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Elliptic curves

This story, like every good story in algebraic geometry, begins with
elliptic curves.
In fact, I’ll do you one better. Let’s start with a specific complex
elliptic curve, namely

E/C : y2 = x3 + π.

Question: What is the field of definition of E?
Precisely - what fields K ⊆ C can we find with an elliptic curve
E0/K such that E0 ⊗ C ∼−→ E?
Well clearly we can descend E from C to R. We can do better
than that and further descend from R to the field Q(π). Hrm, is
that the best we can do?
To address this, let’s jump into a different context.
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Some funny fields

We begin by recalling the finite fields Fp: {0, 1, 2, . . . , p − 1} and
their extensions Fq, where q = pn.
From these we construct the global function fields Fq(T ) and their
extensions Fq(C ), where C → P1

Fq
is a finite cover.

What do we know about these fields?

Theorem

The Galois group Gal(Fq/Fp) is generated by the Frobenius map
Fr : x 7→ xp.

Given an irreducible polynomial p in Fp[T ] we get a map of rings

Fp[T ] −→ Fp[T ]/p
∼−−→ Fq.
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Counting points

Over a finite field Fq a variety will have a finite number of points,
e.g. if we have E the elliptic curve y2 = x3 + 1 over F5 we have

E (F5) = {(0, 1), (0, 4), (2, 2), (2, 3), (4, 0),∞}, so #E (F5) = 6.

Now let’s consider some elliptic curves over Fq(T ). For each of
these we can evaluate at particular values of T and count points
over the resulting finite field.

E1 : y2 = x3 + x + T (18)
E2 : y2 = x3 + T 6 (19)
E3 : y2 = x3 + T 3 (20)

Here E2 is constant, and E3 is isotrivial, via

(x , y) 7→
(
Tx , (

√
T )3y

)
.
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A Galois descent for elliptic curves

In fact these point counts are closely related to Galois groups!
Each irreducible p gives a Frobenius element Frp in
Gal(Fq(T )sep/Fq(T )).

Theorem

The quantity ap = Nm(p) + 1−#Ep(Fp) is the trace of Frp on the
Tate module T`E .

Now we can say something about Galois theory and descent here.

Theorem (`-Galois descent for elliptic curves)

If the Galois action on the Tate module of E factors through a
finite group, then E is isotrivial (i.e. constant after a finite
extension).
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Abelian varieties

There are many ways to generalise elliptic curves. One way is to
study higher dimensional projective varieties with a group structure,
i.e. abelian varieties. To these we can also associate a Tate
module A and we have a descent theorem due to Grothendieck.

Theorem (`-Galois descent for abelian varieties)

Let K/k be a regular extension. Let A/K be an abelian variety
and ρ : Gal(K sep/K )→ Aut(T`A) be the Galois representation on
the Tate module. Assume ρ(Gal(K sep/ksepK )) = 1. Then there
exists A0/k and an isogeny A0 ⊗ K → A.

This isogeny can be taken to be an isomorphism in the following
cases: (1) A is an elliptic curve, (2) K is characteristic 0, (3) A/K
is ordinary.
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What’s in a name Tate module?

This is a complete and satisfying story for abelian varieties. Can
we say anything for varieties in general?
The Tate module is a very useful vector space for abelian varieties.
In fact we have an isomorphism T`A ∼= H1

ét(A,Z`)∨ with the `-adic
étale cohomology. Cohomology is defined for any variety.

Example

Consider the surface over Fq(T ) given by

E : y2 = x3 − 27ux − 54v over C : v2 = u3 + T .

Then H1(E ,Z`) ∼= H1(C ,Z`) ∼= T`C
∨.

In this case H2(E ,Z`) ∼= Z` cl(NS E)⊕W .

Again on E we can count points. (21)
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Studying the surface E

For E the cohomology is more complicated than the case of elliptic
curves. We still have the trace ap of Frp on H1, but this isn’t so
directly related to the point counts. To relate the point counts to
the Galois action we’ll use the following.

Proposition

The trace of Frp on the transcendental lattice W is given by

bp = #Ep(Fp)− 1 + ap − 12 Nm(p) + Nm(p)ap − Nm(p)2

Let’s now take a look at these bp values. (22)
This pattern is again explained by E being isotrivial over Fq(T ).
However, Grothendieck’s theorem is very special, and I was
convinced that I should be able to find examples of non-isotrivial
surfaces E where you still had this finite Galois action.
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The conjecture

Theorem (M.)

I was wrong.

In fact it is a “folklore” conjecture that this Galois property always
implies descent. We in fact extend this to any motive.

Conjecture

Let K/k be a regular extension and H/K be a motive. Let
ρ : Gal(K sep/K )→ Aut(H`) be the Galois representation on the
`-adic realisation. Assume ρ(Gal(K sep/ksepK )) = 1. Then there
exists a motive H0/k

sep and an isomorphism
H0 ⊗ K sep ∼−→ H ⊗ K sep.

Grothendieck’s theorem gives a proof of this conjecture for abelian
varieties. Can we prove any other cases?
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K3 surfaces

We began by studying elliptic curves, and generalised by looking at
abelian varieties. Elliptic curves are the only curves with trivial
canonical bundle. Among surfaces there are two classes with trivial
canonical bundle, one is abelian surfaces.
The other is given by K3 surfaces.

Definition

A K3 surface over K is a smooth projective surface X/K with
trivial canonical bundle (ωX

∼= OX ) and which is simply connected
(H1(X ,OX ) = 0).

Example

The Fermat quartic x4 + y4 + z4 + w4 = 0.
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Some data on K3s

The most striking feature of a K3 surface X is its Hodge diamond

1
0 0

1 20 1
0 0

1

In particular, H2
ét(X ,Q`) is 22 dimensional. It comes equipped with

a cup product pairing Q.
If X/C is a complex K3 surface, then H2(X ,Z) is a weight 2
Hodge structure.
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Main theorem

Theorem (M.)

Let K/k be a regular extension. Let X/K be a K3 surface and let
ρ : Gal(K sep/K )→ Aut(H2

ét(XK sep ,Q`)) be the Galois
representation on the second étale cohomology. Assume
ρ(Gal(K sep/ksepK ) = 1 and either K is characteristic 0, or X/K is
ordinary. Then there exists a K3 surface X0/k

sep and an
isomorphism X0 ⊗ K sep ∼−→ X ⊗ K sep.

The strategy is to recognise that K3 surfaces are very closely
related to abelian varieties.
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Kuga-Satake abelian variety

There is a method by which we can associate an abelian variety to
our K3 surface. This is the Kuga-Satake construction.
In the complex case X/C we take the lattice L = H2(X ,Z) with its
cup product pairing and form the Clifford algebra

Cl(L) =
⊕
n

L⊗n/〈v ⊗ v − Q(v , v)〉

Using the weight 2 Hodge structure on L, one may construct a
weight 1 Hodge structure on Cl(L).

Theorem (Riemann)

There is an equivalence of categories between polarisable weight 1
Hodge structures and complex abelian varieties.
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The main diagram

The above result gives a complex abelian variety, but we would like
a construction that (a) works over arbitrary fields, and (b) can
track information about Galois actions.
The key idea of extending and refining the Kuga-Satake
construction above is the following diagram, due to Madapusi-Pera.

S(GSpin(Ld)) //

��

S(GSp(Cl+(Ld), ψδ))

M̃2d ,γ
// S(SO(Ld))

Here M̃2d ,γ is a moduli space of γ-oriented K3 surfaces, and S(·) is
an integral model for a Shimura variety.
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The proof idea

Beginning with a K3 surface X ∈ M̃2d ,γ we can find an abelian
variety KS(X ) above a point in S(GSpin(Ld)). We show the
Galois representations are related by the following diagram:

Gal(K sep/ksepK )

xx

ρ̃

��

ρ

''

Gm
� � // GSpin(Ld)

ad // // SO(Ld)

In the theorem we assume the image under ρ is trivial, thus the
image under ρ̃ is contained in Gm. Then one can show that this is
a root of the cyclotomic character, which is trivial since we are
fixing ksep. Thus ρ̃ is trivial and we can apply Grothendieck’s
theorem to KS(X ). Finally, we use our hypotheses on X to
conclude that X itself descends.
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Strangely, the proof was inspired by having first worked in the case
of a Kummer surface. However, it transpired that the proof in that
case was actually missing a representation-theoretic input. Here
would be the key ingredient needed.

Conjecture

Let A/K be an abelian variety. Assume the Gal(K sep/K )-action on
H2(AK sep ,Q`) is trivial. Then the action on H1(AK sep ,Q`) is
trivial.

Another step for the future would be to remove the hypotheses on
K and X . This would mean that the Kuga-Satake variety would
only descend up to isogeny. The question then is whether this
isogeny is induced by an appropriate correspondence of K3
surfaces. In a different setting, this is known due to work of Yang.
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E1 : y 2 = x3 + x + T

Degree 2 irreducibles in F7[T ]

Irreducible p #E1,p(Fp) Irreducible p #E1,p(Fp) Irreducible p #E1,p(Fp)
T 2 + 1 48 T 2 + 2T + 3 44 T 2 + 4T + 6 45
T 2 + 2 60 T 2 + 2T + 5 47 T 2 + 5T + 2 46
T 2 + 4 63 T 2 + 3T + 1 48 T 2 + 5T + 3 44

T 2 + T + 3 58 T 2 + 3T + 5 54 T 2 + 5T + 5 47
T 2 + T + 4 49 T 2 + 3T + 6 45 T 2 + 6T + 3 58
T 2 + T + 6 38 T 2 + 4T + 1 48 T 2 + 6T + 4 49

T 2 + 2T + 2 46 T 2 + 4T + 5 54 T 2 + 6T + 6 38

(Back to 4)
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E2 : y 2 = x3 + T 6

Degree 2 irreducibles in F7[T ]

Irreducible p #E2,p(Fp) Irreducible p #E2,p(Fp) Irreducible p #E2,p(Fp)
T 2 + 1 48 T 2 + 2T + 3 48 T 2 + 4T + 6 48
T 2 + 2 48 T 2 + 2T + 5 48 T 2 + 5T + 2 48
T 2 + 4 48 T 2 + 3T + 1 48 T 2 + 5T + 3 48

T 2 + T + 3 48 T 2 + 3T + 5 48 T 2 + 5T + 5 48
T 2 + T + 4 48 T 2 + 3T + 6 48 T 2 + 6T + 3 48
T 2 + T + 6 48 T 2 + 4T + 1 48 T 2 + 6T + 4 48

T 2 + 2T + 2 48 T 2 + 4T + 5 48 T 2 + 6T + 6 48

(Back to 4)

Angus McAndrew Effective Galois descent for motives: the K3 case



Elliptic Curves and Abelian varieties
K3 surfaces

E3 : y 2 = x3 + T 3

Degree 2 irreducibles in F7[T ]

Irreducible p #E3,p(Fp) Irreducible p #E3,p(Fp) Irreducible p #E3,p(Fp)
T 2 + 1 48 T 2 + 2T + 3 52 T 2 + 4T + 6 52
T 2 + 2 48 T 2 + 2T + 5 52 T 2 + 5T + 2 48
T 2 + 4 48 T 2 + 3T + 1 48 T 2 + 5T + 3 52

T 2 + T + 3 52 T 2 + 3T + 5 52 T 2 + 5T + 5 52
T 2 + T + 4 48 T 2 + 3T + 6 52 T 2 + 6T + 3 52
T 2 + T + 6 52 T 2 + 4T + 1 48 T 2 + 6T + 4 48

T 2 + 2T + 2 48 T 2 + 4T + 5 52 T 2 + 6T + 6 52

(Back to 4)
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E : y 2 = x3 − 27ux − 54v over C : v 2 = u3 + T .

Degree 2 irreducibles in F7[T ]

Irreducible p #Ep(Fp) Irreducible p #Ep(Fp) Irreducible p #Ep(Fp)
T 2 + 1 2988 T 2 + 2T + 3 2340 T 2 + 4T + 6 3090
T 2 + 2 2538 T 2 + 2T + 5 3540 T 2 + 5T + 2 2342
T 2 + 4 3738 T 2 + 3T + 1 2792 T 2 + 5T + 3 2340

T 2 + T + 3 2340 T 2 + 3T + 5 3540 T 2 + 5T + 5 3540
T 2 + T + 4 3542 T 2 + 3T + 6 3090 T 2 + 6T + 3 2340
T 2 + T + 6 3090 T 2 + 4T + 1 2792 T 2 + 6T + 4 3542

T 2 + 2T + 2 2342 T 2 + 4T + 5 3540 T 2 + 6T + 6 3090

(Back to 7)
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E : y 2 = x3 − 27ux − 54v over C : v 2 = u3 + T .

Degree 2 irreducibles in F7[T ]

Irreducible p bp Irreducible p bp Irreducible p bp
T 2 + 1 98 T 2 + 2T + 3 0 T 2 + 4T + 6 0
T 2 + 2 98 T 2 + 2T + 5 0 T 2 + 5T + 2 −98
T 2 + 4 98 T 2 + 3T + 1 −98 T 2 + 5T + 3 0

T 2 + T + 3 0 T 2 + 3T + 5 0 T 2 + 5T + 5 0
T 2 + T + 4 −98 T 2 + 3T + 6 0 T 2 + 6T + 3 0
T 2 + T + 6 0 T 2 + 4T + 1 −98 T 2 + 6T + 4 −98

T 2 + 2T + 2 −98 T 2 + 4T + 5 0 T 2 + 6T + 6 0

(Back to 8)

Angus McAndrew Effective Galois descent for motives: the K3 case


	Elliptic Curves and Abelian varieties
	Elliptic curves
	Some data
	Grothendieck's theorem and motives

	K3 surfaces
	Definitions and basic properties
	Main theorem
	Shimura varieties

	

