Noncommutative geometry in application to

machine learning

Neural network in machine learning shares the same starting point as quiver
representation theory. In this talk, | will build an algebro-geometric formulation of a
‘computing machine' which is well-defined over the moduli space. The main algebraic
ingredient is extending the associative geometry of Connes, Cuntz-Quillen, Ginzburg to
near-rings, which capture the non-linear activation functions in neural network.
Furthermore, | will explain a uniformization between spherical, Euclidean and
hyperbolic moduli of framed quiver representations.
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Neural network and quiver representation

~

}—— output

inputs

Fix a directed graph Q. Associate to

vertex: vector space
arrow: linear map.

That is, a quiver representation w.

Fix a collection of vertices i;p, ioyt, and
Vi Vi

lin’ * lout’

To approximate any given continuous function
f: K - Viout

cpt . .
(where K c V;, ) by using a representation w.

Fixy € igyt - CQ - gy

Getalinear function f, ,,: Vi, - V;_ . N

}—— output

inputs

Linear approximation f,, ,, is not good enough!

Introduce non-linear “activation functions' at vertices.

Some sigmoid functions compared. In the drawing all &%
functions are normalized in such a way that their slope at
the origin is 1.

Compose with these activation functions and get
network function
f?»W: Viin - V’:out

for every w € Rep(Q).



Minimize
2
C(V) = |f17,w _fl LZ(K)
by taking a (stochastic) gradient descent on the vector space

Rep(Q).

So a neural network is essentially:

a quiver representation, together with

a fixed choice of non-linear functions on the representing vector
spaces, and a fixed path.

Relation between quiver representations and neural network
was observed by [Armenta-Jodoin 20].

Al neural network has achieved great success in many fields of
science and daily life.

Related to lot of areas in math:
Representation theory, stochastic analysis, Riemannian
geometry, Morse theory, mathematical physics...

Basic motivating questions:

1. Are there any deeper geometric structures in the subject?

2. Can modern geometry provide new insight for the theory and
find enhancement of methods?

Main difference between neural network and quiver

AI.,)
)
ions i
representations is: .
Definition 1.11. A near-ring is a set A with two binary operations +, o called addition and

there are non-linear activation functions. ¢ ( 0, +dr¥ ol 0,) ¢ oygiicarion st s

(1) A is a group under addition.
(2) Multiplication is associative.

The quiver path algebra together with symbols for the activation (3) Right multiplication is distributive over addition:
functions forms a C-near-ring A{o, ..., 0,,}. 4y oz=roztyor
(Distributive law does not hold on one side.)

forall x,y,z € A.

In this paper, the near-ring we use will be required to satisfy that:

(4) (A, +)is a vector space over F = C, with ¢ - (xo y) = (¢ -x) o y forall ¢ € C and
x,y € A.
(5) There exists 1 € Asuchthat lox=x=xol.

7 € A{oy, ...,0,,} is encoded by a tree (whose leaves are inserted
with 1).

ex.y = Ao + a,0q caG_’O + al'lo'l’l o alll'o} a;0, ° az‘o.

g, Ay, 01,0, 41,1, A1,1,0, A2, Az € A = CQ.

inputs




Another gap between quiver and neural network:

In math, we work with moduli space of representations:
M = Rep(Q)//, Aut.

Isomorphic objects should produce the same result.

However, this is not true for f3,, given as above:

Any useful non-linear functions ¢: V; = V; are NOT equivariant
under GL(V;):

a(g-v)#g- o).

Then f;,, does not descend to [w] € M.

A crucial gap between neural network and representation
theory!

It poses an obstacle for carrying out machine learning using
moduli space of quiver representations.

[arXiv:2101.11487] provided a simple solution to overcome this
obstacle.

Finding o: V; = V; such thata(g - v) # g - 0(v) is impossible.

On the other hand, we can find fiber-bundle maps !
0:V; x Rep(Q) — V; x Rep(Q) g C .
L

that satisfies
g- O-W(U) = Jg-w(g : U)-

Then f;,, will be invariant under group action on the middle

vertices.

However, still not invariant for GL;-action at the input and output
vertices!

Another key point: use framing for quiver representations:
e Inputs and outputs live in the framing vector spaces, which are

V

foeiy

independent of the internal state spaces. ~F

¢ By using metrics on the universal bundles, we can use Z
functions on the framing vector spaces to construct
fiber-bundle maps on the universal bundles.
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We construct canonical metric on the universal bundle that has
explicit algebraic formula.

Rmk.

There is rising interest on relations between geometry and data
science.

For instance, [Lei-Luo-Yau-Gu] studied manifold structure of
data.

Here, we focus on the use of moduli space and metric, and finding
an algebraic formulation of a computing machine.

Framed quiver moduli
Fix Q. 4 = CQ.

Framed representation:

Vertex: V;

Arrow: w,

together with e;: C™ — V; (called framing).

Framed A-module & Framed representation:

v=Pw.

LEQo

Vel @ ¢
Rep; 5 = Rep; X @ Homy (C™, V;) \l

' i€Qo J/ 1= i
d is dim. of rep. \[ ;

7 is dim. of framing. U
M = Repz 3//,GL;

In this case, we have a fine moduli of framed quiver representations which is
smooth.
[Kings; Nakajima; Crawley-Boevey; Reineke]

Stability condition:
no proper subrepresentation of IV contains Im e.

M ; = {stable framed rep. (V, e)}/GL;.

Ad
Typical example:

Gr(n,d).

Remark: M ;s the usual GIT quotient for a bigger quiver Q \L; j\

which has one more vertex oo than Q,

together with n; arrows from oo to i. \.
(Put dim=1 over the vertex co. Then take the character
©® = —oo* for slope stability 6(&)/2a.)

Topology of M5 ; is well-known.

Thm. [Reineke]
Suppose Q has no orlented cycle. Then M ; is an iterated Grassmannian

bundle, which can also 'be identified as a quiver Grassmannian.
Or. — G



1IIL [ REIIEKE] /7 >
Suppose @ has no oriented cycle. Then M, ; is an iterated Grassmannian
, —_— T < °

bundle, which can alsolbe identified as a quiver Grassmannian.
GY\,"’ \;w.
|
Gl" - El .
L n x m
v ¢

br,

V;: universal bundle over vertex i. V’«[

v, “

To run machine learning over M- z\_,

1. Fix a C-near-ring CQ{oy, ..., oy }. I m

2. Fix ¥ € CQ{¢i, ..., v} (an algorithm). % »

3. CQ acts on the universal bundles V;. 6%@ «mM

4. Fix equivariant fiber-bundle maps V;y = V() corresponding to a;.

5. At the input vertices i of ¥, compose with framing map e;.
At the output vertices j, compose with the adjoint e;".

6. This cooks up a function f¥ on the framing vector spaces, well-defined over
M ;- Then follow a gradient descent of

. 2
|fy _fl Lo(KCF)
in Mﬁ’&.

For the adjoint, we need Hermitian metric h on the universal bundles V;.
Moreover, we also need Kaehler metric on the moduli space M ;-

Rmk.

Formulating as gradient descent on moduli space, this is now a familiar
scenario of minimizing energy functional in math. physics.
[Donaldson; Uhlenbeck-Yau]

Finding Hermitian Yang-Mills metric on holomorphic vector bundles.

Canonical metric exists for M, ;,

which has an algebraic expression in terms of the quiver:

Thm.
For every quiver Q and every i € Q,

H;:Repy 7 = End(V)),

-1
(w,e) » Z “(vet(VQet(y;)

h(y)=i
gives a well-defined metric on V; - M.

Moreover, if Q has no oriented cycle, the Ricci curvature
i),;00logdetH;

of the resulting metric on ®;¢, V; defines a Kaehler metric on
M

Ad:

Important observation:

Maps on the framing F; — F; induce
equivariant fiber-bundle maps V; - V;
using Hermitian metrics of V;:
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Rmk.
In [arXiv:2101.11487], we show that the symplectomorphism
Z

———=:(C", wpn) = (B", w5ta)
V1+1ZJ?

can be used as an activation function, in the sense that universal

approximation theorem holds.
/// , \\
a7

\ N
///\/\ — ////\/\

Summing up, now we have:

A - I, Map(F))
i f(]‘;,,e) ) = H@Gut: 14 °[w,e] €in * 17)

Question:

How to relate this moduli formulation
back to the original setup over
Euclidean space of representations?

From now on, let's take 71 = d.
Write the framing as e =e(Y p®) » &%

By using the quiver automorphism, e can be made as Id.
whenever e is invertible.

This gives a chart:
Rep;_ga < Mig-

Restricting the above Hegut, ¥ °[w,e] €in * Lt)) this chart,
pretending the metrics are all trivial,
it recovers the usual Euclidean setup!

Does Rep;;_; 5 © M, ; have a more intrinsic interpretation?

Ad



Yes, by considering uniformization.

Uniformization

For Gr(n,d) = U(n)/U(d)U(n — d),
has Hermitian symmetric dual
Gr (n,d) =U(d,n—d)/UAUn—4d)

Borel
= {Spacelike subspace in R*"~%} '€ Gr(n, d).

Ex. Hyperbolic disc D c CP*.
Hyperbolic <--> spherical.

Such symmetric dual and embedding was studied

uniformly for general symmetric spaces
by [Chen-Huang-Leung].

By [Reineke], framed quiver moduli M, 4 is an iterated
Grassmannian bundle.

What is its “non-compact dual'?

Q: the quiver with one more vertex denoted as oo.
Assume 7 > d. Write e® =¢(0 p@) ; l
For each i, define N l.L/e .’

-1 I 0 -1 i
- = —1)SW)y* = p. [ "9 *
(3 ] <o 5. )e)
h(y)=i

where y is a path in Q with t(y) = oo;
s(y) =1fory = ej(l), and —1 for all othery.

R~ :={(w,e) € Ryq: H{ is positive definite for all i}.

Lemma.
@+ R c{we): €@ is invertible vi} c RS,

Lemma.
R~ is Gg-invariant.



M~ =R /G,
The moduli of space-like framed representations.

Theorem 1.

¢ H; defines Hermitian metric on the universal bundle
Vi -> M".

o Hy- == —iddlog det H defines a Kaehler metric on M~.

¢ There exists a (non-holomorphic) isometry, which
respects the real structure:

(M_JHM_) = nGr—(mir di)l @ HGr‘(mi,di)
i i

where m; = n; + Za:h(a):i dim Vy(q) .
e There is a canonical identification of V; = M~ with
Vor-(myap — [ Gr=(m;, d;) covering the isometry.

Remark:
Gr-(md)={be Mat gy (m—a): bb* < I} has non-positive
curvature (invariant under parallel transport).

In the same manner like before, have network function
f(}\,a/,e) () = H@Qup? °lw,e] €in * U)
over (M~,Hr).

Remark:

Machine learning using hyperbolic geometry has recently
attracted a lot of research in learning graphs and word
embeddings.

Most has focused on taking hyperbolic metric in the fiber
direction.

Homogeneous spaces have also been introduced in the
fiber direction [Cohen; Geiger; Weiler], to make use of
symmetry of input data.

Here, we extract natural Hermitian-symmetric
structure for the base moduli space, which universally
exists for all neural network models.

A parallel Euclidean story:
Take

I, 0\)
# = (e (k).

That is, we assign positive sign to Ej(i) and 0 (instead of -1)
to all other paths of Q.



R :={(w,e) € R, 4: H{ is positive definite for all i}.

Prop.

RO//)(Gd = Repn_qa

a vector space.

Also H; defines trivial metric on V;] 0.

That is,
Rep,,_44 C M, 4 is the moduli of framed positive-def.

representations with respect to H!.

This recovers the usual Euclidean machine learning.

Conclusion:

M, M~, M (spherical, hyperbolic, Euclidean) are the
moduli of framed positive-definite representations with
respect to

H; = (pip) 71, )
_ I;. 0)\.
-5 )

o 110 I, 0\ :
H =H; = (pi ( OL 09,) respectively.

Can connect them in a family:

(o 24

Now, let's go to a more general algebraic viewpoint.

Noncommutative formulation

A: associative algebra.
e consisting of linear operations of the machine.

V: a vector space (basis-free).
* States of the machine (before observation).

Consider A-module structures w: 4 — gI(V).
e Linear operations on the state space.

In reality, data are observed and recorded in fixed basis!
Framing e:

F = Fi, @ Fout @ E,, (with fixed basis), with linear maps
eeF->V.

o Fi, @ Fyut: vector spaces of all possible inputs and outputs.
e F,: Physical memory for the machine.

e e: to set up and observe the states.

Get a framed A-module (V,w, e).

Fixy € A.
have f7: Fip = Fout

fr@) = esu(- en())

F‘;‘ "wa E

AL/

AG



 The ‘'machine function'.
Given an input signal v, send it to machine by e;,;
then perform operations according to y;
then output by the adjoint of eg+.) v
* Metric is needed to define the adjoint. o

F,;‘ me Euhq

Set of framed modules: \. l /

R :={(w,e):w € A - gl(V) alg.homo.; e € Hom(F,V)}.

[+]

8L

-~

~ 4
Y€ A“’l,n-ﬁp C ,;l. ew)

Consider M’ = [R/G] where G = GL(V). universal bundle
Have universal bundle V descended from V X R.

vV
Equip V with metric, that is, l

a family of metrics h¢, .y on V - R which is G-equivariant. L,(Le)'

m

Also take
non-linear operations gy, ..., oy.

Naively, take the near ring
A{Jl, ey GN}'

Then an A-module lifts as an A{oy, ..., o5 }-module.

Unfortunately, don't have nice correspondence in the morphism
level:

an A-module morphism ¢:V — V does not respect A{ay, ..., on}-
module structure:

In particular, do not have
[R(A)/G] = Rp(A{oy, ...,on}).

Remedy: make use of framing and metric.

Recall that, g; should be treated as non-linear maps on the framing
F —- F,NOTonV.

Given ANY oF: F — F, cook up fiber bundle map O(w,e)
using the equivariant metric and framing: \Le

O(w,e) w)=e-df (h(w,e) (e, v), ..., h(w,e) (en, U)) A C \]

¢ Observe and record the state using e, do the non-linear
operation, and then send it back as state.

Fin Fout Fm D(TF
Let's conclude with the following definition. F
Def. e Tl(
An activation module consists of:
(1) anoncommutative algebra A and vector spaces V, F;
(2) a collection of possibly non-linear functions AC (V. hpyep)
O'JF F > F; W

(3) A family of metrics h(y, ) on V over the space R of framed A-
modules which is GL(V)-equivariant.



Encode non-linear operations by the following nc near-ring:
A= (Matﬂdm‘bl&)l, ey Oy}

where

Adouble j5 the doubling of €Q; (so has e*, a*)

Mat,{d"ubk’l) an n-by-n matrix, whose entries are cycles in CQ
based at the framing vertex oo.

Doubling is a standard procedure in construction of Nakajima's
quiver variety.

Prop. We have
[R(4)/G] = RA)

Prop.

Each point in the moduli space M gives a well-defined map
A - Map(F).

That is, we have

A - I, Map(F))
Note: M above is moduli of A-modules, NOT the doubling.
The actions of e*,a* on F @ V are produced by the adjoint with

respect to
h (the equivariant family of metrics on V).

Have differential forms for nc algebra A
[Connes; Cuntz-Quillen; Kontsevich; Ginzburg...].

DR*(4) - QR(45)

Study moduli spaces for all dimension vectors at the same time!



The noncommutative dilferential forms can be described as follows, Consider the quo
tient vector space A = A/ K (which is no longer an algebra), We think of elements in 4 as
differentials. Define

DiAri= 5 DAY, Didy, = Aeds. 83
ey
where i copics of A uppear in D(A),, and the tensor product is over the ground fiekl T2
We should think of elements in A as masriv-velued difterential one-forms, Note that X~ X
may not he zero, and X & ¥ = ¥ & X in general for matrix-valued differential forms X, ¥,

The dillferential o, @ Ay, — D2iA),-y is defined as

dilap@ar @, &mi=leae . 8,
The product (A0, & INAL, _, — AT, is more ricky:

(an T @, . QW) - (e Ry 0. R0

M
(9) -._f—u-"mu.o-c@a...xm+z.;-1r' BT OTETO... @0,

which can be understood by applying the Leibniz mle on the terms .. Note that we
have chosen representatives o, © A for 7 = 1,..., 0 + 1 on the RTIS, but the sum is inde-

pendent of choice of representatives (while the product &y itsell depends on represen-
tatives).

d?=0.

The Karoubi-de Bham complex is defined as
(1 DRMNA) 1= SMAN S (AN A
where [, b] 1= wb — (=17 b is the graded commuraror tor a graded algebra, o descends
e be a well-defined diffc al on LAR%CAR Note that £R%(A4) is not an algebra since
[0 AL £270A)] is not an ideal. DR*(AY is the nom-commutative analog for the space of de
Rham forms. Moreover, there is a natural map by taking trace 1o the space of G-invariant
differential forms on the spuce ol representations BEAD:
(1 DR* (A — 2" (RIANY

We extend such notions to the near-ring 4.

Theorem L4, There exists a degree-preserving map
DR*(A) — (2" (R, Map (F, )"
which commutes with d on the twao sides, and equals to the map (14): LJR'(I\"IarF(:?A()) <oy

(Q*(R,End (F))C when restricted to DR*(Matg(A)). Here, Map (F, F) denotes the trivial
bundle Map (F, F) x R, and the action of G = GL(V) on fiber direction is trivial.

@y ¥
i¥a 3
[} [ ] 2 :
[ ] [
ra_-i sl {,x / wels
) (" i
pyl, @ 0| @ R
mcmll ﬂ]d”_i ayifias
L L] L]
| 1 1
a one-for a hwo-form anerifier two-form
Flcure 3,

(The number of leaves is required to be < form degree.)
Also have d? = 0.

In particular, the function
= 2
[ 0@ - rof av
K

and its differential are induced from 0-form and 1-form on 4.
Central object in machine learning.

Thus the learning is governed by geometric objects on A!



Remark:
[Ginzburg]: Noncommutative Chern-Weil theory -
replacing Lie algebra g by an nc algebra A.

In an ongoing work, we consider
A-valued connection and curvatures for fiber bundles.

This has application to recurrent neural network and its higher
dimensional analog.

Experiments

Let's experiment with metrics on the moduli space of representations.

from keras.datasets import cifarie
Using TensorFlow backend.

[

o 0 ] o 2

To train machine to classify these pictures into 10 classes.
Want to compare the results of using trivial and non-trivial metrics in the
moduli space of framed quiver representations.

32x32x3
eX. /m

3¢3%3
CNN |33

) x
]n()er' L 4Lc/so . mmn mDm‘

v <20 x50 ]
';,v;‘,xt;o (fnm:qa-. iz abo Jnm‘nv=3.ﬂzoxspo(azsvo\)e(lwi),
Deatt Qm/znei
|D'3Vs L n(P@f
10/

Metric on universal bundles:

~ %\ —1
N WW
H; = (p3p) 1=<1di— lM‘> :

Metrics on moduli spaces:

hae = =M | Y thIp)) M @p0I@p0Y ) k6701 pi3 (09’ (0301 @007

(M = o <-> Euclidean; M > 0 <-> the non-compactdual M ~; M < 0 <-> M)

Abelianize to simplify the computation:

Take (C*)¢ in place of GL(d) in M = R/GL(d).

This means taking rep. (of a bigger quiver) with dimension vector (1, ..., 1).
Then metrics on universal bundles are recorded as 1 X 1 matrices.



The actual model in the experiment:

inputs = keras.Input(shape=input_shape) inputs = keras.Input(shape=input_shape)

y = hypConvab(se, kernel_size=(3, 3),padding='same’)(inputs) y = EuclidConv2D(5e, kernel_size=(3, 3),padding="same")(inputs)

y = layers.MaxPooling20(pool_size=(2, 2))(y) y = layers.MaxPooling2D(pool_size=(2, 2))(y)

y = hypConvaD(75, kernel_size=(3, 3),padding="same’)(y) y = EuclidConv2D(75, kernel_size=(3, 3),padding="same')(y)

y = layers.MaxPooling20(pool_size=(2, 2))(y) y = layers.MaxPooling2D(pool_size=(2, 2))(y)

y = Dropout(8.25)(y) y = Dropout(@.25)(y)

y = hypConv2D(125, kernel_size=(3, 3),padding="same")(y) y = EuclidConv2D(125, kernel_size=(3, 3),padding='same")(y)

y = layers.MaxPooling20(pool_size=(2, 2))(y) y = layers.MaxPooling2D(pool_size=(2, 2))(y)

y = Dropout(8.25)(y) y = Dropout(8.25)(y)

y = layers.Flatten()(y) y = layers.Flatten()(y)

y = hypMDenseb(50) (y) y = Denseb(500) (y)

y = Activation(activations.relu)(y) y = Activation(activations.relu)(y)

y = Dropout(e.4)(y) y = Dropout(8.4)(y)

y = hypMDenseb(250) (y) y = Denseb(256)(y)

y = Activation(activations.relu)(y) y = Activation(activations.relu)(y)

y = Dropout(e.3)(y) y = Dropout(8.3)(y)

y = hypMenseb(n_classes)(y) y = Denseb(num_classes)(y)

outputs = layers.Softmax()(y) outputs = layers.Softmax()(y)

model = hypModel(inputs=inputs, outputs=outputs) model = EuclidModel(inputs=inputs, outputs=outputs)

model.compile(optimizer="adan", loss="categorical_crossentropy", metrics=["accuracy"]) model. conpile(optimizer="adan", loss="categorical_crossentropy”, metrics=["accuracy"])

history = model.fit(x_train, y_train, batch_size=128, epochs=50, validation_split=6.1) history = model.fit(x_train, y_train, batch_size=128, epochs=50, validation_split=@.1)
~—~—x\ —1
WI. Wl

def call(self, x): $y—1
Hinv = 1 - tf.math.reduce_sum(tf.math.square(self.kernel),[0,1,2]) / self.M Hi = (PJP;) = Idi -

M

y = K.conv2d(x, self.kernel,padding=self.padding)
return keras.activations.relu(y/Hinv) W-;IZ -1
i .
#hyperbolic gradient for 1st conv2d Layer - 1 M lf di - 1

#g_ 1 = H i1 (Id - H_1 wtilde_1i wtilde_i"*)

#g_17(-1) wtilde_i = partial_i /H_1 - (partial_i dot wtilde_i) wtilde_i/(M+|wtilde i/

Hlinv = 1 - tf.math.reduce_sum(tf.math.square(trainable_vars[0]),[0,1,2]) / M1

grads[@] = grads[0] * Hlinv \ N1 N N1 N

 tf.multiply(tf.reduce sum(tf.multiply(trainable vars[e],grads[e]),[e,1,2]),\ hyr = —M - Z t(bijpi) (0p)T(3p;) } Z t(bi{]pl.) p:7(0p)* (g
L

trainable_vars[@]) \ -
L

V (M1+tf.divide(tf.reduce_sum(tf.square(trainable_vars[@]),[0,1,2]),Hlinv))
woo M) Lo O
=01-10 = @Hl{] 6jp +M Wp H W]
i

After Abelianize:
1 NI/ TEmA
hﬂ=m1+ﬁmmwl.'ﬁ“

ax = CNNflow.iloc[8:,:].plot() ax = CNNValAcc.plot.box() ax = CNNtestAcc.plot.box() 1 a(v f W*l?
oo — e — (grad f)l = _anf — l—~lzl
. I - H, M + W, [2H,
1 o810
|
osas{ [ _ [ = -
o] |
] =
os150 .
ares T

08125 - -

0 20 30 £ 50 h-220NN ECNN h100CNN h220NN ECNN 'h100CNN

Another test:
Use only dense layers for the same dataset.
Compare trivial and non-trivial metrics.

initM = float(-36)

inputs = keras.Input(shape=input_shape)

y = layers.Flatten()(inputs)

y = hypMDenseb(500) (y)

y = Activation(activations.relu)(y)

y = hypMDenseb(258) (y)

y = Activation(activations.relu)(y)

y = hypMDenseb(n_classes) (y)|

outputs = layers.Softmax()(y)

model = hypModel (inputs=inputs, outputs=outputs)

model. compile(optimizer="adan", loss="categorical_crossentropy", metrics=["accuracy"]
history = model.fit(x_train, y_train, batch_size=128, epochs=50, validation_split=e.l

ax = Denseflow.iloc[10:,:].plot() ax = DenseValAcc.plot.box()

EDense asss °
053 0550 T
N
051 T
N A R ] — —
Conclusion:

in this case, M < 0 (curvature = 0) behaves around 1%
betterthan M = 0 and M > 0.

¢ The method of moduli spaces and their non-compact
duals is UNIVERSAL and works in practice



« Geometric structures on near-ring 4 is a new subject
and govern machine learning over the moduli

¢ To lay the algebraic foundation of computing machine,
and find new applications of geometry.

c:\>Thank you for listening,






