Heterotic σ-models via BV quantization and formal geometry

Joint work with Owen Gwilliam, James Ladouce, and Brian Williams

Matt Szczesny

Boston University

Goal:

Heterotic

σ-models via BV
quantization
and formal
geometry
■ Give a mathematically rigorous quantization of a twisted heterotic $(0,2) \sigma$-model with target a complex manifold X with holomorphic gauge bundle $E \rightarrow X$ in perturbation theory.
■ Relate this quantization to a sheaf of vertex algebras on the target X.

■ Our tools: BV formalism (as mathematically framed by K. Costello), formal geometry (Gelfand-Kazdhan), factorization algebras (Costello-Gwilliam)

Outline:

Heterotic

σ-models via BV
quantization
and formal
geometry

■ Physics story (Caveat Emptor !)

- Mathematical prehistory
- BV quantization
- Formal geometry

■ Formulating the model, quantizing, and anomalies

Heterotic

 σ-models via BVquantization and formal
geometry
Matt Szczesny

We consider a model of maps $\Phi: \Sigma \rightarrow X$ from a Riemann surface Σ to a complex Hermitian manifold X equipped with a holomorphic vector bundle $E \rightarrow X$, with action:

$$
\begin{aligned}
S= & \int_{\Sigma}\left|d^{2} z\right| \frac{1}{2} g_{i \bar{j}}\left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}}+\partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}}\right)+g_{i \bar{j}} \psi^{i} D_{z} \psi^{\bar{j}}+\lambda_{a} D_{\bar{z}} \lambda^{a} \\
& +F_{b i \bar{j}}^{a}(\phi) \lambda_{a} \lambda^{b} \psi^{i} \psi^{\bar{j}}-l_{a} I^{a},
\end{aligned}
$$

- left-moving fermions - λ^{a} and λ_{a} are sections $K^{1 / 2} \otimes \Phi^{*} \mathcal{E}$ and $K^{1 / 2} \otimes \Phi^{*} E^{*}$
- right-moving fermions $-\psi^{i}$ and $\psi^{\bar{i}}$ are sections of $\bar{K}^{1 / 2}$ $\otimes \Phi^{*} T X$ and $\bar{K}^{1 / 2} \otimes \Phi^{*} \overline{T X}$
- I^{a} and I_{a} are sections of $K^{1 / 2} \otimes \bar{K}^{1 / 2} \otimes \Phi^{*} E$ and $K^{1 / 2} \otimes \bar{K}^{1 / 2} \otimes \Phi^{*} E^{*}$

Heterotic σ-models via BV
quantization
and formal
geometry
Matt Szczesny

This model has $(0,2)$ supersymmetry, allowing it to be twisted. The new model has action

$$
\begin{align*}
& S_{\mathrm{twist}}=\int_{\Sigma}\left|d^{2} z\right| \frac{1}{2} g_{i j}\left(\partial_{z} \phi^{i} \partial_{\bar{z}} \phi^{\bar{j}}+\partial_{\bar{z}} \phi^{i} \partial_{z} \phi^{\bar{j}}\right) \\
& +g_{i \bar{j}} \psi_{\bar{z}}^{i} D_{z} \psi^{\bar{j}}+\lambda_{z a} D_{\bar{z}} \lambda^{a}+F^{a}{ }_{b i \bar{j}}(\phi) \lambda_{z a} \lambda^{b} \psi_{\bar{z}}^{i} \psi^{\bar{j}}-I_{z a} I_{\bar{z}}^{a} \\
& \lambda^{a} \in \Gamma\left(\Phi^{*} \mathcal{E}\right), \\
& \lambda_{z a} \in \Gamma\left(K \otimes \Phi^{*} \mathcal{E}^{*}\right), \\
& \psi_{\bar{z}}^{i} \in \Gamma\left(\bar{K} \otimes \Phi^{*} T X\right), \tag{1}\\
& \psi^{\bar{i}} \in \Gamma\left(\Phi^{*} \overline{T X}\right), \\
& I_{\bar{z}}^{a} \in \Gamma\left(\bar{K} \otimes \Phi^{*} \mathcal{E}\right), \\
& I_{z a} \in \Gamma\left(K \otimes \Phi^{*} \mathcal{E}^{*}\right) .
\end{align*}
$$

The twisted model has one remaining right-moving nilpotent supersymmetry $\bar{Q}_{+}, \bar{Q}_{+}^{2}=0$.

■ We are interested in this model in perturbation theory, when only maps $\Phi: \Sigma \rightarrow X$ near constant maps contribute - no instanton contributions.
■ Physical arguments (Witten, Kapustin, Nekrasov, Meng-Chwan Tan) show that in perturbation theory the \bar{Q}_{+}-invariant observables are locally described by a $\beta \gamma-b c$ system. In mathematical terms, we have a sheaf of observables on X whose sections look locally like a $\beta \gamma-b c$ chiral/vertex algebra. I will denote this sheaf by $C D O(X, E)$

■ The global (on X) problem of describing the perturbative observables can therefore be formulated in terms of gluing $\beta \gamma-b c$ systems on coordinate patches.

- There are anomalies associated with consistent gluing: $c h_{2}(T X)-c h_{2}(E)=0$. Existence of stress tensor obstructed by $c_{1}(T X)-c_{1}(E)$.

Mathematical prehistory:

Heterotic

 σ-models via BV quantization and formal geometryThe sheaf $C D O(X, E)$ appeared in the mathematics literature in the work of Malikov-Schechtman-Vaintrob-Gorbounov (1998-2000) under the name of chiral differential operators:

Theorem (MSV, GMS)

Let X be a complex manifold of dimensions n equipped with a holomorphic vector bundle $E \rightarrow X$ of rank k. If $c_{2}(T X)-c h_{2}(E)=0$, then X carries a sheaf of vertex algebras $C D O(X, E)$ having the property that $H^{0}\left(C D O\left(\mathbb{C}^{n}, E\right)\right)$ is the $\beta \gamma-b c$ system of rank (n, k). If $c_{1}(T X)-c_{1}(E)=0$, this is a sheaf of conformal vertex algebras.

Vertex algebras

Heterotic

σ-models via BV
quantization
and formal
geometry
Matt Szczesny

A vertex algebra is a \mathbb{Z}_{+}-graded vector space $V=\oplus_{n} V_{n}$ equipped with a state-field correspondence (or vertex operator)

$$
\begin{aligned}
& Y: V \rightarrow E n d(V)\left[\left[z, z^{-1}\right]\right] \\
& A \rightarrow Y(A, z)=A_{n} z^{-n-1}
\end{aligned}
$$

satisfying a number of properties. Some of these are:

- There is a vacuum vector \mid vac $>\in V_{0}$ such that $Y(\mid v a c>, z)=I d_{V}$.
- (locality) for any two $A, B \in V$, $(z-w)^{N}[Y(A, z), Y(B, w)]=0$ for N sufficiently large.

Heterotic

σ-models via BV
quantization
and formal
geometry

As a consequence of the vertex algebra axioms, for any two $A, B \in V$, we have an operator product expansion (OPE):

$$
Y(A, z) Y(B, w)=\frac{C_{N}(w)}{(z-w)^{N}}+\cdots+\frac{C_{1}(w)}{(z-w)^{1}}+\text { reg. at } z=w
$$

We write

$$
Y(A, z) Y(B, w) \sim \frac{C_{N}(w)}{(z-w)^{N}}+\cdots+\frac{C_{1}(w)}{(z-w)^{1}}
$$

Commutators $\left[A_{n}, B_{m}\right]$ can be computed from the OPE via residues.

Heterotic

 σ-models via BV quantization and formal geometryV is said to be conformal if there is a vector $\omega \in V$ such that $T(z)=Y(\omega, z)$ has OPE

$$
T(z) T(w) \sim \frac{C / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial_{w} T(w)}{(z-w)}
$$

which is equivalent to the coefficients of $T(z)=\sum_{n} L_{n} z^{-n-2}$ satisfying the commutation relations of the Virasoro algebra

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{n+m}+\frac{n^{3}-n}{12} \delta_{n,-m} C
$$

where $C \in \mathbb{C}$ is called the central charge.

$\beta \gamma-b c$ system of rank (n, k)

Heterotic

σ-models via BV
quantization
and formal
geometry
Matt Szczesny

Start with Lie superalgebra with generators $\beta_{r}^{i}, \gamma_{r}^{i}, b_{r}^{j}, c_{r}^{j}$, where $r \in \mathbb{Z}, i=1 \cdots n, j=1 \cdots k$.

$$
\left[\beta_{r}^{i}, \gamma_{s}^{i^{\prime}}\right]=\delta_{i i^{\prime}} \delta_{r,-s}, \quad\left[b_{r}^{j}, c_{s}^{j^{\prime}}\right]_{+}=\delta_{j j^{\prime}} \delta_{r,-s}
$$

■ The vertex algebra $\beta \gamma b c(n, k)$ has underlying vector space a Fock module for this Lie algebra.
■ It is generated by fields $\beta^{i}(z), \gamma^{i}(z), b^{j}(z), c^{j}(z)$ with OPE's

$$
\beta^{i}(z) \gamma^{i^{\prime}}(w) \sim \frac{\delta_{i i^{\prime}}}{z-w} b^{j}(z) c^{j^{\prime}}(w) \sim \frac{\delta_{j j^{\prime}}}{z-w}
$$

The construction of MSV, GMS amounts to constructing an action of coordinate changes and gauge transformations on $\beta \gamma b c(n, k)$.

- The anomaly $c h_{2}(T X)-c h_{2}(E)$ arises because only a central extension of this group acts in general.
- The anomaly $c_{1}(T X)-c_{1}(E)$ arises as an obstruction to defining the section corresponding to ω - i.e. $T(z)$ globally.

It was not clear from original construction of MSV and GMS how the sheaves $C D O(X, E)$ are related to physics - i.e. how they arise as a solution to a quantization problem.

Goal:

- To obtain $C D O(X, E)$ by a mathematically rigorous BV quantization of a simple model.
- To exhibit the $c h_{2}(T X)-c h_{2}(E)$ and $c_{1}(T X)-c_{1}(E)$ as obstructions to quantization (consistent with certain symmetries).
■ To explicitly see the modular properties of the partition function in geometric terms.

Heterotic

σ-models via BV
quantization
and formal
geometry

Earlier work:

■ Kevin Costello - A geometric construction of the Witten genus I/II - Proceedings of ICM 2010/ arXiv:1112.0816
■ Vassily Gorbounov, Owen Gwilliam, and Brian Williams Chiral differential operators via quantization of the holomorphic σ-model. - Asterisque 2020. - deals with the case $E=0$.

A sketch of the BV formalism following K. Costello

Heterotic

σ-models via BV
quantization
and formal
geometry
Roughly speaking, the BV formalism is a tool for quantizing a field theory consistently with the symmetry of some Lie algebra \mathfrak{g}.

Setup: we have

- a space of fields \mathcal{F}

■ an action functional $S: \mathcal{F} \rightarrow \mathbb{R}$

- an action of \mathfrak{g} on $\mathcal{O}_{\text {loc }}(\mathcal{F})$ - the local functionals on \mathcal{F} leaving S invariant.

Heterotic

σ-models via BV
quantization
and formal
geometry
In this situation we can embed the problem in $\mathcal{F}^{B V}=T^{*}[-1](\mathfrak{g} \oplus \mathcal{F})$. This shifted cotangent bundle carries a shifted symplectic pairing of degree -1

- Functionals on $\mathcal{F}^{B V}$ carry a shifted Poisson bracket $\{$,$\} of$ degree +1 .
■ $S_{B V}=S+h_{X}$ satisfies the BV Classical Master Equation $\left\{S_{B V}, S_{B V}\right\}=0$

Heterotic σ-models via BV quantization and formal geometry

Perturbative BV quantization involves deforming $S_{B V}$ to an element of $\mathcal{O}_{\text {loc }}\left(\mathcal{F}^{B V}\right)[[h]]$ satisfying the BV Quantum Master Equation:

$$
Q I+1 / 2\{I, I\}+h \Delta I=0
$$

where we have written $S_{B V}(\phi)=\langle\phi, Q \phi\rangle+I_{B V}(\phi)$ (quadratic + interaction piece) where

■ Δ is the BV Laplacian - a type of divergence operator.
■ QME says symmetry preserves "path integral measure" on $\mathcal{F}^{B V}$.

- Making sense of QME and Δ in perturbation theory requires Feynman diagrams and regularization/renormalization. K. Costello makes sense of this via effective field theory approach.
- Anomalies (obstructions to solving QME) appear as certain Feynman diagrams. These can in turn sometimes be identified with local incarnations of characteristic classes.

Question: what's gained by embedding $\mathfrak{g}[1] \oplus \mathcal{F}$ in $\mathcal{F}^{B V}$? Answer: The freedom to replace integral over \mathcal{F} with integrals over other Lagrangian submanifolds $\mathcal{F}^{B V}$ (these choices correspond to choices of gauge-fixing conditions).

Formal geometry - (Gelfand-Kazhdan

Heterotic

σ-models via

This is a version of the associated bundle construction. Recall: If G is a group, X a manifold, $P \rightarrow X$ a principal G-bundle, and V a representation of G, we can form the associated bundle

$$
P \times_{G} V
$$

Suppose X is a complex manifold of dimension n. Then at each $x \in X, \hat{\mathcal{O}}_{x} \simeq \mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]$. A choice of a such an isomorphism is called a formal coordinate system at x.

Heterotic

σ-models via BV
quantization
and formal
geometry
Matt Szczesny

Let $\hat{X}=\left\{x \in X,\left(z_{i}\right)_{i=1}^{n}\right\}$, where $\left(z_{i}\right)_{1}^{n}$ is a formal coordinate system at x.

- $\hat{X} \rightarrow X$ has the structure of a principal bundle for the pro-algebraic group $A u t_{n}$ of automorphisms of $\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]$ preserving the origin.
■ Any representation V of $A u t_{n}$ yields an associated bundle over X.

■ Example: If $V=\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]$,

$$
\hat{X} \times{ }_{A u t_{n}} V \simeq J(\mathcal{O})
$$

where $J(\mathcal{O})$ is the jet bundle of \mathcal{O}_{X}.

Punchline:

Heterotic
σ-models via BV
quantization
and formal
geometry
Matt Szczesny

Any construction on $\hat{D}_{n}=\operatorname{Spec}\left(\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]\right)$ which carries an action of $A u t_{n}$ globalizes to all of X.

Can also incorporate bundles into the story. If $E \rightarrow X$ is a vector bundle of rank k, at each point $x \in X$ we have the space of formal frames $\left(e_{j}\right)_{j=1}^{k}$. Combining formal coordinates and formal frames we obtain a principal bundle

$$
\widehat{X(E)}=\left\{x \in X,\left(z_{i}\right)_{i=1}^{n},\left(e_{j}\right)_{j=1}^{k}\right\} \rightarrow X
$$

for the (pro) group $A u t_{n} \ltimes G L_{k}\left(\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]\right)$.

Heterotic

σ-models via BV
quantization
and formal
geometry
Matt Szczesny

Approach: to quantize a σ-model with target X, it suffices to start with a σ-model with target \hat{D}_{n} (possibly equipped with a vector bundle E), and quantize equivariantly with respect to $A u t_{n} \ltimes G L_{k}\left(\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]\right)$.

Actually, rather than working with the group $A u t_{n} \ltimes G L_{k}\left(\mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]\right)$, it suffices to work with its Lie algebra $W_{n} \ltimes \mathfrak{g l}_{k}\left(\mathcal{O}_{\hat{D}_{n}}\right)$ keeping track of a (mild) integrability condition (language of Harish-Chandra pairs).

Heterotic sigma-model with target \hat{D}_{n}

Heterotic

σ-models via

- Fix a source Riemann surface Σ
- Let $\mathfrak{g}_{n}=\mathbb{C}^{n}[-1], V_{E}=\mathbb{C}^{k}$, which we view as abelian Lie algebras.
- Note that taking Chevalley cochains
$C_{\text {Lie }}^{*}\left(\mathfrak{g}_{n}\right)=\widehat{\operatorname{Sym}}\left(\mathfrak{g}_{n}^{\vee}[-1]\right) \simeq \mathbb{C}\left[\left[z_{1}, \cdots, z_{n}\right]\right]=\mathcal{O}_{\hat{D}_{n}}$. Similarly $C_{\text {Lie }}^{*}\left(V_{E}\right)=\wedge^{*} V_{E}^{V}$.
\square

$$
\begin{aligned}
\mathfrak{g}_{E}^{\Sigma}= & \Omega^{0, *}\left(\Sigma, \mathfrak{g}_{n}\right) \oplus \Omega^{1, *}\left(\Sigma, \mathfrak{g}_{n}^{\vee}[-2]\right) \oplus \\
& \Omega^{0, *}\left(\Sigma, V_{E}\right) \oplus \Omega^{1, *}\left(\Sigma, V_{E}^{\vee}[-2]\right) .
\end{aligned}
$$

■ $\bar{\partial}$ equips \mathfrak{g}_{E}^{\sum} with the structure of an abelian dgla

- $\mathfrak{g}_{E}^{\Sigma}[1]$ is equipped with a pairing \langle,$\rangle arising from pairings$ between \mathfrak{g}_{n}, V_{E} and their duals followed by integration along Σ.
■ We think of $\mathcal{F}=\mathfrak{g}_{E}^{\Sigma}[1]$ as the fields of our formal σ-model. At this stage it's just a free theory with action functional

$$
S(\phi)=\int_{\Sigma}\langle\phi, \bar{\partial} \phi\rangle, \quad \phi \in \mathcal{F}
$$

- The pairing induces a shifted Poisson bracket of degree 1 on $\mathcal{O}_{\text {loc }}(\mathcal{F})$ - the space of local functionals on \mathcal{F}.

■ We want to obtain a quantization with target $(X, E \rightarrow X)$ by quantizing the formal σ-model equivariantly with respect to the Lie algebra $W_{n} \ltimes \mathfrak{g l}_{k}\left(\mathcal{O}_{\hat{D}_{n}}\right)$.
■ Passing to the BV action $S_{B V}$ makes this theory no longer free. We can attempt to solve the QME in perturbation theory.

Theorem (GLSW)

- The obstruction to quantizing the formal heterotic σ-model equivariantly with respect to $W_{n} \ltimes \mathfrak{g l}_{k}\left(\mathcal{O}_{\hat{D}_{n}}\right)$ can be identified with $\mathrm{ch}_{2}(T X)-\operatorname{ch}_{2}(E)$.
- The observables of the the quantized theory can be identified with $C D O(X, E)$.

Let \mathcal{T}_{Σ} denote the sheaf of holomorphic vector fields on Σ. \mathcal{T}_{Σ} is another symmetry of the theory. We can attempt to quantize equivariantly with respect to \mathcal{T}.

Theorem

If $c_{1}(T X)-c_{1}(E)$ and $c_{2}(T X)-c h_{2}(E)$ both vanish, we can quantize equivariantly with respect to $\mathcal{T} \oplus W_{n} \ltimes \mathfrak{g l}_{k}\left(\mathcal{O}_{\hat{D}_{n}}\right)$. In other words, $C D O(X, E)$ is a sheaf of conformal vertex algebras.

Chiral de Rham Complex

Heterotic

 σ-models via BVThe case $E=T X$ is special, as $\operatorname{ch}_{2}(T X)-\operatorname{ch}_{2}(E)=0$ automatically. The resulting sheaf is called the chiral de Rham complex (MSV).
\square It is known that when $c_{1}(T X)=0$, this sheaf of vertex algebras has $N=2$ super-Virasoro action
■ We can see this by replacing Σ by a $(1,1)$ super Riemann surface.

- Partition function of model is two-variable elliptic genus $E I I(X, q, y)$ - we can construct it directly on the universal Jacobian over M_{1}. Makes explicit the modularity property of $E I I(X, q, y)$ - weak Jacobi form.

