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Observe data x [e.g., player’s performance in some . prior |
games] /poster/or
Assume a probabilistic model p(x | 0) _— likelihood

Combine prior & likelihood to form posterior:

p(x | 0)my(0)

(0| x) = N

p(x) 0

Benefits: coherent belief updates, uncertainty
quantification, flexible modeling, and more

Assumption: measurement model correct: observed x has
distribution p(x | 6,

rue)
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* Goal: learn about evolutionary history of a
group of species [e.g., whales]

e Approach: infer which phylogenetic trees are
consistent with observed species

characteristics x [e.g., genetic data, physical
features such as coloring and size]

px | m)my(m,)
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m(m; | x) =

* Problem: (Bayesian) model selection doesn’t
always work as we might hope...
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Problem: infer phylogeny of 13 whale species
e For some evolutionary models, little to no overlap

e (Bayesian) model selection is unstable and not reproducible

e Same problem comparing evolutionary models with data fixed

Cross-data consistency Cross-model consistency
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Overview

Minimal goal: avoid methods that lead to contradictory/non-reproducible inferences

For example, when...
e getting more data
e slightly tweaking model

e using different data from same generative process

This talk: when and how contradictions can arise in
1. model selection
2. prediction with high-dimensional models

3. unsupervised learning

Takeaways:
A. Non-reproducibility can be subtle (and is problem-dependent)
B. Not specific to Bayes

C. Need default, low-cost protective methods that remain statistically efficient
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Henn & & Simon Gravel

Nature 617, 755-763 (2023) | Cite this article

Despite broad agreement that Homo sapiens originated in Africa,
considerable uncertainty surrounds specific models of divergence and

migration across the continent...

...Progress is hampered by a shortage of fossil and genomic data, as well
as variability in previous estimates of divergence times. Here we seek

to discriminate among such models...

...We show that model misspecification explains the variation in
previous estimates of divergence time
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A solution: the bagged posterior

Have data x = (x, ..., Xy)

Empirical data distribution Py = N™' Y &, | ” | | || | P

Bootstrap dataset x* = (x*, ..., x*), A oo :
%

where x* i.i.d. ~ Py K g '
not always equal to N! '

Bagged posterior (a.k.a. BayesBag):

7*(0 | x) = E{n(0 | x*) | x}

In practice, sample B bootstrap datasets: 7*(0 | x) ~ Zle (0 | X))

» Suffices to take B = 50 or 100

» Benefits: easy to use, can parallelize across B

H 9
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The bagged posterior is stable

Assume data x and two models m, and m,

Assume they explain the data-generating distribution equally well:
E{logp(x | m))} = E{logp(x | m,)}

We’d hope models have equal poster probability as N — oo:
amy | Y)=a(m, | Y)=1/2

However... all posterior mass on a
Theorem [Yang & Zhu 2019, H & Miller 2023]: single, arbitrary model

As N — oo, z(m; | x) > Bernoulli(0.5)

Recommendation:
Theorem [H & Miller 2023]: As N — 00 » M = N9 default

d ) _ TS5 ip s g
1. If M = N, then 7*(m, | x) - Uniform(0,1) " M = N°7 if significant
P misspecification and/or
2. M/N — 0, then #*(m; | x) = 1/2 many models
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Bagged posterior improves stability

Goal: infer phylogeny of 13 whale species

Cross-data consistency

100 Bayes BayesBag (M = N"%%) 75~ 1 \s 1t haf
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75 ® 1stvs 2nd half
NG
c_% + ++ ++ ++
2 ¢ 6 v

f danger
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evolutionary model evolutionary model

nonzero
overlap

e Significant overlap between non-MTMAM BayesBag and mixed Bayes
» BayesBag dramatically improves cross-model consistency too
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* This choice is somewhat arbitrary if model misspecified

* We propose an alternative approach (details later if there’s time/interest):

> Formalize a generally applicable self-consistency criterion based on
overlap probabilities

> The posterior can violate criterion (especially in high-dimensional settings)
> The bagged posterior doesn’t violate criterion
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e Latent Dirichlet allocation learns document topics

 Challenge: how do we recover “true” latent structure when the model is wrong?

* This part: learning bona fide clusters with mixture models

e Key ideas: use known causal structure and domain knowledge
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» Each component is a
meaningful type

e Goal: discover these types

» Determine K,

e Assumed mixture model:

component

K
X, ~ Py 1= Z 7y« parameter
k=1
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z, ~ Categorical(x) K

K,
Py = Zkzl kg, Xy ~ Py = Zkzl ot Lok

e Recall: for coarsened posterior, assume miny KL(P, | P,) < a~!

e But want to coarsen at component level

e Qur approach:
» Choose divergence I (P | Q)
» Assumption: min¢ D(P,, | F¢) Sp

» Need (consistent) estimator @(xl, s X, | Q) for D(P | Q)

» X.(z) := {x, : z, = k} [observations assigned to kth component]
AlC-like penalty

/

Z012=Y_ |1X@|max {0, DX, | F,) - p} + IK

» Structurally aware loss:
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STructurally Aware Robust Estimation
(STARE)

1. Estimate model parameters 0% for each K € {1,....K_ ..}

> 7Tmax

2. Select p
3. Set K, = argming pr(H(K) | 7K

e Open question: how to choose p
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Consistency of STARE

Definition: 7Z'(K) qbff), e gbfg{) = asymptotically inferred parameters

given K

Key Assumptions: Exists decomposition of interest P, = Zf;l 7 Py s.t.

() model components close when K correct:
KL(POk | F¢(K)) <p

(K,)

(i) smaller mixtures are a poor fit' for 7" 1= |1,

fK < K, then dy (X, 70F 0, P,) > (1 = 2 /pT2 + 2"

Theorem [Li & H 2023+]: As N — o0, Pr(I% » = K)— 1.

» Special case of our general consistency result

H D1
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Penalized loss
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flow cytometry data
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Clustering cells by type: calibrating o
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24



Clustering cells by type: calibrating p

1.0+

0.9

clustering
accuracy
(F measure)

0.8

0.7 1

0.6

—————

p~1.16

Dataset #

1

o U1 A~ W N

average

24




Clustering cells by type: calibrating p
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Clustering cells by type: calibrating p
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p~1.16
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average

1

2

e STARE runtime: 30 min [Python]
e Coarsened posterior runtime: 2.5 hours [Julia]
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Clustering cells by type:
STARE is fast and accurate

Clustering accuracy (F-measure)

Dataset

STARE

Coarsened
posterior

[Miller & Dunson 2018, Li & H 2023+]
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Closing thoughts

e Model misspecification can dramatically affect stability/reproducibility of inferences

> |deally, want to default to stable methods that don’t degrade statistical
efficiency

» Examples: Bagged posterior and STARE
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e Model misspecification can dramatically affect stability/reproducibility of inferences

> |deally, want to default to stable methods that don’t degrade statistical
efficiency

» Examples: Bagged posterior and STARE

References

J. H. Huggins & J. W. Miller (2023). Reproducible Model Selection Using Bagged
Posteriors. Bayesian Analysis 18(1): 79-104

J. H. Huggins & J. W. Miller (2019). Robust Inference and Model Criticism Using
Bagged Posteriors. arXiv:1912.07104 [stat.ME].

J. H. Huggins & J. W. Miller (2023+). Reproducible Parameter Inference Using Bagged
Posteriors.

J. Li & J. H. Huggins (2023+). Robust, Structurally-Aware Inference with Mixture
Models.

27



