Torus knots, open Gromov-Witten invariants, and topological recursion

Zhengyu Zong

Department of Mathematical Sciences, Tsinghua University

Based on joint work with Bohan Fang
Table of contents

1 Introduction

2 Torus knots and conifold transition

3 Open Gromov-Witten theory and topological recursion
Introduction of Gromov-Witten theory

GW theory: curve counting theory.

- Given $p_1 \neq p_2 \in \mathbb{R}^2$, there is a unique line $\ell \subset \mathbb{R}^2$ passing through p_1, p_2.
- Given $p_1 \neq p_2 \in \mathbb{P}^2$, there is a unique (complex projective) line $\ell \subset \mathbb{P}^2$ passing through p_1, p_2.
- Given 5 points in general position (any 3 points are not collinear) in \mathbb{P}^2, how many smooth conics pass through these 5 points?
GW theory: curve counting theory.

- Given \(p_1 \neq p_2 \in \mathbb{R}^2 \), there is a unique line \(\ell \subset \mathbb{R}^2 \) passing through \(p_1, p_2 \).
- Given \(p_1 \neq p_2 \in \mathbb{P}^2 \), there is a unique (complex projective) line \(\ell \subset \mathbb{P}^2 \) passing through \(p_1, p_2 \).
- Given 5 points in general position (any 3 points are not collinear) in \(\mathbb{P}^2 \), how many smooth conics pass through these 5 points?
Introduction of Gromov-Witten theory

GW theory: curve counting theory.

- Given $p_1 \neq p_2 \in \mathbb{R}^2$, there is a unique line $\ell \subset \mathbb{R}^2$ passing through p_1, p_2.
- Given $p_1 \neq p_2 \in \mathbb{P}^2$, there is a unique (complex projective) line $\ell \subset \mathbb{P}^2$ passing through p_1, p_2.
- Given 5 points in general position (any 3 points are not collinear) in \mathbb{P}^2, how many smooth conics pass through these 5 points?
GW theory: curve counting theory.

- Given $p_1 \neq p_2 \in \mathbb{R}^2$, there is a unique line $\ell \subset \mathbb{R}^2$ passing through p_1, p_2.
- Given $p_1 \neq p_2 \in \mathbb{P}^2$, there is a unique (complex projective) line $\ell \subset \mathbb{P}^2$ passing through p_1, p_2.
- Given 5 points in general position (any 3 points are not collinear) in \mathbb{P}^2, how many smooth conics pass through these 5 points?
A general degree 2 homogeneous polynomials in X_0, X_1, X_2 is of the form

$$a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_1X_2 + a_5X_0X_2.$$

The space of degree 2 nonzero homogeneous polynomials (modulo a global constant) can be identified with

$$\mathbb{P}^5 = \{[a_0 : a_1 : a_2 : a_3 : a_4 : a_5]\}.$$

The space of smooth conics in \mathbb{P}^2 can be view as an open subset U in \mathbb{P}^5.

Introduction of Gromov-Witten theory
Introduction of Gromov-Witten theory

- A general degree 2 homogeneous polynomials in X_0, X_1, X_2 is of the form
 $a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_1X_2 + a_5X_0X_2$.
- The space of degree 2 nonzero homogeneous polynomials (modulo a global constant) can be identified with $\mathbb{P}^5 = \{ [a_0 : a_1 : a_2 : a_3 : a_4 : a_5] \}$.
- The space of smooth conics in \mathbb{P}^2 can be viewed as an open subset U in \mathbb{P}^5.
Introduction of Gromov-Witten theory

- A general degree 2 homogeneous polynomials in X_0, X_1, X_2 is of the form
 $$a_0X_0^2 + a_1X_1^2 + a_2X_2^2 + a_3X_0X_1 + a_4X_1X_2 + a_5X_0X_2.$$
- The space of degree 2 nonzero homogeneous polynomials (modulo a global constant) can be identified with
 $$\mathbb{P}^5 = \{ [a_0 : a_1 : a_2 : a_3 : a_4 : a_5] \}.$$
- The space of smooth conics in \mathbb{P}^2 can be viewed as an open subset U in \mathbb{P}^5.
Introduction of Gromov-Witten theory

- The condition of passing through a given point corresponds to a hyperplane in \mathbb{P}^5. Since the 5 points are assumed to be in general position, the intersection of five such hyperplanes gives us a unique point.

- The points in $\mathbb{P}^5 \setminus U$ correspond to line pairs and double lines, and no such configuration can pass through 5 points, unless three of the points are collinear. \implies There is a unique smooth conic passing these 5 points.
Introduction of Gromov-Witten theory

- The condition of passing through a given point corresponds to a hyperplane in \mathbb{P}^5. Since the 5 points are assumed to be in general position, the intersection of five such hyperplanes gives us a unique point.

- The points in $\mathbb{P}^5 \setminus U$ correspond to line pairs and double lines, and no such configuration can pass through 5 points, unless three of the points are collinear. \implies There is a unique smooth conic passing these 5 points.
Introduction of Gromov-Witten theory

Using similar method, one can count plane cubics passing through 9 points, or more generally, plane curves of degree d passing through $d(d + 3)/2$ points; in each case the answer is 1.

Another direction: Count degree d rational curves.

- Genus formula for nodal plane curves: $g = \frac{(d-1)(d-2)}{2} - \delta$, where δ is the number of nodes.
- Each node is a condition of codimension 1 and so we should consider the number of degree d rational curves passing through $d(d + 3)/2 - \delta = 3d - 1$ points.
Introduction of Gromov-Witten theory

Using similar method, one can count plane cubics passing through 9 points, or more generally, plane curves of degree d passing through $d(d + 3)/2$ points; in each case the answer is 1.

Another direction: Count degree d rational curves.

- Genus formula for nodal plane curves: $g = \frac{(d-1)(d-2)}{2} - \delta$, where δ is the number of nodes.
- Each node is a condition of codimension 1 and so we should consider the number of degree d rational curves passing through $d(d + 3)/2 - \delta = 3d - 1$ points.
Introduction of Gromov-Witten theory

Using similar method, one can count plane cubics passing through 9 points, or more generally, plane curves of degree d passing through $d(d + 3)/2$ points; in each case the answer is 1.

Another direction: Count degree d rational curves.

- Genus formula for nodal plane curves: $g = \frac{(d-1)(d-2)}{2} - \delta$, where δ is the number of nodes.
- Each node is a condition of codimension 1 and so we should consider the number of degree d rational curves passing through $d(d + 3)/2 - \delta = 3d - 1$ points.
Introduction of Gromov-Witten theory

Using similar method, one can count plane cubics passing through 9 points, or more generally, plane curves of degree d passing through $d(d + 3)/2$ points; in each case the answer is 1.

Another direction: Count degree d rational curves.

- Genus formula for nodal plane curves: $g = \frac{(d-1)(d-2)}{2} - \delta$, where δ is the number of nodes.
- Each node is a condition of codimension 1 and so we should consider the number of degree d rational curves passing through $d(d + 3)/2 - \delta = 3d - 1$ points.
Kontsevich’s formula: Let N_d be the number of rational curves of degree d passing through $3d - 1$ general points in the plane. Then the following recursive relation holds:

$$N_d + \sum_{d_1 + d_2 = d, d_1, d_2 \geq 1} \frac{(3d - 4)!}{(3d_1 - 1)!(3d - 3d_1 - 3)!} d_1^3 N_{d_1} N_{d_2} d_2 = \sum_{d_1 + d_2 = d, d_1, d_2 \geq 1} \frac{(3d - 4)!}{(3d_1 - 2)!(3d - 3d_1 - 2)!} d_1^2 N_{d_1} d_2^2 N_{d_2}$$

Initial condition: $N_1 = 1$.

Method: Use Gromov-Witten invariants: Count maps $f : C \rightarrow X$ from algebraic curve C to a certain target space X.
Introduction of Gromov-Witten theory

Kontsevich’s formula: Let N_d be the number of rational curves of degree d passing through $3d - 1$ general points in the plane. Then the following recursive relation holds:

$$N_d + \sum_{d_1+d_2=d,d_1,d_2 \geq 1} \frac{(3d-4)!}{(3d_1-1)!(3d-3d_1-3)!} d_1^3 N_{d_1} N_{d_2} d_2^2 = \sum_{d_1+d_2=d,d_1,d_2 \geq 1} \frac{(3d-4)!}{(3d_1-2)!(3d-3d_1-2)!} d_1^2 N_{d_1} d_2^2 N_{d_2}$$

Initial condition: $N_1 = 1$.

Method: Use **Gromov-Witten invariants:** Count maps $f : C \rightarrow X$ from algebraic curve C to a certain target space X.

Zhengyu Zong

Torus knots

Introduction

Torus knots and conifold transition

Open Gromov-Witten theory and topological recursion
Introduction of Gromov-Witten theory
Let \mathcal{X} be a symplectic manifold and let $\mathcal{L} \subset \mathcal{X}$ be a Lagrangian sub-manifold.

Sometimes we are also interested in **Open Gromov-Witten invariants**: Count maps $f : C \to \mathcal{X}$, where C is a genus g **bordered** Riemann surface with n boundary circles such that $f(\text{boundary circles}) \subset \mathcal{L}$.
Introduction of Gromov-Witten theory
Introduction of Gromov-Witten theory
Consider the **conifold** \mathcal{Y}_0 defined as

$$\mathcal{Y}_0 := \{(x, y, z, w) \in \mathbb{C}^4 \mid xz - yw = 0\}.$$

(1)

it has a unique singularity at the origin.

Two ways to smooth the singularity:

- To deform the singularity \rightsquigarrow **deformed conifold**
- To resolve the singularity \rightsquigarrow **resolved conifold**
Consider the **conifold** \(\mathcal{Y}_0 \) defined as

\[
\mathcal{Y}_0 := \{ (x, y, z, w) \in \mathbb{C}^4 \mid xz - yw = 0 \}.
\]

(1)

it has a unique singularity at the origin.

Two ways to smooth the singularity:

- To deform the singularity \(\rightsquigarrow \) **deformed conifold**
- To resolve the singularity \(\rightsquigarrow \) **resolved conifold**
Consider the **conifold** \mathcal{Y}_0 defined as

$$\mathcal{Y}_0 := \{(x, y, z, w) \in \mathbb{C}^4 \mid xz - yw = 0\}. \quad (1)$$

It has a unique singularity at the origin.

Two ways to smooth the singularity:
- To deform the singularity \rightsquigarrow **deformed conifold**
- To resolve the singularity \rightsquigarrow **resolved conifold**
Let δ be a small positive number. Consider the deformed conifold \mathcal{Y}_δ defined as

$$
\mathcal{Y}_\delta := \{(x, y, z, w) \in \mathbb{C}^4 \mid xz - yw = \delta\}.
$$

$\implies \mathcal{Y}_\delta$ is smooth.

Consider the standard symplectic form on \mathbb{C}^4:

$$
\omega_{\mathbb{C}^4} = \frac{\sqrt{-1}}{2}(dx \wedge d\bar{x} + dy \wedge d\bar{y} + dz \wedge d\bar{z} + dw \wedge d\bar{w}).
$$

The symplectic form on \mathcal{Y}_δ is defined as $\omega_{\mathcal{Y}_\delta} := \omega_{\mathbb{C}^4} \mid \mathcal{Y}_\delta$.

Let δ be a small positive number. Consider the deformed conifold Y_δ defined as

$$Y_\delta := \{(x, y, z, w) \in \mathbb{C}^4 \mid xz - yw = \delta\}.$$ \hspace{1cm} (2)

Y_δ is smooth.

Consider the standard symplectic form on \mathbb{C}^4:

$$\omega_{\mathbb{C}^4} = \frac{\sqrt{-1}}{2}(dx \wedge d\bar{x} + dy \wedge d\bar{y} + dz \wedge d\bar{z} + dw \wedge d\bar{w}).$$

The symplectic form on Y_δ is defined as $\omega_{Y_\delta} := \omega_{\mathbb{C}^4} \mid_{Y_\delta}$.

Conifold transition

Torus knots

Zhengyu Zong

Introduction

Torus knots and conifold transition

Open Gromov-Witten theory and topological recursion
Conifold transition

There exists a symplectomorphism

$$\phi_\delta : \mathcal{Y}_\delta \to T^*S^3,$$

where T^*S^3 is the cotangent bundle of the 3-sphere.

Consider the anti-holomorphic involution

$$I : \mathbb{C}^4 \to \mathbb{C}^4$$

$$(x, y, z, w) \mapsto (\bar{z}, -\bar{w}, \bar{x}, -\bar{y}).$$

Then \mathcal{Y}_δ is preserved by I. The fixed locus S_δ of the induced anti-holomorphic involution I_δ on \mathcal{Y}_δ is a 3-sphere of radius $\sqrt{\delta}$ and $\phi_\delta(S_\delta)$ is the zero section of T^*S^3. When $\delta \to 0$, S_δ shrinks to the unique singular point of \mathcal{Y}_0.
Conifold transition

There exists a symplectomorphism

\[\phi_\delta : \mathcal{Y}_\delta \to T^*S^3, \]

where \(T^*S^3 \) is the cotangent bundle of the 3-sphere.

Consider the anti-holomorphic involution

\[I : \mathbb{C}^4 \to \mathbb{C}^4 \]

\[(x, y, z, w) \mapsto (\bar{z}, -\bar{w}, \bar{x}, -\bar{y}). \]

Then \(\mathcal{Y}_\delta \) is preserved by \(I \). The fixed locus \(S_\delta \) of the induced anti-holomorphic involution \(I_\delta \) on \(\mathcal{Y}_\delta \) is a 3-sphere of radius \(\sqrt{\delta} \) and \(\phi_\delta(S_\delta) \) is the zero section of \(T^*S^3 \). When \(\delta \to 0 \), \(S_\delta \) shrinks to the unique singular point of \(\mathcal{Y}_0 \).
Conifold transition

The second way to smooth the singularity of \mathcal{Y}_0 is to consider the resolved conifold \mathcal{X}. We consider the blow-up of \mathbb{C}^4 along the subspace $\{(x, y, z, w) | y = z = 0\}$. Let \mathcal{X} be the resolution of \mathcal{Y}_0 under the blow-up. Then \mathcal{X} is isomorphic to the local \mathbb{P}^1:

$$\mathcal{X} \cong \text{Tot}[\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1) \to \mathbb{P}^1].$$

If we view \mathcal{X} as a subspace of $\mathbb{C}^4 \times \mathbb{P}^1$, then \mathcal{X} is defined by the following equations:

$$xs = wt, \quad ys = zt,$$

where $[s : t]$ is the homogeneous coordinate on \mathbb{P}^1. The resolution $p : \mathcal{X} \to \mathcal{Y}_0$ is given by contracting the base \mathbb{P}^1 in \mathcal{X}. We say that \mathcal{X} and \mathcal{Y}_δ are related by the conifold transition.
Conifold transition

The second way to smooth the singularity of \mathcal{Y}_0 is to consider the **resolved conifold** \mathcal{X}. We consider the blow-up of \mathbb{C}^4 along the subspace $\{(x, y, z, w) | y = z = 0\}$. Let \mathcal{X} be the resolution of \mathcal{Y}_0 under the blow-up. Then \mathcal{X} is isomorphic to the local \mathbb{P}^1:

$$\mathcal{X} \cong \text{Tot}[\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1) \to \mathbb{P}^1].$$

If we view \mathcal{X} as a subspace of $\mathbb{C}^4 \times \mathbb{P}^1$, then \mathcal{X} is defined by the following equations:

$$xs = wt, \quad ys = zt,$$

where $[s : t]$ is the homogeneous coordinate on \mathbb{P}^1. The resolution $p : \mathcal{X} \to \mathcal{Y}_0$ is given by contracting the base \mathbb{P}^1 in \mathcal{X}. We say that \mathcal{X} and \mathcal{Y}_δ are related by the **conifold transition**.
A knot \(K \subset S^3 \): an isotopy class of embeddings of \(S^1 \) in \(S^3 \).

Let \(P, Q \in \mathbb{Z}_{>0} \) with \(\gcd(P, Q) = 1 \). Let

\[
K : S^1 \rightarrow S^1 \times S^1 \subset \mathbb{R}^3 \subset S^3
\]

\[
z \mapsto (z^P, z^Q).
\]

Then \(K \) is called a \((P, Q)\)-torus knot.
Torus knots

- A knot $K \subset S^3$: an isotopy class of embeddings of S^1 in S^3.
- Let $P, Q \in \mathbb{Z}_{>0}$ with $\gcd(P, Q) = 1$. Let

$$K : S^1 \rightarrow S^1 \times S^1 \subset \mathbb{R}^3 \subset S^3$$

$$z \mapsto (z^P, z^Q).$$

Then K is called a (P, Q)-torus knot.
Torus knots

Consider the conormal bundle \(N_K^* \) of \(K \subset S^3 \) defined as

\[
N_K^* = \{(u, v) \in T^*S^3 : u = K(t), \quad \langle v, K'(t) \rangle = 0 \},
\]

where \(K'(t) \) is the derivative of \(K \) and \(\langle , \rangle \) is the natural pairing between tangent and cotangent vectors. Then \(N_K^* \) is a Lagrangian sub-manifold of \(T^*S^3 \).

We want to obtain a Lagrangian sub-manifold in the resolved conifold \(X \) from \(N_K^* \) under the conifold transition.

Difficulty: the intersection of \(N_K^* \) with the zero section is non-empty.

Solution: Diaconescu-Shende-Vafa we can fiberwisely translate \(N_K^* \) to obtain a new Lagrangian sub-manifold \(M_K \) such that \(M_K \) does not intersect with the zero section.
Consider the conormal bundle N^*_K of $K \subset S^3$ defined as

$$N^*_K = \{(u, v) \in T^*S^3 : u = K(t), \quad \langle v, K'(t) \rangle = 0\},$$

where $K'(t)$ is the derivative of K and \langle , \rangle is the natural pairing between tangent and cotangent vectors. Then N^*_K is a Lagrangian sub-manifold of T^*S^3.

We want to obtain a Lagrangian sub-manifold in the resolved conifold \mathcal{X} from N^*_K under the conifold transition.

Difficulty: the intersection of N^*_K with the zero section is non-empty.

Solution: Diaconescu-Shende-Vafa we can fiberwisely translate N^*_K to obtain a new Lagrangian sub-manifold M_K such that M_K does not intersect with the zero section.
Consider the conormal bundle N^*_K of $K \subset S^3$ defined as

$$N^*_K = \{(u, v) \in T^*S^3 : u = K(t), \langle v, K'(t) \rangle = 0\},$$

where $K'(t)$ is the derivative of K and \langle , \rangle is the natural pairing between tangent and cotangent vectors. Then N^*_K is a Lagrangian sub-manifold of T^*S^3.

We want to obtain a Lagrangian sub-manifold in the resolved conifold \mathcal{X} from N^*_K under the conifold transition.

Difficulty: the intersection of N^*_K with the zero section is non-empty.

Solution: Diaconescu-Shende-Vafa 11 we can fiberwisely translate N^*_K to obtain a new Lagrangian sub-manifold M_K such that M_K does not intersect with the zero section.
Consider the conormal bundle N_K^* of $K \subset S^3$ defined as

$$N_K^* = \{(u, v) \in T^*S^3 : u = K(t), \quad \langle v, K'(t) \rangle = 0\},$$

where $K'(t)$ is the derivative of K and \langle , \rangle is the natural pairing between tangent and cotangent vectors. Then N_K^* is a Lagrangian sub-manifold of T^*S^3.

We want to obtain a Lagrangian sub-manifold in the resolved conifold \mathcal{X} from N_K^* under the conifold transition.

Difficulty: the intersection of N_K^* with the zero section is non-empty.

Solution: Diaconescu-Shende-Vafa 11 we can fiberwisely translate N_K^* to obtain a new Lagrangian sub-manifold M_K such that M_K does not intersect with the zero section.
Consider the resolved conifold \mathcal{X}. Recall that if we view \mathcal{X} as a subspace of $\mathbb{C}^4 \times \mathbb{P}^1$, then \mathcal{X} is defined by the following equations:

$$xs = wt, \quad ys = zt.$$

For $\epsilon > 0$, we consider the symplectic form $(\omega_{\mathbb{C}^4} + \epsilon^2 \omega_{\mathbb{P}^1})$ on $\mathbb{C}^4 \times \mathbb{P}^1$. Define the symplectic form $\omega_{\mathcal{X},\epsilon}$ on \mathcal{X} by

$$\omega_{\mathcal{X},\epsilon} := (\omega_{\mathbb{C}^4} + \epsilon^2 \omega_{\mathbb{P}^1}) |_{\mathcal{X}}.$$
Let $B(\epsilon) = \{(y, z) \in \mathbb{C}^2 \mid |y|^2 + |z|^2 \leq \epsilon^2\} \subset \mathbb{C}^2$ be the ball of radius ϵ. Consider the radial map $\rho_\epsilon : \mathbb{C}^2 \setminus \{0\} \rightarrow \mathbb{C}^2 \setminus B(\epsilon)$,

$$\rho_\epsilon(y, z) = \frac{\sqrt{|y|^2 + |z|^2 + \epsilon^2}}{\sqrt{|y|^2 + |z|^2}}(y, z).$$

Let $\varrho_\epsilon = \text{id}_{\mathbb{C}^2} \times \rho_\epsilon : \mathbb{C}^2 \times (\mathbb{C}^2 \setminus \{0\}) \rightarrow \mathbb{C}^2 \times (\mathbb{C}^2 \setminus B(\epsilon))$. Then ϱ_ϵ preserves the conifold \mathcal{Y}_0 and it maps $\mathcal{Y}_0 \setminus \{0\}$ to $\mathcal{Y}_0(\epsilon) := \mathcal{Y}_0 \setminus (\mathcal{Y}_0 \cap (\mathbb{C}^2 \times B(\epsilon)))$.

McDuff-Salamon 98 \implies the map

$$\psi_\epsilon := \varrho_\epsilon \mid_{\mathcal{Y}_0 \setminus \{0\}} \circ p \mid_{\mathcal{X} \setminus \mathbb{P}^1} : \mathcal{X} \setminus \mathbb{P}^1 \rightarrow \mathcal{Y}_0(\epsilon)$$

is a symplectomorphism.
Then we define the Lagrangian $L_{P,Q}$ in the resolved conifold \mathcal{X} to be

$$L_{P,Q} := \psi_{e}^{-1}(\phi_{0}^{-1}(M_{K})).$$

Recall that $\phi_{0} : \mathcal{Y}_{0}\setminus\{0\} \to T^{*}S^{3}\setminus S^{3}$ is a symplectomorphism.

A nice property: consider the S^{1}-action on \mathcal{X} defined as

$$u \cdot ((x, y, z, w), [s : t]) = ((u^{Q}x, u^{P}y, u^{-Q}z, u^{-P}w), [u^{-P-Q}s : t]).$$

Then $L_{P,Q}$ is preserved by the above action. We can use virtual localization techniques to study the open Gromov-Witten theory of $(\mathcal{X}, L_{P,Q})$.

Then we define the Lagrangian $L_{P,Q}$ in the resolved conifold \mathcal{X} to be

$$L_{P,Q} := \psi^{-1}(\phi_0^{-1}(M_K)).$$

Recall that $\phi_0 : \mathcal{Y}_0 \backslash \{0\} \to T^* S^3 \backslash S^3$ is a symplectomorphism.

A nice property: consider the S^1-action on \mathcal{X} defined as

$$u \cdot ((x, y, z, w), [s : t]) = ((u^Q x, u^P y, u^{-Q} z, u^{-P} w), [u^{-P-Q} s : t]).$$

Then $L_{P,Q}$ is preserved by the above action. We can use virtual localization techniques to study the open Gromov-Witten theory of $(\mathcal{X}, L_{P,Q})$.
Torus knots

Introduction
Torus knots and conifold transition
Open Gromov-Witten theory and topological recursion

\[L_{p,q} \cong S^1 \times \mathbb{R}^2 \]
A-model

\(\mathcal{X} \) The resolved conifold.

- \(L_{P,Q} \subset \mathcal{X} \) the Lagrangian sub-manifold constructed from the torus knot.
- Consider the open Gromov-Witten potential \(F_{g,n}^{(\mathcal{X},L_{P,Q})} \) of \((\mathcal{X},L_{P,Q}) \).

Open Gromov-Witten invariants: Count maps \(f : C \to \mathcal{X} \), where \(C \) is a genus \(g \) bordered Riemann surface with \(n \) boundary circles such that \(f(\text{boundary circles}) \subset L_{P,Q} \).
A-model

- \mathcal{X} The resolved conifold.
- $L_{P,Q} \subset \mathcal{X}$ the Lagrangian sub-manifold constructed from the torus knot.
- Consider the open Gromov-Witten potential $F_{g,n}^{(\mathcal{X},L_{P,Q})}$ of $(\mathcal{X},L_{P,Q})$.

Open Gromov-Witten invariants: Count maps $f : C \to \mathcal{X}$, where C is a genus g bordered Riemann surface with n boundary circles such that $f(\text{boundary circles}) \subset L_{P,Q}$.
A-model

- X The resolved conifold.
- $L_{P,Q} \subset X$ the Lagrangian sub-manifold constructed from the torus knot.
- Consider the open Gromov-Witten potential $F_{g,n}^{(X,L_{P,Q})}$ of $(X,L_{P,Q})$.

Open Gromov-Witten invariants: Count maps $f : C \to X$, where C is a genus g bordered Riemann surface with n boundary circles such that $f(\text{boundary circles}) \subset L_{P,Q}$.
Q: Higher genus B-model?

- Chekhov-Eynard-Orantin 06 07: Topological recursion on spectral curves $\omega_{g,n}$ symmetric n-form.
- Brini-Eynard-Mariño 11 and Diaconescu-Shende-Vafa 11: conjecture that if we apply topological recursion to the mirror curve of (\mathcal{X}, L_P, Q) \rightarrow higher genus B-model.
Q: Higher genus B-model?

Chekhov-Eynard-Orantin 06 07: Topological recursion on spectral curves $\omega_{g,n}$ symmetric n-form.

Brini-Eynard-Mariño 11 and Diaconescu-Shende-Vafa 11: conjecture that if we apply topological recursion to the mirror curve of (\mathcal{X}, L_P, Q) \rightarrow higher genus B-model.
Q: Higher genus B-model?

Chekhov-Eynard-Orantin 06 07: Topological recursion on spectral curves $\omega_{g,n}$ symmetric n-form.

Brini-Eynard-Mariño 11 and Diaconescu-Shende-Vafa 11: conjecture that if we apply topological recursion to the mirror curve of (X, L_P, Q) \Rightarrow higher genus B-model.
Let $C \subset (\mathbb{C}^*)^2$ be a curve and let X, Y be two meromorphic functions on C.

- Critical (ramification) points P_α of X: $dX = 0$.

- $X = e^{-x}$, $Y = e^{-y}$.

- Near each ramification point P_α, use local coordinates:

\[
x = x_0 + \zeta_\alpha^2, \quad y = y_0 + \sum_{i=1}^{\infty} h_i^\alpha \zeta_i.
\]

- Near each ramification point, denote \bar{p}:

\[
\zeta_\alpha(\bar{p}) = -\zeta_\alpha(p).
\]
B-model

- Let $C \subset (\mathbb{C}^*)^2$ be a curve and let X, Y be two meromorphic functions on C.
- Critical (ramification) points P_{α} of X: $dX = 0$.
 - $X = e^{-x}$, $Y = e^{-y}$.
 - Near each ramification point P_{α}, use local coordinates:
 \[x = x_0 + \zeta_\alpha^2, \quad y = y_0 + \sum_{i=1}^{\infty} h_i^{\alpha} \zeta_\alpha^i. \]
- Near each ramification point, denote \bar{p}:
 \[\zeta_\alpha(\bar{p}) = -\zeta_\alpha(p). \]
Let \(C \subset (\mathbb{C}^*)^2 \) be a curve and let \(X, Y \) be two meromorphic functions on \(C \).

- Critical (ramification) points \(P_\alpha \) of \(X \): \(dX = 0 \).
- \(X = e^{-x}, \ Y = e^{-y} \).

- Near each ramification point \(P_\alpha \), use local coordinates:
 \[
 x = x_0 + \zeta^2_\alpha, \quad y = y_0 + \sum_{i=1}^{\infty} h_i^\alpha \zeta^i_\alpha.
 \]

- Near each ramification point, denote \(\bar{p} \):
 \[
 \zeta_\alpha(\bar{p}) = -\zeta_\alpha(p).
 \]
B-model

- Let $C \subset (\mathbb{C}^*)^2$ be a curve and let X, Y be two meromorphic functions on C.
- Critical (ramification) points P_α of X: $dX = 0$.
- $X = e^{-x}, \ Y = e^{-y}$.
- Near each ramification point P_α, use local coordinates:

 $$x = x_0 + \zeta_\alpha^2, \quad y = y_0 + \sum_{i=1}^{\infty} h_i^\alpha \zeta_i.$$

- Near each ramification point, denote \bar{p}:

 $$\zeta_\alpha(\bar{p}) = -\zeta_\alpha(p).$$
The initial data of the topological recursion is given by \(\omega_{0,1}, \omega_{0,2} \).

- \(\omega_{0,1} = ydx \).

Let the compactified mirror curve \(\bar{C} \) to be of genus \(g \). \(A_i, B_i \) are basis of \(H_1(\bar{C}; \mathbb{C}) \):

- \(A_i \cap B_j = \delta_{ij}, A_i \cap A_j = 0, B_i \cap B_j = 0. \)

Fundamental differential of the second kind (a.k.a. Bergmann kernel) \(\omega_{0,2}(p_1, p_2) \): symmetric 2-form on \(\bar{C} \times \bar{C} \). It is uniquely characterized by

\[
\int_{p_1 \in A_i} \omega_{0,2}(p_1, p_2) = 0;
\]

\[
\omega_{0,2}(p_1, p_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{holomorphic } p_1 \to p_2.
\]
The initial data of the topological recursion is given by \(\omega_{0,1}, \omega_{0,2} \).

- \(\omega_{0,1} = ydx \).

Let the compactified mirror curve \(\overline{C} \) to be of genus \(g \). \(A_i, B_i \) are basis of \(H_1(\overline{C}; \mathbb{C}) \):

- \(A_i \cap B_j = \delta_{ij}, A_i \cap A_j = 0, B_i \cap B_j = 0. \)

Fundamental differential of the second kind (a.k.a. Bergmann kernel) \(\omega_{0,2}(p_1, p_2) \): symmetric 2-form on \(\overline{C} \times \overline{C} \). It is uniquely characterized by

- \[\int_{p_1 \in A_i} \omega_{0,2}(p_1, p_2) = 0; \]

- \[\omega_{0,2}(p_1, p_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{holomorphic \ } p_1 \rightarrow p_2. \]
The initial data of the topological recursion is given by $\omega_{0,1}, \omega_{0,2}$.

- $\omega_{0,1} = ydx$.

Let the compactified mirror curve \bar{C} to be of genus g. A_i, B_i are basis of $H_1(\bar{C}; \mathbb{C})$:

- $A_i \cap B_j = \delta_{ij}$, $A_i \cap A_j = 0$, $B_i \cap B_j = 0$.

Fundamental differential of the second kind (a.k.a. Bergmann kernel) $\omega_{0,2}(p_1, p_2)$: symmetric 2-form on $\bar{C} \times \bar{C}$. It is uniquely characterized by

$$\int_{p_1 \in A_i} \omega_{0,2}(p_1, p_2) = 0;$$

$$\omega_{0,2}(p_1, p_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{holomorphic} \quad p_1 \rightarrow p_2.$$
The initial data of the topological recursion is given by \(\omega_{0,1}, \omega_{0,2} \).

- \(\omega_{0,1} = ydx \).

Let the compactified mirror curve \(\bar{C} \) to be of genus \(g \). \(A_i, B_i \) are basis of \(H_1(\bar{C}; \mathbb{C}) \):

- \(A_i \cap B_j = \delta_{ij}, A_i \cap A_j = 0, B_i \cap B_j = 0 \).

Fundamental differential of the second kind (a.k.a. Bergmann kernel) \(\omega_{0,2}(p_1, p_2) \): symmetric 2-form on \(\bar{C} \times \bar{C} \). It is uniquely characterized by

- \[
\int_{p_1 \in A_i} \omega_{0,2}(p_1, p_2) = 0;
\]

- \[
\omega_{0,2}(p_1, p_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{holomorphic} \quad p_1 \to p_2.
\]
Chekhov-Eynard-Orantin’s topological recursion

Chekhov-Eynard-Orantin construct symmetric forms $\omega_{g,n}$ on C^n:

- Initial data $\omega_{0,1} = ydx$, $\omega_{0,2}$ as above;
- The recursive algorithm is:

$$\omega_{g,n+1}(p_0, \ldots, p_n) = \sum_{P_\alpha} \text{Res}_{p \to P_\alpha} \frac{\int_P \omega_{0,2}(p_0, \cdot)}{2(y(p) - y(\bar{p}))dx(p)}$$

$$\cdot \left(\omega_{g-1,n+2}(p, \bar{p}, p_1, \ldots, p_n) \right)$$

$$+ \sum_{h=0}^{g} \sum_{A \cup B = \{1, \ldots, n\}, (h, |A|), (g-h, |B|) \neq (0,0)} \omega_{h,|A|+1}(p, \bar{p}_A) \omega_{g-h,|B|+1}(\bar{p}, \bar{p}_B).$$

$\omega_{g,n}$ is a symmetric n-form on C^n.
Chekhov-Eynard-Orantin’s topological recursion

Chekhov-Eynard-Orantin construct symmetric forms $\omega_{g,n}$ on \mathbb{C}^n:

- **Initial data** $\omega_{0,1} = ydx$, $\omega_{0,2}$ as above;
- **The recursive algorithm is:**

$$\omega_{g,n+1}(p_0, \ldots, p_n) = \sum_{P_\alpha} \text{Res}_{p \to P_\alpha} \frac{\int_{\bar{p}} \omega_{0,2}(p_0, \cdot)}{2(y(p) - y(\bar{p}))dx(p)}$$

$$\cdot \left(\omega_{g-1,n+2}(p, \bar{p}, p_1, \ldots, p_n) \right)$$

$$+ \sum_{h=0}^{g} \sum_{A \cup B = \{1, \ldots, n\}, (h, |A|), (g-h, |B|) \neq (0,0)} \omega_{h,|A|+1}(p, \bar{p}_A) \omega_{g-h,|B|+1}(\bar{p}, \bar{p}_B).$$

- $\omega_{g,n}$ is a symmetric n-form on \mathbb{C}^n.
Chekhov-Eynard-Orantin’s topological recursion

Chekhov-Eynard-Orantin construct symmetric forms $\omega_{g,n}$ on C^n:

- Initial data $\omega_{0,1} = ydx$, $\omega_{0,2}$ as above;
- The recursive algorithm is:

$$\omega_{g,n+1}(p_0, \ldots, p_n) = \sum_{P_\alpha} \text{Res}_{p \to P_\alpha} \frac{\int_{\bar{p}} \omega_{0,2}(p_0, \cdot)}{2(y(p) - y(\bar{p}))dx(p)} \cdot \left(\omega_{g-1,n+2}(p, \bar{p}, p_1, \ldots, p_n) \right)$$

$$+ \sum_{h=0}^{g} \sum_{A \cup B = \{1, \ldots, n\}, (h, |A|), (g-h, |B|) \neq (0,0)} \omega_{h,|A|+1}(p, \bar{p}_A) \omega_{g-h,|B|+1}(\bar{p}, \bar{p}_B).$$

- $\omega_{g,n}$ is a symmetric n-form on C^n.
The mirror curve $C_q \subset (\mathbb{C}^*)^2$ of \mathcal{X} is defined by the following equation

$$1 + U + V + qUV = 0$$

in $(\mathbb{C}^*)^2$. Here q is a parameter on B-model. This curve allows a compactification into a genus 0 projective curve \overline{C}_q in $\mathbb{P}^1 \times \mathbb{P}^1$, where $(1 : U)$ and $(1 : V)$ are homogeneous coordinates for each \mathbb{P}^1.

$C_q \cong \mathbb{P}^1 \setminus \{4 \text{ pts}\}$
Mirror curve

Since \(\gcd(P, Q) = 1 \), we choose \(\gamma, \delta \in \mathbb{Z} \) (not uniquely) chosen such that

\[
\begin{pmatrix} Q & P \\ \gamma & \delta \end{pmatrix} \in \text{SL}(2; \mathbb{Z}).
\]

Consider the following change of variables

\[
X = U^Q V^P, \quad Y = U^\gamma V^\delta.
\]

We define the spectral curve as the quadruple

\[
(C_q \subset (\mathbb{C}^*)^2, \overline{C}_q \subset \mathbb{P}^1 \times \mathbb{P}^1, X, Y).
\]

The variables \(X, Y \) are holomorphic functions on \(C_q \) and meromorphic on \(\overline{C}_q \).
Since $\gcd(P, Q) = 1$, we choose $\gamma, \delta \in \mathbb{Z}$ (not uniquely) chosen such that
\[
\begin{pmatrix} P \\ \gamma \\ Q \\ \delta \end{pmatrix} \in \text{SL}(2; \mathbb{Z}).
\]

Consider the following change of variables
\[
X = U^Q V^P, \quad Y = U^\gamma V^\delta.
\]

We define the spectral curve as the quadruple
\[
(C_q \subset (\mathbb{C}^*)^2, \overline{C}_q \subset \mathbb{P}^1 \times \mathbb{P}^1, X, Y).
\]

The variables X, Y are holomorphic functions on C_q and meromorphic on \overline{C}_q.
Mirror curve

We let

\[e^{-u} = U, \ e^{-v} = V, \ e^{-x} = X, \ e^{-y} = Y. \]

We have the following initial data

- Initial data \(\omega_{0,1} = ydx \);
- A fundamental bidifferential \(\omega_{0,2} \) on \((\overline{C}_q)^2\)

\[\omega_{0,2} = \frac{dU_1dU_2}{(U_1 - U_2)^2}. \]

The choice of \(\omega_{0,2} \) involves a symplectic basis on \(H_1(\overline{C}_q; \mathbb{C}) \) – since the genus of our \(\overline{C}_q \) is 0, this extra piece of datum is not needed.

Apply topological recursion \(\longrightarrow \omega_{g,n} \) symmetric \(n \)-forms on \(\overline{C}_q^n \).
Mirror curve

We let

\[e^{-u} = U, \ e^{-v} = V, \ e^{-x} = X, \ e^{-y} = Y. \]

We have the following initial data

- **Initial data** \(\omega_{0,1} = ydx \);
- A fundamental bidifferential \(\omega_{0,2} \) on \((\overline{C}_q)^2\)

\[\omega_{0,2} = \frac{dU_1dU_2}{(U_1 - U_2)^2}. \]

The choice of \(\omega_{0,2} \) involves a symplectic basis on \(H_1(\overline{C}_q; \mathbb{C}) \) – since the genus of our \(\overline{C}_q \) is 0, this extra piece of datum is not needed.

Apply topological recursion \(\implies \omega_{g,n} \) symmetric \(n \)-forms on \(\overline{C}_q^n \).
We let
\[e^{-u} = U, \ e^{-v} = V, \ e^{-x} = X, \ e^{-y} = Y. \]

We have the following initial data
- Initial data \(\omega_{0,1} = ydx \);
- A fundamental bidifferential \(\omega_{0,2} \) on \((\mathcal{C}_q)^2\)

\[\omega_{0,2} = \frac{dU_1 dU_2}{(U_1 - U_2)^2}. \]

The choice of \(\omega_{0,2} \) involves a symplectic basis on \(H_1(\mathcal{C}_q; \mathbb{C}) \) – since the genus of our \(\mathcal{C}_q \) is 0, this extra piece of datum is not needed.

Apply topological recursion \(\rightsquigarrow \omega_{g,n} \) symmetric \(n \)-forms on \(\mathcal{C}_q^n \).
Mirror curve

We let

\[e^{-u} = U, \ e^{-v} = V, \ e^{-x} = X, \ e^{-y} = Y. \]

We have the following initial data

- Initial data \(\omega_{0,1} = ydx \);
- A fundamental bidifferential \(\omega_{0,2} \) on \((\overline{C}_q)^2\)

\[\omega_{0,2} = \frac{dU_1dU_2}{(U_1 - U_2)^2}. \]

The choice of \(\omega_{0,2} \) involves a symplectic basis on \(H_1(\overline{C}_q; \mathbb{C}) \) – since the genus of our \(\overline{C}_q \) is 0, this extra piece of datum is not needed.

Apply topological recursion \(\Rightarrow \omega_{g,n} \) symmetric \(n \)-forms on \(\overline{C}_q^n \).
The mirror curve equation can be rewritten into

$$X = -V^P \left(\frac{V + 1}{1 + qV} \right)^Q.$$

Let $\eta = X^{\frac{1}{Q}}$. Then η is a local coordinate for the mirror curve \overline{C}_q around $s_0 = (X, V) = (0, -1)$.

There exists $\delta > 0$ and $\epsilon > 0$ such that for $|q| < \epsilon$, the function η is well-defined and restricts to an isomorphism

$$\eta : D_q \to D_\delta = \{ \eta \in \mathbb{C} : |\eta| < \delta \},$$

where $D_q \subset \overline{C}_q$ is an open neighborhood of s_0. Denote the inverse map of η by ρ_q and

$$\rho_q \times^n = \rho_q \times \cdots \times \rho_q : (D_\delta)^n \to (D_q)^n \subset (\overline{C}_q)^n.$$
The mirror curve equation can be rewritten into

\[X = -V^p \left(\frac{V + 1}{1 + qV} \right)^Q. \]

Let \(\eta = X^{\frac{1}{Q}} \). Then \(\eta \) is a local coordinate for the mirror curve \(\overline{C}_q \) around \(s_0 = (X, V) = (0, -1) \).

There exists \(\delta > 0 \) and \(\epsilon > 0 \) such that for \(|q| < \epsilon \), the function \(\eta \) is well-defined and restricts to an isomorphism

\[\eta : D_q \rightarrow D_\delta = \{ \eta \in \mathbb{C} : |\eta| < \delta \}, \]

where \(D_q \subset \overline{C}_q \) is an open neighborhood of \(s_0 \). Denote the inverse map of \(\eta \) by \(\rho_q \) and

\[\rho_q \times^n = \rho_q \times \cdots \times \rho_q : (D_\delta)^n \rightarrow (D_q)^n \subset (\overline{C}_q)^n. \]
Mirror curve

We define

\[W_{g,n}(\eta_1, \ldots, \eta_n, q) = \int_0^{\eta_1} \cdots \int_0^{\eta_n} (\rho_q^n)^* \omega_{g,n}, \quad 2g - 2 + n > 0. \]

Let \(f \in \mathbb{C}[[\eta_1, \ldots, \eta_n]] \). For a fixed integer number \(Q > 0 \), we denote

\[h \cdot f(\eta_1, \ldots, \eta_n) = \sum_{k_1, \ldots, k_n=0}^{Q-1} \frac{f(a^{k_1}\eta_1, \ldots, a^{k_n}\eta_n)}{Q^n}, \]

where \(a \) is a primitive \(Q \)-th root of unity. This operation “throws away” all terms with degree not divisible by \(Q \).
Mirror symmetry

Theorem

Under the mirror map

$$F_{g,n}^{\chi,L_P,Q} = (-1)^{g-1+n} Q^n (\eta \cdot W_{g,n}) (\eta_1, \ldots, \eta_n, q).$$

In other words, $F_{g,n}^{\chi,L_P,Q}$ is equal to the part in the power series expansion of $(-1)^{g-1+n} Q^n W_{g,n}(q, \eta_1, \ldots, \eta_n)$ whose degrees of each η_k are divisible by Q.
Some remarks

Remark

The above theorem is an all genus open-closed mirror symmetry between the Gromov-Witten theory of (X, L_K) and the topological recursion of the mirror curve.

On the other hand, Borot-Eynard-Orantin 13 \Longrightarrow Topological recursion is equivalent to the colored HOMFLY polynomial of the knot K.

Therefore, the following three objects are equivalent:

1. the open-closed Gromov-Witten invariants of (X, L_K);
2. the Eynard-Orantin invariants of the mirror curve;
3. the colored HOMFLY polynomial of the knot K.

The equivalence of colored HOMFLY and GW is called large N duality.
Some remarks

When $P = Q = 1$, the Lagrangian $L_{1,1}$ is called an **Aganagic-Vafa brane**. The large N duality for $(\mathcal{X}, L_{1,1})$ is also called the **Mariño-Vafa formula**. An Aganagic-Vafa brane \mathcal{L} can be defined for any toric Calabi-Yau 3-folds/3-orbifolds $\widetilde{\mathcal{X}}$.

Bouchard-Klemm-Marino-Pasquetti 07, 08: Introduce the Remodeling Conjecture

Theorem (Remodeling Conjecture)

If we expand $\omega_{g,n}$ under suitable local coordinate on the mirror curve C of $\widetilde{\mathcal{X}}$, we obtain the open Gromov-Witten potential $F_{g,n}(\widetilde{\mathcal{X}}, \mathcal{L})$ under the mirror map.
Remodeling Conjecture

- When \(\tilde{\mathcal{X}} = \mathbb{C}^3 \), open part: L. Chen, J. Zhou; closed part: Bouchard-Catuneanu-Marchal-Sulkowski, S. Zhu.
- When \(\tilde{\mathcal{X}} \) is smooth: Eynard-Orantin.
- General semi-projective toric CY 3-orbifolds: Fang-Liu-Z.

If we start from \((\mathcal{X}, L_{1,1})\), then the Remodeling conjecture and the topic today can be viewed as generalizations along two different directions:

- Remodeling conjecture: generalizes the ambient space: resolved conifold \(\leadsto \) toric CY 3-orbifolds.
- Today’s topic: generalizes the Lagrangian sub-manifold: \(L_{1,1} \leadsto L_{P,Q} \) (trivial knot \(\leadsto \) torus knots).
Thank you!