.

Even if an operator is nonlocal, like (1 + ∆)−1, its symbol terms are local/computable.

The Wodzicki residue is

resW (A) =

∫
S∗N

trx (σ−n(A)(x , ξ)) dξ dx ,

where S∗N is the unit cosphere bundle of Nn. This is a trace, in the sense that

resW (AB) = resW (BA).
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Characteristic classes on TLN

For characteristic classes on G -bundles, we need Ad-invariant functions f : g→ C. For a
G -connection with curvature Ω on a G -bundle G → E → M, f (Ωi ) is a closed 2i-form, giving a
characteristic class [f (Ωi )] ∈ H2i (M).

Example: For G = U(n), fi (A) = Tr(Ai ) are Ad-invariant functions on u(n), since
Tr(BAiB−1) = Tr(Ai ). The corresponding characteristic classes [Tr(Ωi )] are the components of
the Chern character.

Example: The LC connection ∇0 has connection/curvature forms taking values in
Hom(γ∗TN, γ∗TN) = g, so the structure group is the gauge group G = Aut(γ∗TM). This gauge
group is also the structure group of the manifold LN.

The LC connection ∇s=1 has connection/curvature forms taking values in ΨDO≤0 = g, so the
structure group is G = ΨDO∗0 , the group of invertible zeroth order ΨDOs. Note that ΨDO∗0 ⊃ G,
so we are extending the structure group.

resW : ΨDO≤0 → C is Ad-invariant, so for a ΨDO∗0 -connection on TLM with curvature Ω, we
have

Definition:

(i) The ith Wodzicki-Chern character class of LN is

chWi (LN) = [resW (Ωi )]

=

[∫
S∗S1

trx (σ−1(Ωi )(x , ξ)) dξ dx

]
∈ H2i (LN,C).
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Chern-Simons classes on TLN

Problem: chWi (LN) = 0. Since chWi (LN) is independent of connection, we can compute it
for the L2 connection ∇0:

chWi (LN) =

[∫
S∗S1

trx (σ−1((Ω0)i )(x , ξ)) dξ dx

]
= [0] = 0.

Solution: Since the chWi vanish pointwise, we can hope to construct Wodzicki-Chern-Simons
forms.

If Chern character forms vanish for two connections ∇0,∇1 on E → N, then Chern-Simons
classes are defined: there is an explicit/pointwise computable form CSi ∈ Λ2i−1(N) with

chi (Ω0)− chi (Ω1) = d CSi (∇0,∇1).

If e.g. ∇0,∇1 are flat, or if dim(N) = 2i − 1, then CSi (∇0,∇1) is closed and defines the
Chern-Simons class

CSi (∇0,∇1) ∈ H2i−1(N,C).
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WCS classes on TLN

LN is infinite dimensional, but the local nature of resW implies chWi (Ωs) ≡ 0 as a form if
dim N = 2i − 1.

Definition:

Let dim N = 2i − 1. The (2i-1)-Wodzicki-Chern-Simons class is

CSW
2i−1(LN) = [CSW

i (∇s=0,∇s=1)] ∈ H2i−1(LN,C).

CSW
i involves resW , so it is locally computable.

Proposition

At a loop γ ∈ LN,

CSW
2i−1(X1, ...,X2i−1)(γ)

=
i

2i−2

∑
σ

sgn(σ)

∫
γ

tr[(R̄(Xσ(1), ·)γ̇)(Ω̄N)i−1(Xσ(2), ...,Xσ(2i−1))],

where R̄, Ω̄ are the curvature tensor and curvature two-form on N.
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WCS forms on LN for N = Lp

We have S1 → Lp → (M, ω). Take an almost complex structure J and a Riemannian metric g on
M compatible with ω. Using the connection on Lp associated to pω, we get a metric gp on Lp .

Lemma

Let X ,Y ,Z ,W be tangent vectors to (M, ω, g , J), let R be the curvature of M, let X L, etc. be
their horizontal lifts to N = Lp , let R̄ be the curvature of N, and let ξ be the tangent vector
along the circle fiber. Then

gp(R̄(X L,Y L)ZL,W L) = g(R(X ,Y )Z ,W ) + p2[−g(JY ,Z)g(JX ,W )

+ g(JX ,Z)g(JY ,W ) + 2g(JX ,Y )g(JZ ,W )],

gp(R̄(X L,Y L)ZL, ξ̄) = −pg((∇X J)Y ,Z) + pg ((∇Y J)X ,Z) ,

etc.

Plugging this into

CSW
2i−1(X1, ...,X2i−1)(γ) =

i

2i−2

∑
σ

sgn(σ)

∫
γ

tr[(R̄(Xσ(1), ·)γ̇)(Ω̄N)i−1...,

we get:



WCS forms on LN for N = Lp

We have S1 → Lp → (M, ω). Take an almost complex structure J and a Riemannian metric g on
M compatible with ω. Using the connection on Lp associated to pω, we get a metric gp on Lp .

Lemma

Let X ,Y ,Z ,W be tangent vectors to (M, ω, g , J), let R be the curvature of M, let X L, etc. be
their horizontal lifts to N = Lp , let R̄ be the curvature of N, and let ξ be the tangent vector
along the circle fiber. Then

gp(R̄(X L,Y L)ZL,W L) = g(R(X ,Y )Z ,W ) + p2[−g(JY ,Z)g(JX ,W )

+ g(JX ,Z)g(JY ,W ) + 2g(JX ,Y )g(JZ ,W )],

gp(R̄(X L,Y L)ZL, ξ̄) = −pg((∇X J)Y ,Z) + pg ((∇Y J)X ,Z) ,

etc.

Plugging this into

CSW
2i−1(X1, ...,X2i−1)(γ) =

i

2i−2

∑
σ

sgn(σ)

∫
γ

tr[(R̄(Xσ(1), ·)γ̇)(Ω̄N)i−1...,

we get:



WCS forms on LN for N = Lp

We have S1 → Lp → (M, ω). Take an almost complex structure J and a Riemannian metric g on
M compatible with ω. Using the connection on Lp associated to pω, we get a metric gp on Lp .

Lemma

Let X ,Y ,Z ,W be tangent vectors to (M, ω, g , J), let R be the curvature of M, let X L, etc. be
their horizontal lifts to N = Lp , let R̄ be the curvature of N, and let ξ be the tangent vector
along the circle fiber. Then

gp(R̄(X L,Y L)ZL,W L) = g(R(X ,Y )Z ,W ) + p2[−g(JY ,Z)g(JX ,W )

+ g(JX ,Z)g(JY ,W ) + 2g(JX ,Y )g(JZ ,W )],

gp(R̄(X L,Y L)ZL, ξ̄) = −pg((∇X J)Y ,Z) + pg ((∇Y J)X ,Z) ,

etc.

Plugging this into

CSW
2i−1(X1, ...,X2i−1)(γ) =

i

2i−2

∑
σ

sgn(σ)

∫
γ

tr[(R̄(Xσ(1), ·)γ̇)(Ω̄N)i−1...,

we get:



End of the proof

As a 2i − 1 form on L(Lp),

CSW
2i−1 =

i∑
j=1

αjp
2j .

Recall:

Lemma

Let dim(N) = 4k + 1. Then [aD ] ∈ π1(Diff(N)) has infinite order iff 0 6= [aL] ∈ H4k+1(LN) iff∫
[aL] α 6= 0, where α is a closed (4k + 1)-form on LN.

For α = CSW
4k+1 on Lp → M4k ,∫

[aL]
α =

∫
Lp

aL,∗CSW
4k+1 =

∑
j

(∫
Lp

aL,∗αj

)
p2j 6= 0 for p � 0

iff ∫
Lp

aL,∗αj 6= 0 for some j .
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End of the proof

Lemma

For dim(M) = 4k, and CSW
4k+1 =

∑2k+1
j=1 αjp

2j , the highest term∫
Lp

aL,∗α4k+2

is a nonzero multiple of the symplectic volume
∫
M ω2k .

Thus π1(Diff(N)) has infinite order for N = Lp with p � 0. �

Remark: aL,∗α1 = (cons.(Pontrjagin form of degree 4k) ∧ dξ) +
(
β with

∫
Lp β = 0

)
.

What is the geometric significance of the other aL,∗αj?



End of the proof

Lemma

For dim(M) = 4k, and CSW
4k+1 =

∑2k+1
j=1 αjp

2j , the highest term∫
Lp

aL,∗α4k+2

is a nonzero multiple of the symplectic volume
∫
M ω2k .

Thus π1(Diff(N)) has infinite order for N = Lp with p � 0. �

Remark: aL,∗α1 = (cons.(Pontrjagin form of degree 4k) ∧ dξ) +
(
β with

∫
Lp β = 0

)
.

What is the geometric significance of the other aL,∗αj?



Explicit Calculations

Kähler Example: There is a family of Sasaki-Einstein metrics ga, a ∈ (0, 1), on B5 which match
up nicely on ∂B5 to give metrics on N = S2 × S3 → M = S2 × S2. We get∫

N
aL,∗CSW

5 (ga) = −
1849π4

37750
(−1 + a2),

so π1(Diff(S2 × S3)) is infinite.

At a = 1, the metric glues up to the standard metric on N = S5. But now we conclude nothing
about π1(Diff(S5)).

Kähler Example: We know that rotation of the fiber of L1 = S5 → CP2 has order 2 in
π1(Diff(S5)). We have ∫

Lp
aL,∗CS5 =

586p2π3

5
(p2 − 1)2.

Thus π1(Diff(S5/Zp)) is infinite for p 6= 1.

Non-Kähler Example: On the Kodaira-Thurston example T 2 → M4 → T 2, there is an explicit
metric such that∫

Lp
CSW

5 = 10(−1− 24p2 + 288p4)− 3
√

5(1 + 64p2) coth−1
√

5.

Thus π1(Diff(Lp)) is infinite for all p.
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Thank you!
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