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Problem formulation and motivation

—

We consider a multiscale dynamical system of the form

{de = o X7, Y )dt + veo (XE, Y AW

avy = LAXE Y)Yt + L (XE, YA
X is called the slow process and Y the fast process as under the
timescale s = t/n for Y, one has

X7 = (XY, )dt + v/Eo (X7, Y )dW}
YD = f(XE,Yds + (X2, Y dW?
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Problem formulation and motivation

—

Let Ly (z) = f(z,")0y + 37%(, )07 be the generator of Y.

Under an appropriate recurrence condition on f, Ly (x) admits
an invariant measure p.

Define the function ¢ as
(o) = [ clo.ppn(a)
and the homogenization process X as the solution to the ODE

t
X, =z + J &(Xs)ds
0
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Problem formulation and motivation

—

We are interested in the fluctuation process

X:— X,
\/g )

where X is the homogenization process of X¢ as e, | 0.

Ff =

Theorem (Spiliopoulos — 2014)

The process {Ff: t € [0,1]} converges weakly in C ([0,1]) to a
centered Ornstein-Uhlenbeck process.
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Problem formulation and motivation

—

We are interested in deriving rates for the convergence of Fy to
a Gaussian distribution.

For this purpose, we will use second order Poincaré inequalities.
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The Stein-Malliavin method
——

From now on, let § = L? ([O, 1];R2).

A classical result in the Stein-Malliavin litterature states

Theorem (Nourdin, Peccati — 2009)

Let F € DY2 be a centered random variable. Then,

dw (F,.4(0,1)) < \/]E (|1 - <DF,—DL*1F>53‘2)

= \/Var ((DF,—DL™'F)y)

This result is very practical for random variables F' with known
finite chaos decompositions, but less tractable in general.
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The Stein-Malliavin method 10
——

We know how to compute Malliavin derivatives of SDE’s but
not their image by L~

The Gaussian Poincaré inequality states that, for any ' e D2,
Var (F) <E (HDFH;)

This inequality can be applied to F' = <DF, —DL_1F>y) to get
a bound involving only the operator D.
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The Stein-Malliavin method
——

This is the object of the following theorem.

Theorem (Nourdin, Peccati, Reinert — 2009)

Let F e D*>* with E(F) = p and Var(F) = 02. Assume that
N ~ A (n,0%). Then,
4/10

1
= 2
dw (F,N) < 3 5B (IDFIS) " E (||D2F @) D?F|[},.)

N

Note that the above bound only involves D (and D?).
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The Stein-Malliavin method 12
——

A simple example: let {W;: t € [0, 1]} be a standard Brownian
motion. Then,

DW; =1j4 and D?*W; =0,

so that

=

V10
dw (Wi, 4(0,8)) < == VtE (||O R 0”%2([0,1]2)) =0

Remark
For normal convergence, first Malliavin derivatives converge to
constants and second Malliavin derivatives converge to zero.

BOSTON
UNIVERSITY




Methodology and main results

=



Methodology and main results 14

Recall that our fluctuation process is given by
X: - X,

Ff =
t Ve

Let us introduce F¥ defined by

~€ O't

Fy = ———rcrx [FtE - E(Fts)] )

+/ Var (F¥)

where o7 is the variance of the limiting Gaussian distribution.
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Methodology and main results

Let Ny ~ .4 (0,07). We can then write

dw (Fy, Ny) < dw (Ff,ﬁf) + dw (Ff’Nt)

We have

)

Ot

_l’_
Var (Ff)

Ot

Var (F¥)

<E(FD] - [E (£7)]
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Methodology and main results 16

Using the “Poincaré” bound for dy, (ﬁ’f , Nt), we get in total

Ut
d FE,N F’8 E (F¢
\/E ‘11 2 2 2 i
" % Var (F7) (”DXE”ﬁ) E (||D°XF @ DX 302
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Methodology and main results 17

Step 1: Convergence of the first two moments

We need to deal with |E (Ff)| and |Var (Ff) — o7|. We have

1/t . '
77 = 52 ([ eoxzvmas = [ etxas) + [ oxzvmam?
0 0 0

As is, the quantity ¢(X¢,Yy") — &(X;) is hard to deal with.
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Methodology and main results

We can write

(X5, YY) — e(Xs) = o( X5, YT — e(XF) + o(X5) — o(X,)

S

Taylor’s theorem implies that
e(X3) — e(Xy) = 0a8(Xo)) (XS — X) + Ale](X5, X)

so that
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Methodology and main results 19

Consider the Poisson partial differential equation
LYq)(xay) = C(l‘,y) - E(x)
with boundary condition
f ®(-, y)u(dy) =0
R
Then,
C(XE, Y1) = 3(XE) = Ly ®(XE, 7))

1
= f(ng Yj)aycb(Xg, YZI) + §TQ(X§7 Yj)a;cl)(xj, Y?)
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Methodology and main results 20

In total, we have the new representation

Ff = Jac F°d5+JA
+ 7<<I><Xf,Y"> (X5, Yy')

o [
NG
f (1 — 00, B(XE, YT)) o (X2, Y)W

\[ f 0y ®(XE, V)T (XE, V) aW?

(e(X5 YA @(XE,Y)) + So(XE, Y)2020(XE, YD) ) ds

BOSTON
UNIVERSITY



Methodology and main results 21

Step 2: Convergence of the Malliavin derivatives

We need to estimate E (||DX;?||%) and
E (HDZXf ®1 DQXfH;@) in terms of € and 7.

We will illustrate the main ideas for the first derivatives.
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Methodology and main results 22

We have
D' Xf = Veo (XE,Y))

t -
# | [ore e, v DI X+ due (5, ) DY 17 s

T

t
#VE [ (oo (X5 Y2) DI XS o o (05, Y DI |

D'y} = f |07 (X5, Y2 DI X5+ ouf (X2, Y7 DY Y| ds

+ J alf X, Y DV X<+ agr(Xg,Y;)D}:‘”igl] dW?
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Methodology and main results 23

We can write

E < sup ’DZVlX;S

r<s<t

2p>
t 2p
<C<5p+(1+5p)[JE<sup )ds
r r<u<ss
t 1 2p
+E<J DY yn ds>]>

DV’ Xt
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Methodology and main results 24

The It6 formula implies
2 2 t 2p—1
E (\DX“Y;?( p) - pE(f (DI vy aus (x5, v DI X
n r
€ wt
+ 0of (X5, YD) DIV |ds

20(2p — 1 t 2p—2
-2 )Eq (P ye)™ o (xe v DX
U]

T

e wt 2
+ dy7 (X5, Y DY Y;?] ds
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Methodology and main results 25

Applying Young’s inequality for products yields
2 1 t
E (\DX“Y;?\ ”) < E(J [\M(XE,K?)\
n r

+m%—wm7w;wﬁ}was

2p
ds

t
+ ;E<J [2p82f (X5, Y1) + 2p— 1) [0 f (X, Y

T

+(2p = 1)(2p - 2) o7 (X2, Y.

+2p(2p — 1) o (X5, YD)P | DYy

2p
ds
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The recurrence relation states

sup {[482]“ +3]0uf| + 6oy + 12 |52712] (z,) } <-K<0
z,yeR

Essentially, it requires da f to be sufficiently negative.

We also have the following boundedness assumption

sup { [121f1+ 6l2172] (,9) | < M

z,yeR
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We hence get

»\ M
E <‘D7W1Yt'7‘ p) < ]E(
n

t 2
f W' xe| " ds
.
K ([ 2
_ 2 E f W'yl as |,
no\J

2 M t 2
pds) <KE<J D7YV1X§ Pds>

so that

t
E(J DW'yn
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Methodology and main results 28

This yields

E ( sup ‘DXWXE

r<s<t

)

¢
<C<€p+(1+5p)f E(sup

DV' x¢

r r<u<ss

2p
) ds
By Gronwall’s lemma, this implies

E < sup ‘D},’VIX;

r<s<t

2p
> < CeP
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Methodology and main results 29

Assuming that n = n(e) — 0 as ¢ — 0 such that

g
li —=~€(0,0
lim p v € (0, 0],

we obtain the following quantitative result.

Theorem (B., Spiliopoulos — 2023)

Let the above assumptions and notation prevail. Then, for any

¢>0,

no L\ 0 P AP
sup dyw (FE,N;) < 4/ vE + n+(_)+ VP,
t€(0,T) £ Vi e 72 NG € g2
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