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We often collect samples on characteristics of different 
observation units and wonder Whether the characteristics of the 
observation units have similar distributional structure?

We consider methods to find homogeneous subpopulations

- using regression tree and clustering for distributions
approaches

- based on a modified Jensen-Shannon divergence

and present

- a testing procedure for homogeneity of a cluster and

- a hierarchical testing procedure to find 
the minimal homogeneous/near-homogeneous tree 
structure of the distributions of a population characteristic. 
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Introduction
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Motivational Example

Yellowfin tuna fork length data

- collected from the tuna catch of
purse-seine vessels operated 

- in the eastern Pacific Ocean 
during 2003 – 2007

A total of 797 samples were available.

Each sample contains 

- the fork lengths (cm) of 
about 50 yellowfin tunas, and 

- the date and the location of the fishing
operations associated with the tuna catch

Yellowfin tuna（キハダマグロ）

Fork length

Purse-seine set (巻網漁）

The eastern Pacific Ocean
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Data on the area and time period corresponding to the fishing 
operations are obtained from data recorded by onboard 
observers or from fishermen’s logbooks. 

The samples were collected by the port-sampling program of 
the Inter-American Tropical Tuna Commission (IATTC; 
www.iattc.org), which is the regional fishery management 
agency responsible for the conservation of tuna and other 
marine resources in the eastern Pacific Ocean

In our analysis, the fork length data were aggregated by location

- over time into 5°by 5° cells 

- so that 797 samples were combined into 60 spatial cells.

The fork length data

4
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Histograms and numbers of samples in cells

5

the number of samples 
in a cell 
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Histograms and numbers of samples in cells
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経度

緯
度

large

small

5N

95W



Boston-Keio-Tsinghua Workshop 2023

Regression Tree and Hierarchical Clustering

Modified Jensen-Shannon divergence, related distance and 
Impurity measures

Regression Tree and Clustering for the Yellowfin tuna fork 
length data

With histograms

With density estimates

Testing procedures for homogeneity and the minimum 
homogeneous tree structure

Near-homogeneous tree structure

Summary and Future Work

Outline of Talk
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Regression Tree

and 

Hierarchical Clustering
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Classification and regression tree (CART, Breiman et al. (1984))

- starts from a set of all units  and

- repeatedly subdivides that set using binary partitions defined  
by the values of an explanatory variable selected to provide 
the greatest decrease of the values of a response variable
in a measure of impurity until all divided nodes satisfy the 
termination rule. 

Regression Tree

9
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Hierarchical clustering (cf. Gordon (1999)) 

- It is an agglomerative approach 

- Each unit starts in its own cluster, 

- The method repeatedly combines the two closest clusters 
by some metric for distance among units 

- At the end, all units form one large cluster. 

Hierarchical Clustering

10
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Modified Jensen-Shannon divergence,  

related distance, and 

impurity measures
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S.H. Cha (2007) listed a total of 42 measures in 7 types:
1) 𝐿𝐿𝑝𝑝 Minkowski type, 2) 𝐿𝐿1 family, 3) Intersection family, 

4) Inner Product family, 5) Fidelity family or Squared-chord 
family, 6) Squared L2 family or χ2 family, 7) Shannon’s 
entropy family  

The modified Jensen-Shannon Divergence (Dhillon et al. 2003)

Clustering of histograms using Wasserstein metric (Ispiro and 
Lechevallier, 2006, Ispiro et al. 2014) 

 k-Means using Mixed α-Divergences (Nielsen et al. 2014)

Fuzzy clustering using 𝐿𝐿1 measure (Phamtoan et al., 2022,  

Nguyen-Trang et al. 2023)

Earth Mover’s distance (Henderson et al., 2015)

Distance/Similarity Measures between distributions

12
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Modified Jensen-Shannon divergence (distance) 
For distributions 𝑓𝑓1 and 𝑓𝑓2 with confidences 𝑚𝑚1 and 𝑚𝑚2 (> 0) , 
respectively, let ̅𝑓𝑓{1,2} be their weighted average distribution

̅𝑓𝑓{1,2} =
1

𝑚𝑚1 + 𝑚𝑚2
𝑚𝑚1 𝑓𝑓1 𝑥𝑥 + 𝑚𝑚2𝑓𝑓2 𝑥𝑥 .

Then, the modified Jensen-Shannon divergence is defined as

DMJS 𝑓𝑓1,𝑚𝑚1 , 𝑓𝑓2,𝑚𝑚2 = 𝑚𝑚1 KL 𝑓𝑓1| ̅𝑓𝑓{1,2} + 𝑚𝑚2KL 𝑓𝑓2| ̅𝑓𝑓{1,2}

where 𝐾𝐾𝐿𝐿(𝑓𝑓|𝑔𝑔) = �
Ω
𝑓𝑓 𝑥𝑥 𝑙𝑙𝑙𝑙𝑔𝑔 𝑓𝑓(𝑥𝑥)

𝑔𝑔(𝑥𝑥)𝑑𝑑𝑥𝑥

The Modified Jensen-Shannon divergence

13
(cf. Dhillon et al., 2003) 
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 It is symmetric

DMJS 𝑓𝑓1,𝑚𝑚1 , 𝑓𝑓2,𝑚𝑚2 ＝ DMJS 𝑓𝑓2,𝑚𝑚2 , 𝑓𝑓1,𝑚𝑚1

No support problem arises since

{x: ̅𝑓𝑓 1,2 𝑥𝑥 > 0 } = x: 𝑓𝑓1 𝑥𝑥 > 0 ∪ 𝑥𝑥: 𝑓𝑓2 (x) > 0
 It can be expressed with the information entropy

DMJS 𝑓𝑓1,𝑚𝑚1 , 𝑓𝑓2,𝑚𝑚2

= (𝑚𝑚1+𝑚𝑚2) 𝐻𝐻 ̅𝑓𝑓1,2 − 𝑚𝑚1𝐻𝐻 𝑓𝑓1 −𝑚𝑚2𝐻𝐻(𝑓𝑓2)
where 𝐻𝐻(⋅) is the information entropy,

𝐻𝐻 𝑓𝑓 = −�
Ω
𝑓𝑓 𝑥𝑥 log 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

 In the case of multinomial distributions (and histograms), 
DMJS 𝑓𝑓1 ,𝑚𝑚1 , 𝑓𝑓2 ,𝑚𝑚2 is the log-likelihood ratio. 

The Modified Jensen-Shannon divergence

14
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At each step of CART, the binary split that produces the largest 
decrease in impurity is chosen.

Impurity of a group of distributions 

For a group of distributions   𝒢𝒢 = 𝑓𝑓𝑖𝑖 ,𝑚𝑚𝑖𝑖 , 𝑖𝑖 ∈ 𝐺𝐺 ,  let 𝑚𝑚𝒢𝒢 and ̅𝑓𝑓𝒢𝒢
be its confidence and weighted average distribution, respectively,

𝑚𝑚𝒢𝒢 = �
𝑖𝑖∈𝐺𝐺

𝑚𝑚𝑖𝑖 , ̅𝑓𝑓𝒢𝒢 =
∑𝑖𝑖∈𝐺𝐺 𝑚𝑚𝑖𝑖 𝑓𝑓𝑖𝑖

𝑚𝑚𝒢𝒢
.

We define the KL-impurity of  𝒢𝒢 = 𝑓𝑓𝑖𝑖 ,𝑚𝑚𝑖𝑖 , 𝑖𝑖 ∈ 𝐺𝐺 as

ImpKL 𝒢𝒢 = �
𝑖𝑖∈𝐺𝐺

𝑚𝑚𝑖𝑖 KL 𝑓𝑓𝑖𝑖 ̅𝑓𝑓𝒢𝒢)

Impurity of a group of distributions 
(Lennert-Cody et. Al, 2010, 2013)

15
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KL-impurity can be expressed with the information entropy

ImpKL 𝒢𝒢 = 𝑚𝑚𝒢𝒢 𝐻𝐻 ̅𝑓𝑓𝒢𝒢 −�
𝑖𝑖∈𝐺𝐺

𝑚𝑚𝑖𝑖 𝐻𝐻 𝑓𝑓𝑖𝑖

because
ImpKL 𝒢𝒢 = ∑𝑖𝑖∈𝐺𝐺 𝑚𝑚𝑖𝑖 KL 𝑓𝑓𝑖𝑖 ̅𝑓𝑓𝒢𝒢)

= ∑𝑖𝑖∈𝐺𝐺 𝑚𝑚𝑖𝑖 ∫Ω 𝑓𝑓𝑖𝑖 𝑥𝑥 log 𝑓𝑓𝑖𝑖 𝑥𝑥
̅𝑓𝑓𝒢𝒢(𝑥𝑥)

𝑑𝑑𝑥𝑥

= −∫Ω∑𝑖𝑖∈𝐺𝐺 𝑥𝑥 𝑚𝑚𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥 log ̅𝑓𝑓𝒢𝒢 𝑥𝑥 𝑑𝑑𝑥𝑥

+∑𝑖𝑖∈𝐺𝐺 ∫Ω𝑚𝑚𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥 log 𝑓𝑓𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥

= 𝑚𝑚𝒢𝒢 𝐻𝐻 ̅𝑓𝑓𝒢𝒢 − ∑𝑖𝑖∈𝐺𝐺 𝑚𝑚𝑖𝑖 𝐻𝐻 𝑓𝑓𝑖𝑖

An Expression with the information entropy

16
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Hierarchical clustering repeatedly combines two closest clusters 

as measured by some measure of “distance”

Distance between two groups of distributions 

DMJS 𝒢𝒢1,𝒢𝒢2 = DMJS ̅𝑓𝑓 𝒢𝒢1 ,∑𝑖𝑖∈𝐺𝐺1 𝑚𝑚𝑖𝑖 , ̅𝑓𝑓 𝒢𝒢2 ,∑𝑖𝑖∈𝐺𝐺2 𝑚𝑚𝑖𝑖

where

̅𝑓𝑓𝒢𝒢𝑗𝑗 =
∑𝑖𝑖∈𝐺𝐺𝑗𝑗 𝑚𝑚𝑖𝑖 𝑓𝑓𝑖𝑖

𝑚𝑚𝒢𝒢𝑗𝑗
, 𝑗𝑗 = 1,2

It can be shown that

DMJS 𝒢𝒢1,𝒢𝒢2 = 𝑚𝑚𝒢𝒢1∪𝒢𝒢2H 𝒢𝒢1 ∪ 𝒢𝒢2 − 𝑚𝑚𝒢𝒢1H 𝒢𝒢1 − 𝑚𝑚𝒢𝒢2H 𝒢𝒢2
= ImpKL 𝒢𝒢1 ∪ 𝒢𝒢2 − ImpKL 𝒢𝒢1 − ImpKL 𝒢𝒢2

Distance between two groups of distributions

17Increase of impurity by the merge /  Decrease of impurity by partition 
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Regression Tree for Histograms 
of Yellowfin tuna fork length

18
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Responses :
distributions of  body length

Explanatory variables：
season, latitude, longitude

Latitude < 5°N

Longitude < 115°WLongitude < 95°W

Latitude < 15°N

Regression tree for histograms of tuna body length

Cleridy E. Lennert-Cody, Mihoko 
Minami, Patrick K. Tomlinson, Mark N. 
Maunder, Fisheries Research (2010) 
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Partition of 
the Eastern Pacific Ocean by Regression Tree

20

# if terminal  nodes＝４

(1)
5°N

(2) 95°W

(3)
115°W
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Hierarchical Clustering for Histograms 
of Yellowfin tuna fork length

21
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Partition of 
the Eastern Pacific Ocean by Regression Tree

22

# of cluster =４
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Partitions with different numbers of clusters

23

# of clusters = 8 # of clusters = 7

# of clusters = 6 # of clusters = 5
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Partitions with different numbers of clusters

24

クラスター数と最小非類似度

8    7   6   5   4   3   2 

# of clusters = 4 # of clusters = 3

# of clusters = 2
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Clustering under connectivity restriction

25

# of clusters＝４
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Regression Tree for Density Estimates 
of Yellowfin tuna fork length

26
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Kernel density estimation for tuna fork length

27

Adjusted frequency of cell 𝑖𝑖 Kernel density estimate

sample size = “confidence”
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Regression tree and partitions of the Ocean

28

Response variable: density estimates
Explanatory variables : latitude, 

longitude
①

①

②

②

③

③④

④

(c.f. Lennert-Cody et. al, 2010, 2013)

Stopping rule: 
(1) leaf impurity < 0.1×root impurity
(2) confidence < 20
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Clustering for Density Estimates of 
Yellowfin tuna fork length

29
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For comparison, we performed clustering with three distances:

Modified Jensen-Shannon divergence (MJS)
DMJS 𝒢𝒢1,𝒢𝒢2 = 𝑚𝑚1 KL �𝑓𝑓1| ̅𝑓𝑓{1,2} + 𝑚𝑚2KL �𝑓𝑓2 | ̅𝑓𝑓{1,2}

Earth Mover‘s distance (EMD) (Henderson et al. 2015)

DEMD 𝒢𝒢1,𝒢𝒢2 ≡ �
0

1
�𝐹𝐹1−1 (𝑦𝑦) − �𝐹𝐹2−1(𝑦𝑦) 𝑑𝑑𝑦𝑦 = �

−∞

∞
�𝐹𝐹1 𝑥𝑥 − �𝐹𝐹2(𝑥𝑥) 𝑑𝑑𝑥𝑥

Cramér-Von Mises type distance 

DCVM 𝒢𝒢1,𝒢𝒢2 ≡
𝑚𝑚1 ⋅ 𝑚𝑚2

(𝑚𝑚1 + 𝑚𝑚2)
�
−∞

∞
�𝐹𝐹1 𝑥𝑥 − �𝐹𝐹2 𝑥𝑥

2𝑑𝑑𝐹𝐹𝑏𝑏(𝑥𝑥)

where 𝐹𝐹𝑏𝑏 is the overall average distribution function as 𝐹𝐹𝑏𝑏

Distance measures between clusters of distributions 

30
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Dendrograms of 5。 × 5。 cells

31

 clusters by modified J-S divergence and Cramer Von-Mises 
distance are somehow similar compared to the clusters by Earth 
Mover's distance

Earth Mover's distance produced a cluster with a small 
confidence (sample size)

Cramer-Von



Boston-Keio-Tsinghua Workshop 2023

Clusters and distributions of  5。 × 5。 cells 

32
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Comparison of results by three distances

33

 Modified Jensen-Shannon divergence (MJS)
DMJS 𝒢𝒢1,𝒢𝒢2 = 𝑚𝑚1 KL �𝑓𝑓1| ̅𝑓𝑓{1,2} + 𝑚𝑚2KL �𝑓𝑓2 | ̅𝑓𝑓{1,2}

 Earth Mover‘s distance (EMD) (Henderson et al. 2015)

DEMD 𝒢𝒢1,𝒢𝒢2 ≡ �
0

1
�𝐹𝐹1−1 (𝑦𝑦) − �𝐹𝐹2−1(𝑦𝑦) 𝑑𝑑𝑦𝑦 = �

−∞

∞
�𝐹𝐹1 𝑥𝑥 − �𝐹𝐹2(𝑥𝑥) 𝑑𝑑𝑥𝑥

c.f. L1 𝒢𝒢1,𝒢𝒢2 ≡ ∫−∞
∞ ̅𝑓𝑓1 𝑥𝑥 − ̅𝑓𝑓2(𝑥𝑥) 𝑑𝑑𝑥𝑥 （T. Nguyen-Trang et al. 2022）

 Cramér-Von Mises type distance 

DCVM 𝒢𝒢1,𝒢𝒢2 ≡
𝑚𝑚1 ⋅ 𝑚𝑚2

(𝑚𝑚1 + 𝑚𝑚2)
�
−∞

∞
�𝐹𝐹1 𝑥𝑥 − �𝐹𝐹2 𝑥𝑥

2𝑑𝑑𝐹𝐹𝑏𝑏(𝑥𝑥)
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Testing procedures for homogeneity   
and  the minimal homogeneous 

tree structure 

34
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Cao and Keilegom (2006) considered the problem to test 

𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2
using the kernel density estimates 𝑓𝑓1 and 𝑓𝑓 2 obtained from

two independent random samples,  
𝑋𝑋1, …𝑋𝑋𝑛𝑛 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑. 𝐹𝐹1, 𝑌𝑌1, …𝑌𝑌𝑚𝑚 ∼𝑖𝑖.𝑖𝑖.𝑑𝑑. 𝐹𝐹2.

They defined a test statistics, showed its asymptotic 
distribution and proposed a testing procedure for 𝐻𝐻0:𝐹𝐹1 = 𝐹𝐹2

However, their testing procedure cannot be applied to test 
the  homogeneity of a cluster because member distributions 
or samples are results of previous merges  and are  not 
independent. 

Testing homogeneity of kernel density estimates

35
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Suppose 𝒢𝒢 = �𝑓𝑓𝑖𝑖 ,𝑚𝑚𝑖𝑖 , 𝑖𝑖 ∈ 𝐺𝐺 , 𝒢𝒢 = 𝒢𝒢𝐿𝐿 ∪ 𝒢𝒢𝑅𝑅 an DMJS 𝒢𝒢𝐿𝐿,𝒢𝒢𝑅𝑅 = 𝑑𝑑.
𝐻𝐻0: 𝒢𝒢 is homogeneous (i.e., all samples used to estimate �𝑓𝑓𝑖𝑖

are from the same distribution)

Generation of randomization sample 𝒕𝒕 = (𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝐾𝐾)
For 𝑘𝑘 = 1,2,⋯ ,𝐾𝐾, repeat the following steps

1. Generate a sample 𝒙𝒙𝑖𝑖𝑘𝑘 of size 𝑚𝑚𝑖𝑖 from ̅𝑓𝑓𝒢𝒢 for all 𝑖𝑖 ∈ 𝐺𝐺
2. Compute density estimate �𝑔𝑔𝑖𝑖𝑘𝑘 with 𝒙𝒙𝑖𝑖𝑘𝑘 for all 𝑖𝑖 ∈ 𝐺𝐺
3. Perform clustering with 𝒢𝒢𝑘𝑘 = ( �𝑔𝑔𝑖𝑖𝑘𝑘 , mi), 𝑖𝑖 ∈ 𝐺𝐺 . 

4. Let 𝑡𝑡𝑘𝑘 = DMJS 𝒢𝒢𝐿𝐿𝑘𝑘,𝒢𝒢𝑅𝑅𝑘𝑘 where 𝒢𝒢𝐿𝐿𝑘𝑘 and 𝒢𝒢𝑅𝑅𝑘𝑘 are two clusters 

combined at the last step, that is,   𝒢𝒢 = 𝒢𝒢𝐿𝐿𝑘𝑘 ∪ 𝒢𝒢𝑅𝑅𝑘𝑘. 

Randomization sample for testing homogeneity 

36
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Generate a randomization sample 𝒕𝒕 of small size 𝐾𝐾1 e. g. 100
 If  # 𝑡𝑡𝑘𝑘|𝑡𝑡𝑘𝑘 > 𝑑𝑑,𝑘𝑘 = 1,2,⋯ ,𝐾𝐾1 ≥ 𝑁𝑁𝑑𝑑1 e. g. 10

then,   [𝑝𝑝 value for 𝑑𝑑] is greater than 
𝑁𝑁𝑑𝑑1
𝐾𝐾1

(e. g. 0.1)

 If  # 𝑡𝑡𝑘𝑘|𝑡𝑡𝑘𝑘 > 𝑑𝑑,𝑘𝑘 = 1,2,⋯ ,𝐾𝐾1 < 𝑁𝑁𝑑𝑑1 e. g. 10
then, compute the Chebyshev’s upper bound 𝑈𝑈 of 𝑃𝑃 𝑋𝑋 ≥ 𝑑𝑑
under 𝐻𝐻0 computed with sample mean and variance of sample 𝒕𝒕
 If  the upper bound U ≤ 𝜖𝜖 e. g. 0.001

then,   [𝑝𝑝 value for 𝑑𝑑] is less than U

 If  the upper bound U > 𝜖𝜖 e. g. 0.001
then, generate a randomization sample of large size 
𝐾𝐾2 𝑒𝑒.𝑔𝑔. 1000 and let  𝑁𝑁𝑑𝑑2 = # 𝑡𝑡𝑘𝑘|𝑡𝑡𝑘𝑘 > 𝑑𝑑,𝑘𝑘 = 1,2,⋯ ,𝐾𝐾2
[𝑝𝑝 value for d] = inf 𝑝𝑝| 𝑃𝑃 𝑊𝑊 ≤ 𝑁𝑁𝑑𝑑2 ≤ 0.05, 𝑊𝑊 ∼ Bin(𝐾𝐾2,𝑝𝑝)

Testing procedure for homogeneity of a cluster

37

( 𝑈𝑈 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡
𝑑𝑑−�̅�𝑡 2 )
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Hierarchical testing procedure for homogeneity

38

Let  𝐻𝐻0
(𝑗𝑗)

be “Cluster 𝒢𝒢𝑗𝑗 is homogeneous”.

Because the null hypotheses have the Hierarchical structure,

𝒢𝒢𝑖𝑖 ⊃ 𝒢𝒢𝑗𝑗 implies 𝐻𝐻0
(𝑖𝑖) ⇒ 𝐻𝐻0

(𝑗𝑗),
ｔhe family-wise error rate is controlled at the significance level 

α with the following hierarchical testing procedure:

Test starts from the top, the cluster of all distributions

 If the hypothesis is significant at α,
then, the hypothesis “the cluster is homogeneous” is rejected
The test proceeds to child clusters.

 If the hypothesis is not significant at α,
then, the hypothesis “the cluster is homogeneous” is accepted
The child clusters are not tested. 
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Boxplot of randomization samples with size 𝑲𝑲𝟏𝟏
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Not homogeneous at 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟏𝟏

Cannot be said “Not homogeneous”
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The minimal Homogeneous tree structure 

with 𝜶𝜶 = 𝟎𝟎.𝟎𝟎𝟏𝟏

40

White cells form clusters
individually by themselves
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Comparison of the results
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Regression tree Hierarchical clustering

The minimal homogeneous structure
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Homogeneity might be too demanding for defining a cluster. 

As a relaxed concept, we regard a cluster whose Chebyshev’s 
upper bound 𝑈𝑈 obtained with random sample is less than 𝜃𝜃,
is near-homogeneous with cut-off value 𝜃𝜃. 

Near-homogeneous tree structure

42

Numbers without parenthesis are node(merge) numbers and 
numbers in parenthesis are original cell numbers
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 We consider regression tree and hierarchical clustering 
methods for distributions based on the modified Jensen-
Shannon divergence. 

 We presented a testing procedure for homogeneity of a 
cluster and a hierarchical testing procedure to find the 
minimal homogeneous/near-homogeneous tree structure of 
distributions. 

 These methods and procedures are applied to the yellowfin 
tuna fork length data

Future work 

We would like to extend the method to Bayesian clustering 
for distributions with prior for partitions. 

Summary and future work

43
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Thank you for your attention
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Standardized mJS of Nodes
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