Elliptic Chiral Homology and Quantum Master Equation

Si Li

YMSC, Tsinghua University

BU-Keio-Tsinghua Workship 2021

Motivation

Given a deformation quantization $\mathcal{A}_{\hbar}(M) = (C^{\infty}(M)[\![\hbar]\!], \star)$ on a symplectic manifold (X, ω) , there exists a unique linear map

$$\operatorname{Tr}: C^{\infty}(M)\llbracket \hbar \rrbracket \to \mathbb{C}(\!(\hbar)\!)$$

satisfying a normalization condition and the trace property

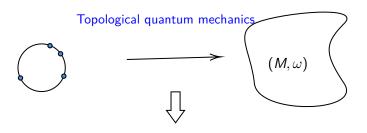
$$\operatorname{Tr}(f\star g)=\operatorname{Tr}(g\star f).$$

Then

$$\operatorname{Tr}(1) = \int_{M} e^{\omega/\hbar} \hat{A}(M).$$

This is the algebraic index theorem which was first formulated by **Fedosov** and **Nest-Tsygan** as the algebraic analogue of Atiyah-Singer index theorem.

In [Grady-Li-L 2017] [L-Xu-Gui, 2020] A rigorous connection between the effective BV quantization for topological quantum mechanics and the algebraic index theorem.

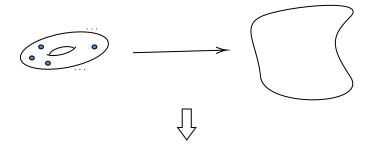


Algebraic index theory

$$\operatorname{\mathsf{Tr}}: HH_{ullet}(\mathcal{A}_{\hbar}(M)) o \mathbb{C}(\!(\hbar)\!)$$

$$\int_{BV} \int_{\mathsf{Conf}_m(S^1)} dt_1 \cdots dt_m \left\langle \mathcal{O}_0(t_0) \mathcal{O}_1^{(1)}(t_1) \cdots \mathcal{O}_m^{(1)}(t_m) \right\rangle$$

Replace S^1 by an elliptic curve E. (Witten: index of dirac operators on loop space).



2d Chiral analogue of algebraic index?

Need to study chiral deformation of 2d conformal field theories.

Mirror symmetry

Mirror symmetry is about a duality between

$$\begin{array}{c} \text{symplectic geometry} \ \, \text{(A-model)} \iff \boxed{\text{complex geometry}} \ \, \text{(B-model)} \\ \\ \int_{\mathsf{Map}(\Sigma_g,X)} \left(\mathsf{A-model} \right) \stackrel{\textcolor{red}{\mathsf{Fourier transform}}}{\int_{\mathsf{Map}(\Sigma_g,X')}} \int_{\mathsf{Map}(\Sigma_g,X')} \left(\mathsf{B-model} \right) \\ \\ \downarrow \mathsf{localize} \\ \\ \int_{\mathsf{Holomorphic maps}(\Sigma_g,X)} \lessdot ---- \gt \int_{\mathsf{Constant maps}(\Sigma_g,X')} ??? \\ \\ \downarrow \mathsf{Gromov-Witten Theory} \\ \end{array}$$

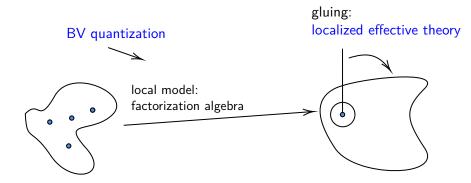
The B-model can be viewed as a suitable mysterious way to

"count constant surfaces"

related to the variation of Hodge structures and its quantization.

We will be mainly interested in σ -models about the mapping space

$$\varphi: \Sigma \to X$$



worldsheet:Σ Target: X

Family of QFT glued via **Gelfand-Kazhdan** formal geometry.

Two models

$$\varphi: \Sigma \to X$$

1. Topological quantum mechanics

$$\dim \Sigma = 1$$

Chiral deformation of CFT.

$$\dim \Sigma = 2$$

Several examples in the literature fit into these lines:

- **Kontsevich** and **Cattaneo-Felder**: Poisson σ -model.
- Malikov-Schechtman-Vaintrob: Chiral de Rham complex
- Costello: holomorphic CS theory on an elliptic curve E
- ▶ **Grady-Gwilliam**: TQM on $X = T^*M$
- ▶ Grady-Li-L: TQM on a symplectic manifold X
- ▶ Gorbounov-Gwilliam-Williams: $\beta \gamma$ -system on $X = T^*M$.
- **Solution Gwilliam Villiams**. p = p system on x = r/m.

4日 5 4周 5 4 3 5 4 3 5 1 3

BV algebra

A Batalin-Vilkovisky (BV) algebra is a pair (\mathcal{A}, Δ) where

 $ightharpoonup \mathcal{A}$ is a \mathbb{Z} -graded commutative associative unital algebra.

BV algebra

A **Batalin-Vilkovisky** (BV) algebra is a pair (A, Δ) where

- $ightharpoonup \mathcal{A}$ is a \mathbb{Z} -graded commutative associative unital algebra.
- $ightharpoonup \Delta: \mathcal{A} o \mathcal{A}$ is a linear operator of degree 1 such that $\Delta^2 = 0$.

BV algebra

A **Batalin-Vilkovisky** (BV) algebra is a pair (\mathcal{A}, Δ) where

- $ightharpoonup \mathcal{A}$ is a \mathbb{Z} -graded commutative associative unital algebra.
- $ightharpoonup \Delta: \mathcal{A} o \mathcal{A}$ is a linear operator of degree 1 such that $\Delta^2 = 0$.
- ▶ The **BV** bracket $\{-,-\}$: $A \otimes A \rightarrow A$ by

$${a,b}:=\Delta(ab)-(\Delta a)b-(-1)^{|a|}a\Delta b,\ a,b\in\mathcal{A}.$$

Then $\{-,-\}$ satisfies the following graded Leibnitz rule

$${a,bc} := {a,b}c + (-1)^{(|a|+1)|b|}b{a,c}, a,b,c \in A.$$

Quantum master equation

Let (C_{\bullet}, d) be a chain complex over $\mathbb{C}[[\hbar]]$. A $\mathbb{C}[[\hbar]]$ -linear map

$$\langle - \rangle : C_{\bullet} \to \mathcal{A}((\hbar))$$

is said to satisfy quantum master equation (QME) if

$$(d+\hbar\Delta)\langle -\rangle=0.$$

Quantum master equation

Let (C_{\bullet}, d) be a chain complex over $\mathbb{C}[[\hbar]]$. A $\mathbb{C}[[\hbar]]$ -linear map

$$\langle - \rangle : C_{\bullet} \to \mathcal{A}((\hbar))$$

is said to satisfy quantum master equation (QME) if

$$(d+\hbar\Delta)\langle -\rangle = 0.$$

Example

Let $(C_{\bullet}, d) = (\mathbb{C}[\![\hbar]\!], 0)$ and $I = I_0 + I_1 \hbar + \cdots \in \mathcal{A}[\![\hbar]\!].$

$$\langle c \rangle := c e^{I/\hbar}$$

satisfies QME if and only if $\hbar \Delta I + \frac{1}{2} \{I, I\} = 0$.

Roughly speaking, BV quantization in QFT leads to

Factorization algebra Obs of observables: Costello-Gwilliam

Roughly speaking, BV quantization in QFT leads to

- Factorization algebra Obs of observables: Costello-Gwilliam
- \triangleright ($C_{\bullet}(Obs), d$): a chain complex via algebraic structures of Obs.

Roughly speaking, BV quantization in QFT leads to

- Factorization algebra Obs of observables: Costello-Gwilliam
- \triangleright ($C_{\bullet}(Obs), d$): a chain complex via algebraic structures of Obs.
- ▶ A BV algebra (A, Δ) with a BV- \int map $\int_{BV} : A \to \mathbb{C}$.

Roughly speaking, BV quantization in QFT leads to

- Factorization algebra Obs of observables: Costello-Gwilliam
- \triangleright ($C_{\bullet}(Obs), d$): a chain complex via algebraic structures of Obs.
- ▶ A BV algebra (A, Δ) with a BV- \int map $\int_{BV} : A \to \mathbb{C}$.
- ▶ A C[[ħ]]-linear map,

$$\langle - \rangle : C_{\bullet}(\mathrm{Obs}) \to \mathcal{A}((\hbar))$$

satisfies QME , which means it is a chain map

$$(d+\hbar\Delta)\langle -\rangle=0.$$

Roughly speaking, BV quantization in QFT leads to

- Factorization algebra Obs of observables: Costello-Gwilliam
- $(C_{\bullet}(Obs), d)$: a chain complex via algebraic structures of Obs.
- ▶ A BV algebra (A, Δ) with a BV- \int map $\int_{BV} : A \to \mathbb{C}$.
- ▶ A C[[ħ]]-linear map,

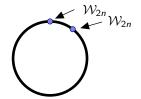
$$\langle - \rangle : C_{\bullet}(\mathrm{Obs}) \to \mathcal{A}((\hbar))$$

satisfies QME, which means it is a chain map

$$(d+\hbar\Delta)\langle -\rangle = 0.$$

▶ Partition function: $Index = \int_{BV} \langle 1 \rangle$.

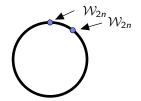
Example: 1d TQM



► Local observables: Weyl algebra

$$\mathrm{Obs}_{1d} = \mathcal{W}_{2n} = \left(\mathbb{C}\llbracket p_i, q^i \rrbracket \llbracket \hbar \rrbracket, \star \right)$$

Example: 1d TQM

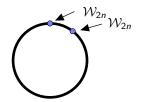


Local observables: Weyl algebra

$$\mathrm{Obs}_{1d} = \mathcal{W}_{2n} = \left(\mathbb{C}\llbracket p_i, q^i \rrbracket \llbracket \hbar \rrbracket, \star \right)$$

 $ightharpoonup (C_{\bullet}(\mathrm{Obs}_{1d}), b) = \text{the Hochschild chain complex.}$

Example: 1d TQM



Local observables: Weyl algebra

$$\mathrm{Obs}_{1d} = \mathcal{W}_{2n} = \left(\mathbb{C}\llbracket p_i, q^i \rrbracket \llbracket \hbar \rrbracket, \star \right)$$

- $ightharpoonup (C_{\bullet}(\mathrm{Obs}_{1d}), b) = \mathsf{the} \; \mathsf{Hochschild} \; \mathsf{chain} \; \mathsf{complex}.$
- ▶ BV algebra $(A_{1d}, \Delta) = (\mathbb{C}[\![y^i, dy^i]\!], \mathcal{L}_{\Pi})$. Here $\Pi = \text{Poisson}$.

$$\mathcal{O}_{0}(t_{1})$$
 $\mathcal{O}_{m}(t_{m})$ $\mathcal{O}_{m}(t_{m})$ $\mathcal{O}_{m}(t_{1})$ $\mathcal{O}_{m}(t_{2})$ $\mathcal{O}_{m}(t$

 $ightharpoonup \langle - \rangle_{1d} : C_{\bullet}(\mathcal{W}_{2N}) \to \mathcal{A}_{1d}((\hbar))$ where

$$egin{aligned} & \langle \mathcal{O}_0 \otimes \mathcal{O}_1 \cdots \otimes \mathcal{O}_m
angle_{1d} & \mathcal{O}_i \in \mathcal{W}_{2n} \ = & \int_{\mathsf{Conf}_m(S^1)} dt_1 \cdots dt_m \left\langle \mathcal{O}_0(t_0) \mathcal{O}_1^{(1)}(t_1) \ \cdots \mathcal{O}_m^{(1)}(t_m)
ight
angle_{\mathit{free}} \end{aligned}$$

Here $\mathcal{O}_i^{(1)}(t)dt$ is the topological descend of $\mathcal{O}_i(t)$. It satisfies

QME
$$(b + \hbar \Delta)\langle - \rangle_{1d} = 0$$

Here *b* is the Hochschild differential.

Ref: [L-Xu-Gui, 2020]

This construction can be glued on a symplectic target X

$$W(X) := Fr(X) imes_{Sp_{2n}} W_{2n}$$
 \downarrow
 X

which carries a flat connection (Fedosov connection)

$$D=d+\frac{1}{\hbar}[\gamma,-]_{\star},\quad D^2=0.$$

Here $\gamma \in \Omega^1(X, W(X))$. Fedosov connection is the geometric interpretation of quantum master equation [**Grady-Li-L** 2017].

 $\langle - \rangle_{1d}$ leads to a trace map on deformation quantized algebra, as explicitly described by [Feigin-Felder-Shoikhet, 2003].

Chiral CFT and Chiral Index

Vertex operator algebras

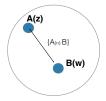
A *vertex algebra* is a vector space \mathcal{V} with the structure of state-field correspondence (and other axioms like vacuum, locality, etc.)

$$\mathcal{V} \to End(\mathcal{V})[[z, z^{-1}]]$$

 $A \to A(z) = \sum_{n} A_{(n)} z^{-n-1}$

We ofter write Y(A, z) for A(z) for the corresponding operator. It defines the operator product expansion (OPE)

$$A(z)B(w) = \sum_{n \in \mathbb{Z}} \frac{(A_{(n)} \cdot B)(w)}{(z-w)^{n+1}}$$

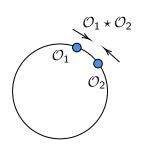


Free CFT's give rise to examples of vertex algebras \mathcal{V} .

1d TQM	2d Chiral CFT
S^1	Σ
Associative algebra	Vertex operator algebra

Associative product

Operator product expansion



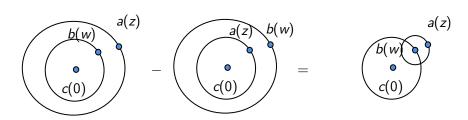
$$\mathcal{O}_1(z)\mathcal{O}_2(w) \sim \sum_n \frac{\mathcal{O}_{1(n)}\mathcal{O}_2(w)}{(z-w)^{n+1}}$$

The Borcherds identity

We have

$$\sum_{j\geq 0} {m \choose j} (a_{(n_j)}b)_{(m+n-j)}c$$

$$= \sum_{j\geq 0} (-1)^j {n \choose j} (a_{(m+n-j)}b_{(k+j)}c - (-1)^n b_{(n+k-j)}a_{(m+j)}c.)$$



VOA examples: $\beta \gamma - bc$ system.

Let $\textbf{h}=\textbf{h}_{\bar{0}}\oplus\textbf{h}_{\bar{1}}$ be equipped with an even symplectic pairing

$$\langle -, - \rangle : \wedge^2 \mathbf{h} \to \mathbb{C}$$

We obtain a vertex algebra structure on the free differential ring

$$\mathcal{V}^{\beta\gamma-bc}(\mathbf{h})\cong\mathbb{C}[\![\partial^k a^i]\!],\quad a^i$$
 is a basis of $\mathbf{h},k\geq 0$

The OPE's are generated by

$$a(z)b(w) \sim \hbar \frac{\langle a,b \rangle}{(z-w)}, \quad \forall a,b \in \mathbf{h}.$$

A chiral σ -model

$$\varphi: \Sigma \to X$$

will produce a bundle $\mathcal{V}(X)$ of chiral vertex operator algebras

This is the chiral analogue of Weyl bundle in TQM.

Theorem (L, 2016)

The quantization of the 2d chiral model is equivalent to solving a flat connection on the vertex algebra bundle $\mathcal{V}(X)$

$$D=d+rac{1}{\hbar}\left[\oint \mathcal{L},-
ight],\quad D^2=0$$

where $\mathcal{L} \in \Omega^1(X, \mathcal{V}(X))$ and $\oint \mathcal{L}$ is the associated chiral vertex operator fiberwise.

- ▶ This is the chiral analogue of Fedosov connection.
- ▶ The quantization is formulated in the BV formalism.
- ▶ BRST reduction of chiral models falls into this setup

$$\oint \mathcal{L} = \mathsf{BRST}$$
 operator.

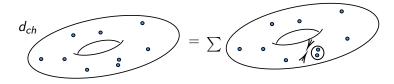
Elliptic chiral homology

- ▶ In [**Zhu**, 1994], **Zhu** studied the space of genus 1 conformal block (the 0-th elliptic chiral homology) and establish the modular invariance for certain class of VOA.
- ▶ **Beilinson** and **Drinfeld** define the chiral homology for general algebraic curves using the Chevalley-Cousin complex.
- ➤ Recently, [**Ekeren-Heluani**,2018,2021]: an explicit complex expressing the 0th and 1st elliptic chiral homology.

We now review the construction of **Ekeren-Heluani**, which fits particularly well in our setup.

Elliptic chiral homology

Intuitively, the chiral differential in the chiral complex can be viewed as a 2d chiral analogue of the Hochschild differential b.



$$b \qquad = \sum \qquad b(a_0 \otimes \cdots \otimes a_p)$$

$$= (-1)^p a_p a_0 \otimes \cdots \otimes a_{p-1} + \sum_{i=0}^{p-1} (-1)^i a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots a_p.$$

For each n we denote by \mathcal{F}_n the ring of meromorphic functions $f(z_1,\ldots,z_n)$ on \mathbb{C}^n such that

$$f(z_1,\ldots,z_i+m+l\tau,\ldots,z_n)=f(z_1,\ldots,z_n), m,l\in\mathbb{Z}$$

and f is allowed to have poles at

$$z_i - z_j = m + l\tau, 1 \le i \ne j \le n, m, l \in \mathbb{Z}.$$

Equivalently, let $E_{\tau} = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$. Then \mathcal{F}_n are meromorphic functions on E_{τ}^n with possible poles along diagonals.

An explicit chain complex by **Ekeren-Heluani**

Genus 1 chiral homology of a VOA ${\mathcal V}$ can be computed via

$$\cdots \to C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \to 0$$

where

$$C_0(\mathcal{V}) = \mathcal{V} \otimes \mathcal{F}_1, \quad C_1(\mathcal{V}) = \frac{\mathcal{V}^{\otimes 2} \otimes \mathcal{F}_2}{J_1}, \quad C_2(\mathcal{V}) = \frac{\mathcal{V}^{\otimes 3} \otimes \mathcal{F}_3}{J_2}$$

For $f(z_1, z_2) = f(z_1 - z_2) \in \mathcal{F}_2$ we put

$$d_1(a \otimes b \otimes f(z_1, z_2)) = \operatorname{Res}_{z=0} f(z) Y(a, z) b = \sum f_n a_{(n)} b,$$

Here
$$f(z) = \sum_{n} f_n z^n$$
.

$$\cdots \rightarrow C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \rightarrow 0$$

Given $f(z_1, z_2, z_3) \in \mathcal{F}_3$, we consider the Laurent series expansions

$$f(z_1, z_2, z_3) = \sum_k f_{12,k}(z_2, z_3)(z_1 - z_2)^k$$

$$=\sum_k f_{13,k}(z_2,z_3)(z_1-z_3)^k=\sum_k f_{23,k}(z_1,z_3)(z_2-z_3)^k$$

Then

$$d_2(a \otimes b \otimes c \otimes f(z_1, z_2, z_3)) = \sum_k a \otimes b_{(k)} c \otimes f_{23,k}(z_1, z_2)$$

$$-\sum_{k}b\otimes a_{(k)}c\otimes f_{13,k}(z_1,z_2)-\sum_{k}a_{(k)}b\otimes c\otimes f_{12,k}(z_1,z_2).$$

The following identity follows from the Borcherds identity

$$d_1 \circ d_2 = 0.$$

Denote the homology of above complex by $H^{ch}_{\bullet}(\mathcal{V})$.

The following identity follows from the Borcherds identity

$$d_1 \circ d_2 = 0.$$

Denote the homology of above complex by $H^{ch}_{\bullet}(\mathcal{V})$.

Goal

BV quantization and "Chiral trace map"

$$\operatorname{Tr}^{ch}(-): H^{ch}_{\bullet}(\mathcal{V}) \to \mathbb{C}((\hbar)).$$

 \implies 2d chiral analogue of algebraic index theory.

BV quantization of 2d chiral CFT (for example, $\beta \gamma - bc$ system).

► Local observable algebra : $Obs_{2d} = V^{\beta\gamma-bc}(\mathbf{h})$

BV quantization of 2d chiral CFT (for example, $\beta \gamma - bc$ system).

- ► Local observable algebra : $Obs_{2d} = V^{\beta\gamma-bc}(\mathbf{h})$
- $(C_{\bullet}(\mathcal{V}^{\beta\gamma-bc}(\mathbf{h})), d_{ch})$: chain complex of chiral operators.

BV quantization of 2d chiral CFT (for example, $\beta \gamma - bc$ system).

- ► Local observable algebra : $Obs_{2d} = V^{\beta\gamma-bc}(\mathbf{h})$
- ► $(C_{\bullet}(\mathcal{V}^{\beta\gamma-bc}(\mathbf{h})), d_{ch})$: chain complex of chiral operators.
- ▶ A BV algebra (A_{2d}, Δ) with a BV integration map.

BV quantization of 2d chiral CFT (for example, $\beta \gamma - bc$ system).

- ► Local observable algebra : $Obs_{2d} = \mathcal{V}^{\beta\gamma-bc}(\mathbf{h})$
- \triangleright $(C_{\bullet}(\mathcal{V}^{\beta\gamma-bc}(\mathbf{h})), d_{ch})$: chain complex of chiral operators.
- ▶ A BV algebra (A_{2d}, Δ) with a BV integration map.

We want to construct a $\mathbb{C}[\![\hbar]\!]$ -linear map

$$\langle - \rangle_{2d} : C_{\bullet}(\mathcal{V}^{\beta\gamma-bc}(\mathsf{h})) \stackrel{"?"}{ o} \mathcal{A}_{2d}(\!(\hbar)\!)$$

satisfying

QME:
$$(d_{ch} + \hbar \Delta)\langle - \rangle_{2d} = 0$$

Chiral conformal block

Correlation function of local observables in a chiral CFT on a Riemann surface Σ

$$\langle \mathcal{O}_1(z_1)\cdots\mathcal{O}_n(z_n)\rangle\,,\qquad \mathcal{O}_i\in\mathcal{V}$$

is given by chiral conformal blocks on Σ .

It produces functions/forms on $Conf_n(\Sigma)$ with meromorphic poles of possibly arbitrary order along the diagonals

$$\Delta = \bigcup_{1 \leq i \neq j \leq n} \Delta_{ij}, \quad \Delta_{ij} := \{(z_1, \cdots, z_n) \in \Sigma^n | z_i = z_j\}.$$

Quantum master equation

Similar to TQM, the 2d chiral analogue $\langle - \rangle_{2d}$ of a solution of QME is given by the following integral

Here the \mathcal{O}_i 's are 2-form valued operators on Σ .

Unlike the situation in topological field theory, $\langle \mathcal{O}_1(z_1)\cdots\mathcal{O}_n(z_n)\rangle$ is very singular along diagonals and there is no way to extend it to certain compactification of $\mathsf{Conf}_n(\Sigma)$.

We need to give a precise meaning to the naively divergent integral

$$\int_{\Sigma^n} \Omega$$

where Ω is a differential form on the product Σ^n with arbitrary meromorphic poles along the diagonals.

Regularized integral (L-Zhou 2020)

Let us first consider the integral of a 2-form ω on Σ with meromorphic poles of arbitrary orders along a finite subset $D \subset \Sigma$.

We can decompose ω into

$$\omega = \alpha + \partial \beta$$

where α is a 2-form with at most logarithmic pole along D, β is a (0,1)-form with arbitrary order of poles along D, and $\partial=dz\frac{\partial}{\partial z}$ is the holomorphic de Rham. We define the regularized integral

$$\left| \int_{\Sigma} \omega := \int_{\Sigma} \alpha + \int_{\partial \Sigma} \beta \right|$$

This does not depend on the choice of the decomposition.

 f_{Σ} is invariant under conformal transformations. The conformal geometry of Σ gives an intrinsic regularization of the integral $\int_{\Sigma}\omega$.

The regularized integral can be viewed as a "homological integration" by the holomorphic de Rham ∂

$$\oint_{\Sigma} \partial(-) = \int_{\partial\Sigma} (-).$$

The $\bar{\partial}$ -operator intertwines the residue

$$\int_{\Sigma} \bar{\partial}(-) = \operatorname{Res}(-).$$

In general, we can define

$$f_{\Sigma^n}(-) := f_{\Sigma} f_{\Sigma} \cdots f_{\Sigma}(-).$$

This gives a rigorous and intrinsic definition of

$$\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n \rangle_{2d} := \int_{\Sigma^n} \langle \mathcal{O}_1(z_1) \cdots \mathcal{O}_n(z_n) \rangle.$$

It exhibits all the required properties:

- ► Holomorphic Anomaly Equation. (L-Zhou, in preparation)
- Contact equations. (Gui-L-Tang, in preparation)
- **.** . . .

Theorem (Gui-L)

For all $n \ge 0$, we can construct a map (via Feynman diagrams)

$$[-]: (V^{\beta\gamma-bc}(\mathbf{h}))^{\otimes n} \otimes \mathcal{F}_n \to \mathcal{A}_{2d}(\!(\hbar)\!) \otimes \mathcal{A}^{\bullet,\bullet}(E^n_\tau, \star \Delta).$$

Composing with the regularized integral, we get

$$\langle - \rangle_{2d} := \int_{E_{\tau}^n} [-] : (V^{\beta \gamma - bc}(\mathbf{h}))^{\otimes n} \otimes \mathcal{F}_n \to \mathcal{A}_{2d}((\hbar))$$

which is well defined on $C_{\bullet}(V^{\beta\gamma-bc}(\mathbf{h})), \bullet = 0, 1, 2$ and satisfying

QME:
$$(d_{ch} + \hbar \Delta)\langle - \rangle_{2d} = 0.$$

Elliptic chiral index (after Douglas-Dijkgraaf)

The partition function of a chiral deformation by a chiral lagrangian $\mathcal L$ is given by

$$\left\langle e^{\frac{1}{\hbar}\int_{\Sigma}\mathcal{L}}\right\rangle _{2d}.$$

If we quantize the theory on elliptic curve $\Sigma = E_{\tau}$, we expect

$$\lim_{\bar{\tau}\to\infty}\left\langle e^{\frac{1}{\hbar}\int_{E_{\tau}}\mathcal{L}}\right\rangle_{2d}=\operatorname{Tr}_{\mathcal{H}}q^{L_{0}-\frac{c}{24}}e^{\frac{1}{\hbar}\oint dz\mathcal{L}},\quad q=e^{2\pi i\tau}$$

where the operation $\lim_{\bar{\tau}\to 0}$ sends almost holomorphic modular forms to quasi-modular forms. $L_0=$ conformal weight operator, c= central charge. ${\rm Tr}_{\mathcal{H}}(-)=q$ -character on a VOA module \mathcal{H} .

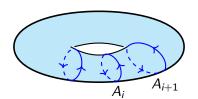
This can be viewed as an chiral algebraic index on the loop space.

Theorem (L-Zhou 2020)

Let $\Phi(z_1, \dots, z_n; \tau)$ be a meromorphic elliptic function on $\mathbb{C}^n \times \mathbf{H}$ which is holomorphic away from diagonals. Let A_1, \dots, A_n be n disjoint A-cycles on E_{τ} . Then the regularized integral

$$\oint_{E_{\tau}^n} \left(\prod_{i=1}^n \frac{d^2 z_i}{\operatorname{im} \tau} \right) \Phi(z_1, \cdots, z_n; \tau) \quad \text{lies in} \quad \mathcal{O}_{\mathbf{H}}[\frac{1}{\operatorname{im} \tau}] \quad \text{and}$$

$$\left|\lim_{\bar{\tau}\to\infty} \oint_{E_{\tau}^n} \left(\prod_{i=1}^n \frac{d^2 z_i}{\operatorname{im} \tau}\right) \Phi(z_1, \cdots, z_n; \tau) = \frac{1}{n!} \sum_{\sigma \in S_n} \int_{A_1} dz_{\sigma(1)} \cdots \int_{A_n} dz_{\sigma(n)} \Phi(z_1, \cdots, z_n; \tau) \right|.$$



In particular, $\oint_{E_{\tau}^n}$ gives a geometric modular completion for quasi-modular forms arising from A-cycle integrals.

Algebraic Index vs Elliptic Chiral Index

1d TQM	2d Chiral CFT
Associative algebra	Vertex operator algebra
Hochschild homology	Chiral homology
QME:	QME:
$(\hbar\Delta+b)\langle- angle_{1d}=0$	$(\hbar\Delta+d_{ch})\langle- angle_{2d}=0$
n-point correlator: $\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n \rangle_{1d} = \text{integrals}$ on the compactified configuration spaces of \mathcal{S}^1	n-point correlator: $\langle \mathcal{O}_1 \otimes \cdots \otimes \mathcal{O}_n \rangle_{2d} = \text{regularized}$ integrals of singular forms on Σ^n
Algebraic Index theory	Elliptic Chiral Algebraic Index

Joint work in progress with Zhengping Gui.

Application: Higher genus mirror symmetry

Quantum B-model on general Calabi-Yau is formulated by **Costello-L** (2012) generalizing **Bershadsky-Cecotti-Ooguri-Vafa**'s Kodaira-Spencer gravity on Calabi-Yau 3-folds. We call it

quantum BCOV theory.

It is conjectured to be mirror to higher genus Gromov-Witten invariants in certain holomorphic limit.

Quantum BCOV theory on elliptic curves is solved (L 2016) by the chiral deformation of free chiral boson

$$S = \int \partial \phi \wedge \bar{\partial} \phi + \sum_{k>0} \int \eta_k \frac{W^{(k+2)}(\partial_z \phi)}{k+2}$$

where

$$W^{(k)}(\partial_z \phi) = (\partial_z \phi)^k + O(\hbar)$$

are the bosonic realization of the $W_{1+\infty}$ -algebra.

Higher genus mirror symmetry on elliptic curves

▶ The chiral index of quantum BCOV theory is

$$\mathsf{Ind}^{\mathsf{BCOV}}(E_{\tau}) = \mathsf{Tr}\, q^{L_0 - \frac{1}{24}} e^{\frac{1}{\hbar} \sum_{k \geq 0} \oint_A \eta_k \frac{W^{(k+2)}}{k+2}}$$

► The chiral index coincides with the stationary Gromov-Witten invariants on the mirror elliptic curve computed by **Dijkgraaf** and **Okounkov-Pandharipande**.

$$\mathsf{Ind}^{\mathsf{BCOV}}(E_{ au}) = \langle \mathsf{Stationary}
angle_E^{\mathsf{GW}}$$

In this case, we find [L, 2016[]

Quantum Mirror Symmetry=Boson-Fermion Correspondence.

Thank you!