Defects, branes and 3D lattice model

Junya Yagi
Yau Mathematical Sciences Center, Tsinghua University

June 30, 2022
at Boston University/Keio University/Tsinghua University Workshop 2022

Lattice spin model in classical statistical mechanics:

Spin variables \bigcirc on edges interact at vertices ("vertex model").
A fundamental quantity is the partition function

$$
\mathrm{Z}=\sum_{\text {configs } s} e^{-E(s) / k_{B} T}
$$

The Boltzmann weight is the product of local weights:

Rational 6-vertex model

- $O \in\{+,-\}$ and only 6 configs allowed around each vertex
- Each line \mathcal{L}_{α} has a spectral parameter $z_{\alpha} \in \mathbb{C}$
- Local Boltzmann weights depend on the differences of z_{α} :

- The R-matrix $R(z)=\left(R(z)_{i j}^{k l}\right) \in \operatorname{End}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right)$ is given by

$$
R(z)=\frac{z I+\hbar P}{z+\hbar}, \quad P(v \otimes w)=w \otimes v
$$

The 6-vertex R-matrix satisfies the Yang-Baxter equation

$$
R_{\alpha \beta}\left(z_{\alpha}-z_{\beta}\right) R_{\alpha \gamma}\left(z_{\beta}-z_{\gamma}\right) R_{\beta \gamma}\left(z_{\beta}-z_{\gamma}\right)
$$

YBE with spectral parameters implies integrability:

- 6-vertex model \leftrightarrow Heisenberg XXX quantum spin chain
- Commuting conserved charges act on the Hilbert space

6-vertex model appears in many supersymmetric QFTs:

- $2 \mathrm{D} \mathcal{N}=(2,2)$ gauge theories [Nekrasov-Shatashvili]
- $4 \mathrm{D} \mathcal{N}=2$ gauge theories [Nekrasov-Shatashvili, Chen-Dorey-Hollowood-Lee]
- 3D $\mathcal{N}=4$ gauge theories
[Bullimore-Dimofte-Gaiotto, Braverman-Finkelberg-Nakajima, Dedushenko-Gaiotto]
- $4 \mathrm{D} \mathcal{N}=1$ gauge theories (with surface defects)
[Gaiotto-Rastelli-Razamat, Gadde-Gukov, Gaiotto-Razamat, Maruyoshi-Y, Y]
- $4 \mathrm{D} \mathcal{N}=1$ gauge theories from brane tilings
[Spiridonov, Bazhanov-Sergeev, Yamazaki, Y, ...]
- 4D Chern-Simons theory ($=\Omega$-deformed 6D MSYM)
[Costello, Costello-Witten-Yamazaki]
All of these have brane construction in string theory.
They are related by string dualities. [Costello-Y]

Today: Lift this story to one dimension higher

- Brane setups in string theory \rightarrow brane setup in M-theory
- 6-vertex model \rightarrow integrable 3D lattice model

The two sides are related by dualities
The 3D model reduces to the 6-vertex model via circle reduction
Underlying principle:
topological quantum field theory
> $+$
> defects

Place a 2D TQFT with line defects on \mathbb{T}^{2}.
Wind line defects $\mathcal{L}_{\alpha}, \alpha=1, \ldots, M+N$, around 1-cycles of \mathbb{T}^{2} :

Task: calculate the correlator of the $M \times N$ lattice of line defects

$$
\left\langle\prod_{\alpha} \mathcal{L}_{\alpha}\right\rangle=Z\left(\begin{array}{l|l|l}
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{array}\right)
$$

Strategy: chop up the torus into squares.

We use the formalism of open-closed TQFT.
Open string stretched between branes a and b :

Scattering of two open strings defines a map

Open string with particle α attached, between branes a and b :

Scattering

defines the R-matrix

$$
\check{R}_{\alpha \beta}\left(\begin{array}{ll}
a & d \\
b & c
\end{array}\right): V_{a b, \alpha} \otimes V_{b c, \beta} \rightarrow V_{a d, \beta} \otimes V_{d c, \alpha}
$$

Gluing pieces $=$ composition of R-matrices:

$$
\text { coccc}=\check{R}_{\alpha \gamma}\left(\begin{array}{ll}
d & e \\
c & f
\end{array}\right) \circ_{V_{d c, \alpha}} \check{R}_{\alpha \beta}\left(\begin{array}{ll}
a & d \\
b & c
\end{array}\right)
$$

Try to reconstruct the torus:

$=$| | Tr | Tr | \cdots | Tr |
| :---: | :---: | :---: | :---: | :---: |
| Tr | \check{R} | \check{R} | \cdots | \check{R} |
| \vdots | \vdots | \vdots | \ddots | \vdots |
| Tr | \check{R} | \check{R} | \cdots | \check{R} |
| Tr | \check{R} | \check{R} | \cdots | \check{R} |

We got a slice of Swiss cheese!

Assume: we have enough kinds of branes.
Then, summation over branes fill the holes:

Represent matrix elements of \check{R} by

$$
\check{R}_{\alpha \beta}\left(\begin{array}{ll}
a & d \\
b & c
\end{array}\right)_{i j}^{l k}=\alpha
$$

We have found

RHS is the partition function of a 2D lattice model!

$$
\left\langle\prod \mathcal{L}_{i}\right\rangle=Z_{2 \mathrm{D} \text { lattice model }}
$$

Spins \bigcirc and \bigcirc interact at vertices with Boltzmann weights \check{R}.
We can always absorb © into \bigcirc; hereafter forget about © .

Now suppose there are hidden extra dimensions \mathbb{M} :

- Spacetime is really $\mathbb{T}^{2} \times \mathbb{M}$
- The theory is topological on \mathbb{T}^{2} but not on \mathbb{M}
- Line defects \mathcal{L}_{α} are located at points $u_{\alpha} \in \mathbb{M}$

Implications:

- $\mathcal{L}_{\alpha}=\mathcal{L}_{\alpha}\left(u_{\alpha}\right), \check{R}_{\alpha \beta}=\check{R}_{\alpha \beta}\left(u_{\alpha}, u_{\beta}\right)$
- No singularities when lines are moved: YBE holds

Conclusion: TQFT + defects + extra dimensions imply the integrability of the lattice model

Example: 4D Chern-Simons theory

- Action:

$$
S=\int_{\mathbb{T}^{2} \times C} \mathrm{~d} z \wedge \mathrm{CS}(A), \quad A=A_{x} \mathrm{~d} x+A_{y} \mathrm{~d} y+A_{\bar{z}} \mathrm{~d} \bar{z}
$$

where $C=\mathbb{C}$, cylinder or torus

- Topological on \mathbb{T}^{2}, holomorphic on C
- Wilson lines \mathcal{L}_{α} wrapping 1-cycles $\times\left\{z_{\alpha}\right\} \subset \mathbb{T}^{2} \times C$
$\check{R}_{\alpha \beta}\left(z_{\alpha}, z_{\beta}\right)=\check{R}_{\alpha \beta}\left(z_{\alpha}-z_{\beta}\right)$ is a rational/trigonometric/elliptic solution of YBE.

For $G=\mathrm{SU}(2), \mathrm{C}=\mathbb{C}^{\times}$and \mathcal{L}_{α} Wilson lines in the fundamental rep, we get the 6 -vertex model.

The same argument holds in higher dimensions.
Setup:

- $(m+n)$-dim QFT on $\mathbb{T}^{m} \times \mathbb{M}_{n}$
- Topological on \mathbb{T}^{m} but not on \mathbb{M}_{n}
- Defects \mathcal{D}_{α} making a lattice in \mathbb{T}^{m}, separated in \mathbb{M}_{n}

This structure implies

- Correlator is the partition function of a lattice model:

$$
\left\langle\prod_{\alpha} \mathcal{D}_{\alpha}\right\rangle=Z_{\text {lattice model }}
$$

- Integrability: m-dim analog of Yang-Baxter equation

We will construct an integrable 3D lattice model using branes.

M5-brane system in M-theory:

	\mathbb{R}_{0}	\mathbb{S}_{1}	\mathbb{S}_{2}	\mathbb{S}_{3}	\mathbb{R}_{4}	\mathbb{R}_{5}	\mathbb{R}_{6}	\mathbb{R}_{7}	\mathbb{R}_{8}	\mathbb{R}_{9}	$\mathbb{R}_{\mathfrak{h}}$
L M5 $_{1}$	-	\cdot	-	-	-	\circ	\circ	-	-	\circ	\circ
M M5 $_{2}$	-	-	\cdot	-	\circ	-	\circ	-	-	\circ	\circ
N M5 $_{3}$	-	-	-	\cdot	\circ	\circ	-	-	-	\circ	\circ

- - : M5 extends in that direction
- . M5 is located at any point
- \circ : M5 is located at the origin

M5s make an $L \times M \times N$ cubic lattice in \mathbb{T}_{123}^{3}

	\mathbb{R}_{0}	\mathbb{S}_{1}	\mathbb{S}_{2}	\mathbb{S}_{3}	\mathbb{R}_{4}	\mathbb{R}_{5}	\mathbb{R}_{6}	\mathbb{R}_{7}	\mathbb{R}_{8}	\mathbb{R}_{9}	\mathbb{R}_{\natural}
$\mathrm{L} \mathrm{M}_{1}$	-	\cdot	-	-	-	\circ	\circ	-	-	\circ	\circ
$\mathrm{M} \mathrm{M5}_{2}$	-	-	\cdot	-	\circ	-	\circ	-	-	\circ	\circ
$\mathrm{N} \mathrm{M}_{3}$	-	-	-	\cdot	\circ	\circ	-	-	-	\circ	\circ

The supersymmetric index of the Hilbert space \mathcal{H} :

$$
\mathrm{Z}_{\mathrm{M} 5}:=\operatorname{Tr}_{\mathcal{H}}\left((-1)^{F} e^{\mathrm{i} \theta\left(J_{78}-J_{94}\right)} e^{-\beta H}\right)
$$

- $(-1)^{F}$: fermion parity
- H: Hamiltonian
- $J_{78} \& J_{94}$: rotation generators on $\mathbb{R}_{78}^{2} \& \mathbb{R}_{9 \natural}^{2}$

By supersymmetry, only BPS states $(H=0)$ contribute:

$$
\mathrm{Z}_{\mathrm{M} 5}=\sum_{j=-\infty}^{\infty} q^{j} \operatorname{Tr}_{\mathcal{H}_{\mathrm{BPS}}^{j}}(-1)^{F}=: \dot{Z}_{\mathrm{M} 5}, \quad q=e^{\mathrm{i} \theta}
$$

$\operatorname{Tr}_{\mathcal{H}_{\mathrm{BPS}}^{j}}(-1)^{F}$ is the Witten index of $\mathcal{H}^{j} \subset \mathcal{H}$ in which $J_{78}-J_{9 \text { 曰 }}=j$.

	\mathbb{R}_{0}	\mathbb{S}_{1}	\mathbb{S}_{2}	\mathbb{S}_{3}	\mathbb{R}_{4}	\mathbb{R}_{5}	\mathbb{R}_{6}	\mathbb{R}_{7}	\mathbb{R}_{8}	\mathbb{R}_{9}	\mathbb{R}_{\natural}
LM_{1}	-	\cdot	-	-	-	\circ	\circ	-	-	\circ	\circ
$\mathrm{M} \mathrm{M}_{2}$	-	-	\cdot	-	\circ	-	\circ	-	-	\circ	\circ
NM_{3}	-	-	-	\cdot	\circ	\circ	-	-	-	\circ	\circ

Generalization:

- Replace $\mathbb{T}_{123}^{3} \rightarrow M_{3}$ and $\mathbb{T}_{123}^{3} \times \mathbb{R}_{456}^{3} \rightarrow T^{*} M_{3}$
- Wrap M5s on conormals $N^{*} \Sigma_{2} \subset T^{*} M_{3}$
$Z_{\mathrm{M} 5}$ is still a q-series with the coefficients being Witten indices.
Witten indices are invariant under deformations of M_{3} and M5s.
We get a structure of a TQFT on $M_{3}+$ surface defects.

For $M_{3}=\mathbb{T}^{3}$ and surface defects making a cubic lattice,

$$
\stackrel{\circ}{\mathrm{Z}}_{\mathrm{M} 5}=\mathrm{Z}_{3 \mathrm{D}} \text { lattice model }
$$

Spin variables: \#M2-branes stretched between M5s
Local Boltzmann weights: 3D R-matrix \mathcal{R}

Supersymmetric index:

$$
\dot{Z}_{\mathrm{M} 5}=\sum_{\text {configs } s} \prod_{\text {vertices } v} \mathcal{R}(v, s)
$$

	\mathbb{R}_{0}	\mathbb{S}_{1}	\mathbb{S}_{2}	\mathbb{S}_{3}	\mathbb{R}_{4}	\mathbb{R}_{5}	\mathbb{R}_{6}	\mathbb{R}_{7}	\mathbb{R}_{8}	\mathbb{R}_{9}	\mathbb{R}_{\natural}
LM_{1}	-	\cdot	-	-	-	\cdot	\cdot	-	-	\circ	\circ
$\mathrm{M} \mathrm{M}_{2}$	-	-	\cdot	-	\cdot	-	\cdot	-	-	\circ	\circ
NM_{3}	-	-	-	\cdot	\cdot	\cdot	-	-	-	\circ	\circ

M5s can be shifted in \mathbb{R}_{456}^{3} and $\dot{Z}_{M 5}$ still makes sense. Witten indices are invariant, hence so is $\check{Z}_{\text {M5 }}$.
\mathbb{R}_{456}^{3} are extra dimensions!
3D analog of YBE is Zamolodchikov's tetrahedron equation:

Difference with 2D case: 3D R-matrix has no spectral parameter
This is because $Z_{\mathrm{M} 5}$ is independent of the M5 positions in \mathbb{R}_{456}^{3}.
But the supersymmetric index gets deformed:

$$
\mathrm{Z}_{\mathrm{M} 5}=\sum_{j} q^{j} \operatorname{Tr}_{\mathcal{H}_{\mathrm{BPS}}^{j}}\left((-1)^{F} e^{-\beta\left(Z_{14}^{(2)}+Z_{25}^{(2)}+Z_{36}^{(2)}\right)}\right),
$$

where $Z^{(2)}$ is a 2-form charge.
It turns out

$$
\mathrm{Z}_{\mathrm{M} 5}=\mathrm{Z}_{3 \mathrm{D} \text { lattice model with twisted B.C. }}
$$

M5 positions in \mathbb{R}_{456}^{3} determine twist of boundary conditions.

The brane construction implies a few key properties:

- Normalization: $R_{000}^{000}=1$
- Parity reversal symmetry: $R_{l m n}^{l^{\prime} m^{\prime} n^{\prime}}=R_{n m l}^{n^{\prime} m^{\prime} l^{\prime}}$
- Involutivity: $R=R^{-1}$
- Charge conservation: $R_{l m n}^{l^{\prime} m^{\prime} n^{\prime}}=0$ unless $l+m=l^{\prime}+m^{\prime}$ and $m+n=m^{\prime}+n^{\prime}$

The most remarkable is the behavior under reduction to 2 D :

$$
\mathcal{S}(z)_{\left\{1_{1}, \ldots l_{N}\right\}\left\{m_{1}, \ldots m_{N}\right\}}^{\left\{l_{1}^{\prime}, \ldots l_{N}^{\prime}\right\}\left\{m_{1}^{\prime}, \ldots m_{N}^{\prime}\right\}}=\sum_{n_{1}, \ldots, n_{N}} z^{n_{1}} \mathcal{R}_{l_{N} m_{N} n_{N}}^{l_{N}^{\prime} m_{N}^{\prime} n_{1}} \cdots \mathcal{R}_{l_{2} m_{2} n_{2}}^{l_{3}^{\prime} m_{3}^{\prime} n_{3}} \mathcal{R}_{l_{1} m_{1} n_{1}^{\prime} m_{2}^{\prime} n_{2}}
$$

is the (trigonometric) 6-vertex R-matrix in the representation
Fock space ${ }^{\otimes N}=\bigoplus$ symmetric tensor reps of GL(N)
This is deduced by relating the M5-brane system to a brane system for 4D CS by dualities.

A solution of TE that has all of these properties is known!
It was found by Kapranov-Voevodsky and Bazhanov-Sergeev:

$$
\begin{aligned}
& \mathcal{R}_{l m n}^{l^{\prime} m^{\prime} n^{\prime}}=\delta_{l+m}^{l^{\prime}+m^{\prime}} \delta_{m+n}^{m^{\prime}+n^{\prime}} \\
& \quad \times \sum_{\substack{\lambda, \mu \in \mathbb{Z}_{\geq 0} \\
\lambda+\mu=m^{\prime}}}(-1)^{\lambda} q^{l\left(n^{\prime}-m\right)+(n+1) \lambda+\mu(\mu-n)} \frac{\left(q^{2}\right)_{n^{\prime}+\mu}}{\left(q^{2}\right)_{n^{\prime}}}\binom{l}{\mu}_{q^{2}}\binom{m}{\lambda}_{q^{2}}
\end{aligned}
$$

where

$$
(q)_{n}=\prod_{k=1}^{n}\left(1-q^{k}\right), \quad\binom{m}{n}_{q}=\frac{(q)_{m}}{(q)_{m-n}(q)_{n}}
$$

There is a GL $(M \mid N)$ version of the story, which I conjecture to give R-matrices obtained by Sergeev and Yoneyama.

Summary

- TQFT + codim-1 defects produce lattice models.
- The existence of extra dimensions implies integrability.
- Integrable 3D lattice model can be constructed from branes.
- Related by dualities to 6-vertex models appearing in QFTs

Open problems:

- Quantitative determination of the 3D R-matrix?
- Other duality frames in which 3D lattice model appear?
- Beyond partition functions?

