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Introduction of Gromov-Witten theory

GW theory: curve counting theory.

Given p1 ‰ p2 P R2, there is a unique line ! Ă R2 passing
through p1, p2.

Given p1 ‰ p2 P P2, there is a unique (complex projective)
line ! Ă P2 passing through p1, p2.

Given 5 points in general position (any 3 points are not
collinear) in P2, how many smooth conics pass through
these 5 points?
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Introduction of Gromov-Witten theory

A general degree 2 homogeneous polynomials in X0,X1,X2

is of the form
a0X

2
0 ` a1X

2
1 ` a2X

2
2 ` a3X0X1 ` a4X1X2 ` a5X0X2.

The space of degree 2 nonzero homogeneous polynomials
(modulo a global constant) can be identified with
P5 “ tra0 : a1 : a2 : a3 : a4 : a5su.
The space of smooth conics in P2 can be view as an open
subset U in P5
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Introduction of Gromov-Witten theory

The condition of passing through a given point
corresponds to a hyperplane in P5. Since the 5 points are
assumed to be in general position, the intersection of five
such hyperplanes gives us a unique point.

The points in P5zU correspond to line pairs and double
lines, and no such configuration can pass through 5
points, unless three of the points are collinear. ùñ There
is a unique smooth conic passing these 5 points.
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Introduction of Gromov-Witten theory

Using similar method, one can count plane cubics passing
through 9 points, or more generally, plane curves of degree d
passing through dpd ` 3q{2 points; in each case the answer is
1.

Another direction: Count degree d rational curves.

Genus formula for nodal plane curves: g “ pd´1qpd´2q
2 ´ δ,

where δ is the number of nodes.

Each node is a condition of codimension 1 and so we
should consider the number of degree d rational curves
passing through dpd ` 3q{2 ´ δ “ 3d ´ 1 points.
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Introduction of Gromov-Witten theory

Kontsevich’s formula: Let Nd be the number of rational
curves of degree d passing through 3d ´ 1 general points in the
plane. Then the following recursive relation holds:

Nd `
ÿ

d1`d2“d,d1,d2ě1

p3d ´ 4q!
p3d1 ´ 1q!p3d ´ 3d1 ´ 3q!

d3
1Nd1Nd2d2

“
ÿ

d1`d2“d,d1,d2ě1

p3d ´ 4q!
p3d1 ´ 2q!p3d ´ 3d1 ´ 2q!

d2
1Nd1d

2
2Nd2

Initial condition: N1 “ 1.

Method: Use Gromov-Witten invariants: Count maps
f : C Ñ X from algebraic curve C to a certain target space X .
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Introduction of Gromov-Witten theory

Let X be a symplectic manifold and let L Ă X be a
Lagrangian sub-manifold.

Sometimes we are also interested in Open Gromov-Witten
invariants: Count maps f : C Ñ X , where C is a genus g
bordered Riemann surface with n boundary circles such that
f (boundary circles)Ă L.
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Introduction of Gromov-Witten theory

fÝÑ pX ,Lq
C “

m1

m2

m3

m!

R1

R2

Rn
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Conifold transition

Consider the conifold Y0 defined as

Y0 :“ tpx , y , z ,wq P C
4 | xz ´ yw “ 0u. (1)

it has a unique singularity at the origin.

Two ways to smooth the singularity:

To deform the singularity ù deformed conifold

To resolve the singularity ù resolved conifold
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Conifold transition

Let δ be a small positive number. Consider the deformed
conifold Yδ defined as

Yδ :“ tpx , y , z ,wq P C
4 | xz ´ yw “ δu. (2)

ùñ Yδ is smooth.

Consider the standard symplectic form on C4:

ωC4 “
?

´1

2
pdx ^ dx̄ ` dy ^ dȳ ` dz ^ dz̄ ` dw ^ dw̄q.

The symplectic form on Yδ is defined as ωYδ
:“ ωC4 |Yδ

.
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Conifold transition

There exists a symplectomorphism

φδ : Yδ Ñ T ˚S3,

where T ˚S3 is the cotangent bundle of the 3-sphere.

Consider the anti-holomorphic involution

I : C4 Ñ C
4 (3)

px , y , z ,wq ÞÑ pz̄ ,´w̄ , x̄ ,´ȳq.

Then Yδ is preserved by I . The fixed locus Sδ of the induced
anti-holomorphic involution Iδ on Yδ is a 3-sphere of radius

?
δ

and φδpSδq is the zero section of T ˚S3. When δ Ñ 0, Sδ
shrinks to the unique singular point of Y0.
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Conifold transition

The second way to smooth the singularity of Y0 is to consider
the resolved conifold X . We consider the blow-up of C4 along
the subspace tpx , y , z ,wq|y “ z “ 0u. Let X be the resolution
of Y0 under the blow-up. Then X is isomorphic to the local P1:

X – TotrOP1p´1q ‘ OP1p´1q Ñ P
1s.

If we view X as a subspace of C4 ˆ P1, then X is defined by
the following equations:

xs “ wt, ys “ zt,

where rs : ts is the homogeneous coordinate on P1. The
resolution p : X Ñ Y0 is given by contracting the base P1 in X .
We say that X and Yδ are related by the conifold transition.
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Torus knots

A knot K Ă S3: an isotopy class of embeddings of S1 in
S3.

Let P ,Q P Zą0 with gcdpP ,Qq “ 1. Let

K : S1 Ñ S1 ˆ S1 Ă R
3 Ă S3

z ÞÑ pzP , zQq.

Then K is called a pP ,Qq-torus knot.
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Torus knots

Consider the conormal bundle N˚
K of K Ă S3 defined as

N˚
K “ tpu, vq P T ˚S3 : u “ K ptq, xv ,K 1ptqy “ 0u,

where K 1ptq is the derivative of K and x, y is the natural
pairing between tangent and cotangent vectors. Then N˚

K

is a Lagrangian sub-manifold of T ˚S3.

We want to obtain a Lagrangian sub-manifold in the
resolved conifold X from N˚

K under the conifold transition.

Difficulty: the intersection of N˚
K with the zero section is

non-empty.

Solution: Diaconescu-Shende-Vafa 11 ù we can
fiberwisely translate N˚

K to obtain a new Lagrangian
sub-manifold MK such that MK does not intersect with
the zero section.
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Torus knots

Consider the resolved conifold X . Recall that if we view X as a
subspace of C4 ˆ P1, then X is defined by the following
equations:

xs “ wt, ys “ zt.

For ε ą 0, we consider the symplectic form pωC4 ` ε2ωP1q on
C4 ˆ P1. Define the symplectic form ωX ,ε on X by

ωX ,ε :“ pωC4 ` ε2ωP1q |X .
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Torus knots

Let Bpεq “ tpy , zq P C2 | |y |2 ` |z |2 ď ε2u Ă C2 be the ball of
radius ε. Consider the radial map ρε : C2zt0u Ñ C2zBpεq,

ρεpy , zq “
a

|y |2 ` |z |2 ` ε2a
|y |2 ` |z |2

py , zq.

Let 'ε “ idC2 ˆ ρε : C2 ˆ pC2zt0uq Ñ C2 ˆ pC2zBpεqq. Then
'ε preserves the conifold Y0 and it maps Y0zt0u to
Y0pεq :“ Y0zpY0 X pC2 ˆ Bpεqqq.

McDuff-Salamon 98 ùñ the map

ψε :“ 'ε |Y0zt0u ˝p |X zP1: X zP1 Ñ Y0pεq

is a symplectomorphism.
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Torus knots

Then we define the Lagrangian LP,Q in the resolved conifold X

to be
LP,Q :“ ψ´1

ε pφ´1
0 pMK qq.

Recall that φ0 : Y0zt0u Ñ T ˚S3zS3 is a symplectomorphism.

A nice property: consider the S1-action on X defined as

u¨ppx , y , z ,wq, rs : tsq “ ppuQx , uPy , u´Qz , u´pwq, ru´P´Qs : tsq.

Then LP,Q is preserved by the above action. ù We can use
virtual localization techniques to study the open
Gromov-Witten theory of pX , LP,Qq.
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A-model

X The resolved conifold.

LP,Q Ă X the Lagrangian sub-manifold constructed from
the torus knot.

Consider the open Gromov-Witten potential F
pX ,LP,Qq
g ,n of

pX , LP,Qq.

Open Gromov-Witten invariants: Count maps f : C Ñ X ,
where C is a genus g bordered Riemann surface with n

boundary circles such that f (boundary circles)Ă LP,Q .
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boundary circles such that f (boundary circles)Ă LP,Q .
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Q: Higher genus B-model?

Chekhov-Eynard-Orantin 06 07: Topological recursion on
spectral curves ùñ ωg ,n symmetric n-form.

Brini-Eynard-Mariño 11 and Diaconescu-Shende-Vafa 11:
conjecture that if we apply topological recursion to the
mirror curve of pX , LP,Q q ùñ higher genus B-model.
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B-model

Let C Ă pC˚q2 be a curve and let X ,Y be two
meromorphic functions on C .

Critical (ramification) points Pα of X : dX “ 0.

X “ e´x , Y “ e´y .

Near each ramification point Pα, use local coordinates:

x “ x0 ` ζ2α, y “ y0 `
8ÿ

i“1

hαi ζ
i
α.

Near each ramification point, denote p̄:

ζαpp̄q “ ´ζαppq.
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The initial data of the topological recursion

The initial data of the topological recursion is given by
ω0,1,ω0,2.

ω0,1 “ ydx .
Let the compactified mirror curve C to be of genus g. Ai , Bi

are basis of H1pC̄ ;Cq:
Ai X Bj “ δij , Ai X Aj “ 0, Bi X Bj “ 0.

Fundamental differential of the second kind (a.k.a. Bergmann
kernel) ω0,2pp1, p2q: symmetric 2-form on C̄ ˆ C̄ . It is uniquely
characterized by

ż

p1PAi

ω0,2pp1, p2q “ 0;

ω0,2pp1, p2q “
dz1dz2

pz1 ´ z2q2
` holomorphic p1 Ñ p2.
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Chekhov-Eynard-Orantin’s topological recursion

Chekhov-Eynard-Orantin construct symmetric forms ωg ,n on
Cn:

Initial data ω0,1 “ ydx , ω0,2 as above;
The recursive algorithm is:

ωg,n`1pp0, . . . , pnq

“
ÿ

Pα

RespÑPα

şp
p̄
ω0,2pp0, ¨q

2pyppq ´ ypp̄qqdxppq

¨
´
ωg´1,n`2pp, p̄, p1, . . . , pnq

`
gÿ

h“0

ÿ

AYB“t1,...,nu,ph,|A|q,pg´h,|B|q‰p0,0q

ωh,|A|`1pp,"pAqωg´h,|B|`1pp̄,"pBq
¯
.

ωg ,n is a symmetric n-form on Cn.
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Mirror curve

The mirror curve Cq Ă pC˚q2 of X is defined by the following
equation

1 ` U ` V ` qUV “ 0

in pC˚q2. Here q is a parameter on B-model. This curve allows
a compactification into a genus 0 projective curve Cq in
P1 ˆ P1, where p1 : Uq and p1 : V q are homogeneous
coordinates for each P1.
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Mirror curve

Since gcdpP ,Qq “ 1, we choose γ, δ P Z (not uniquely) chosen
such that ˆ

Q P

γ δ

˙
P SLp2;Zq.

Consider the following change of variables

X “ UQV P , Y “ UγV δ.

We define the spectral curve as the quadruple

pCq Ă pC˚q2,Cq Ă P
1 ˆ P

1,X ,Y q.

The variables X ,Y are holomorphic functions on Cq and
meromorphic on Cq.
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Mirror curve

We let

e´u “ U, e´v “ V , e´x “ X , e´y “ Y .

We have the following initial data

Initial data ω0,1 “ ydx ;

A fundamental bidifferential ω0,2 on pC qq2

ω0,2 “
dU1dU2

pU1 ´ U2q2
.

The choice of ω0,2 involves a symplectic basis on
H1pC q;Cq – since the genus of our Cq is 0, this extra
piece of datum is not needed.

Apply topological recursion ùñ ωg ,n symmetric n´forms on
C

n
q.
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Mirror curve

The mirror curve equation can be rewritten into

X “ ´V P

ˆ
V ` 1

1 ` qV

˙Q

.

Let η “ X
1
Q . Then η is a local coordinate for the mirror curve

Cq around s0 “ pX ,V q “ p0,´1q.

There exists δ ą 0 and ε ą 0 such that for |q| ă ε, the function
η is well-defined and restricts to an isomorphism

η : Dq Ñ Dδ “ tη P C : |η| ă δu,

where Dq Ă Cq is an open neighborhood of s0. Denote the
inverse map of η by ρq and

ρˆn
q “ ρq ˆ ¨ ¨ ¨ ˆ ρq : pDδqn Ñ pDqqn Ă pC qqn.
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Mirror curve

We define

Wg ,npη1, . . . , ηn, qq “
ż η1

0

. . .

ż ηn

0

pρˆn
q q˚ωg ,n, 2g ´ 2 ` n ą 0.

Let f P Crrη1, . . . , ηnss. For a fixed integer number Q ą 0, we
denote

h ¨ f pη1, . . . , ηnq “
Q´1ÿ

k1,...,kn“0

f pak1η1, . . . , aknηnq
Qn

,

where a is a primitive Q-th root of unity. This operation
“throws away” all terms with degree not divisible by Q.
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Mirror symmetry

Theorem

Under the mirror map

F
X ,LP,Q
g ,n “ p´1qg´1`nQnph ¨ Wg ,nqpη1, . . . , ηn, qq.

In other words, F
X ,LP,Q
g ,n is equal to the part in the power series

expansion of p´1qg´1`nQnWg ,npq, η1, . . . , ηnq whose degrees

of each ηk are divisible by Q.
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Some remarks

Remark

The above theorem is an all genus open-closed mirror

symmetry between the Gromov-Witten theory of pX , LK q and

the topological recursion of the mirror curve.

On the other hand, Borot-Eynard-Orantin 13 ùñ Topological

recursion is equivalent to the colored HOMFLY polynomial of

the knot K.

Therefore, the following three objects are equivalent:

1 the open-closed Gromov-Witten invariants of pX , LK q;
2 the Eynard-Orantin invariants of the mirror curve;

3 the colored HOMFLY polynomial of the knot K.

The equivalence of colored HOMFLY and GW is called large N

duality.
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Some remarks

When P “ Q “ 1, the Lagrangian L1,1 is called an
Aganagic-Vafa brane. The large N duality for pX , L1,1q is also
called the Mariño-Vafa formula. An Aganagic-Vafa brane L

can be defined for any toric Calabi-Yau 3-folds/3-orbifolds rX .

Bouchard-Klemm-Marino-Pasquetti 07, 08: Introduce the
Remodeling Conjecture

Theorem (Remodeling Conjecture)

If we expand ωg ,n under suitable local coordinate on the mirror

curve C of rX , we obtain the open Gromov-Witten potential

F
p rX ,Lq
g ,n under the mirror map.
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Remodeling Conjecture

When rX “ C3, open part: L. Chen, J. Zhou; closed part:
Bouchard-Catuneanu-Marchal-Su#lkowski, S. Zhu.

When rX is smooth: Eynard-Orantin.

General semi-projective toric CY 3-orbifolds: Fang-Liu-Z.

If we start from pX , L1,1q, then the Remodeling conjecture and
the topic today can be viewed as generalizations along two
different directions:

Remodeling conjecture: generalizes the ambient space:
resolved conifold ù toric CY 3-orbifolds.

Today’s topic: generalizes the Lagrangian sub-manifold:
L1,1 ù LP,Q (trivial knot ù torus knots).
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Thanks

Thank you!


