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Introduction

We often collect samples on characteristics of different
observation units and wonder Whether the characteristics of the
observation units have similar distributional structure?

We consider methods to find homogeneous subpopulations

— using regression tree and clustering for distributions
approaches

— based on a modified Jensen—Shannon divergence
and present
— a testing procedure for homogeneity of a cluster and

— a hierarchical testing procedure to find
the minimal homogeneous/near—homogeneous tree
structure of the distributions of a population characteristic.



Boston-Keio-Tsinghua Workshop 2023

Motivational Example

Yellowfin t A< H O
Yellowfin tuna fork length data cHOWLIL (IS (,

— collected from the tuna catch of
purse—seine vessels operated Fork length

— in the eastern Pacific Ocean Purse selne set (%Zﬂ e )
during 2003 — 2007 -

A total of 797 samples were available.
Each sample contains

— the fork lengths (cm) of
about 50 vellowfin tunas, and

— the date and the location of the fishing
operations associated with the tuna catch
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The fork length data

Data on the area and time period corresponding to the fishing
operations are obtained from data recorded by onboard
observers or from fishermen’ s logbooks.

The samples were collected by the port—sampling program of
the Inter—American Tropical Tuna Commission (IATTC:
www.iattc.org), which is the regional fishery management
agency responsible for the conservation of tuna and other
marine resources in the eastern Pacific Ocean

In our analysis, the fork length data were aggregated by location
— over time into 5° by 5° cells

— so that 797 samples were combined into 60 spatial cells.
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Histograms and numbers of samples in cells

sSpriie|

-80

90

-100

-110

-120

-130

-140

longitude



Boston-Keio-Tsinghua Workshop 2023

Histograms and numbers of samples in cells
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Outline of Talk

@ Regression Tree and Hierarchical Clustering

€ Modified Jensen—Shannon divergence, related distance and
Impurity measures

@ Regression Tree and Clustering for the Yellowfin tuna fork
length data

& With histograms
@ With density estimates

& Testing procedures for homogeneity and the minimum
homogeneous tree structure

@® Near—-homogeneous tree structure

&€ Summary and Future Work
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Regression Tree
and

Hierarchical Clustering
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Regression Tree

Classification and regression tree (CART, Breiman et al. (1984))

— starts from a set of all units and

— repeatedly subdivides that set using binary partitions defined
by the values of an explanatory variable selected to provide
the greatest decrease of the values of a response variable
In a measure of impurity until all divided nodes satisfy the
termination rule.

Xf"“’_:ﬂ
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Hierarchical Clustering

Hierarchical clustering (cf. Gordon (1999))
— It i1s an agglomerative approach
— FEach unit starts in its own cluster,

— The method repeatedly combines the two closest clusters
by some metric for distance among units

— At the end, all units form one large cluster.

5%000 5%5%0 O O0O00d

10
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Modified Jensen—Shannon divergence,
related distance, and

Impurity measures

1"
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Distance/Similarity Measures between distributions

€@ S H. Cha (2007) listed a total of 42 measures in 7 types:
1) L, Minkowski type, 2) L family, 3) Intersection family,

4) Inner Product family, 5) Fidelity family or Squared—chord
family, 6) Squared L2 family or x 2 family, 7) Shannon’ s
entropy family

@ The modified Jensen—Shannon Divergence (Dhillon et al. 2003)

@ Clustering of histograms using Wasserstein metric (Ispiro and
Lechevallier, 2006, Ispiro et al. 2014)

€ k—Means using Mixed & —Divergences (Nielsen et al. 2014)

@ Fuzzy clustering using L, measure (Phamtoan et al., 2022,
Nguyen—Trang et al. 2023)

@ Earth Mover’ s distance (Henderson et al., 2015)

12
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The Modified Jensen—Shannon divergence

@Iified Jensen—Shannon divergence (distance) \

For distributions f; and f, with confidences m; and m, (> 0) ,
respectively, let f{1,2} be their weighted average distribution

_ 1
fa,2y = m +m, (m1 f1(x) + myf; (X))-

1
Then, the modified Jensen—Shannon divergence is defined as

DM]S((fl»ml): (fz;mz)) = my KL(f1|f{1,2}) + mzKL(f2|f{1,2})

where KL(f|g) =f f( )logggg dx

Q)
\ (cf. Dhillon et al., 2003)
13
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The Modified Jensen—Shannon divergence

@ It is symmetric

DM]S((fll ml): (fZl mZ)) — DM]S((fZJ mz), (fl! ml))

€ No support problem arises since

X fua@)>03=xfix)>0}u{x:f, (x) >0}

@ It can be expressed with the information entropy

DM]S((fl» mq), (f2, mz))
= (my+my) H( f{1,2}) —myH(f1) —myH(f3)
where H(-) is the information entropy,

Hf) = — fﬂf(x) log f (x)dx

@ In the case of multinomial distributions (and histograms),
Dujs ((fl ,ml), (fz ,mz)) is the log-likelihood ratio. >
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Impurity of a group of distributions
(Lennert—Cody et. Al, 2010, 2013)

At each step of CART, the binary split that produces the largest
decrease in impurity is chosen.

murity of a group of distributions \

For a group of distributions G = {(f;, m;),i € G}, let m; and fg
be its confidence and weighted average distribution, respectively,

_ = _ZiEGmifi
mg— mi,fg— .

m
i€G g
We define the KL-impurity of G = {(f;, m;),i € G} as

Impi.(§) = ) mi KL(fl f5)

\_ A
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An Expression with the information entropy

KL-impurity can be expressed with the information entropy
Impk(§) = mg H(fy) = ) mi H(f)
i€G
because

Impk1,(G) = Xiee mi KL(fi] f5)

_ fi(x)
= Yieg M fol (x) log 7o) dx

= — [, Ziec (@) m;f;()log f;(x)dx
+Yiec Jomifi(x)log fi(x)dx
— Mg H(fg) — Diiec M H(f})

16
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Distance between two groups of distributions

Hierarchical clustering repeatedly combines two closest clusters

~

as measured by some measure of “distance”

(b

Dmys(G1,G2) = Dujs ((f(gl)'ZiEGl m;), (f(G2), Yiee, mi))

where

istance between two groups of distributions

— ZiEGjmiﬁ )
\_ fg; = J =12

Mg, -/
[t can be shown that
Dwmys(G1,G2) = mg,ug,H(G1 VU G2) — mg H(G1) — mg,H(G,)

= Impg(G1 U G2) — Impg(G1) — Impky(G2)
Increase of impurity by the merge / Decrease of impurity by partition

17
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Regression Tree for Histograms
of Yellowfin tuna fork length

18
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Regression tree for histograms of tuna body length

A |
Lat south Lat north
of 5N of &N
Latitude < 5°N
Longitude < 95°W Longitude < 115°W
Lon east | Lon west Lon east Lon west
of 95W | of 95W of 115W | of 115W

_.cﬂl J]- Latitude < 15°N
=47

Lat north | Lat south
of 15N of 16N

Oct-Dec

Jan-Sep

Apr-Sep

Jan-Mar

Lon east

of 105W

n=118

n=10

Lat south
of 10N

dlh.

n=79

n=46

n=178

Responses :
distributions of body length

Explanatory variables :
season, latitude, longitude

Cleridy E. Lennert-Cody, Mihoko
Minami, Patrick K. Tomlinson, Mark N.
Maunder, Fisheries Research (2010)
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Partition of
the Eastern Pacific Ocean by Regression Tree
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Hierarchical Clustering for Histograms
of Yellowfin tuna fork length

21
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Partition of
the Eastern Pacific Ocean by Regression Tree
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Partitions with different numbers of clusters
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Partitions with different numbers of clusters

# of clusters = 3

_#of clusters =4
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Clustering under connectivity restriction
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Regression Tree for Density Estimates
of Yellowfin tuna fork length

26



Boston-Keio-Tsinghua Workshop 2023

Kernel density estimation for tuna fork length

Adjusted frequency of cell i

Kernel density estimate

wn
-

1.0

density

05
|

0.0
|
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Kernel density estimation of tuna body length for cell 2

where

M
1 T — T,
E b,;j K /
hm; 4 h
j=1

]' f.j—.'i’fzfg
V2T
body length of size j (7 =1,2,..., M)

Gauss kernel

adjusted frequency of size j in cell i
M

100 150 200

Y "b;; Total frequency of cell i sample size = “confidence”

j=1

- e
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Regression tree and partitions of the Ocean

Response variable: density estimates
Explanatory variables : latitude,
lat 5deg < 2.5 longitU.de g

dev= 206.737

®

0

itude

©

[ e

®

o
lon bdeqg < -92.5 lon.bdeg|< -112.5 T
dev= 28414 dev= 86.844 : :
| | | f | f
dev= 1.747 dev=12.195 @ -140 -130 —120 -110 —100® -90 -80
1 (] ) [ Bt bt il s B
lat.5deg <125 IOngitUdE
T-hoh- dev=18.973 dev=37.793
/3 A B
DI e 19,308 dev=6783 (c.f. Lennert-Cody et. al, 2010, 2013)
N4 N5 :"ll'_l I__:__i I__I__I__r_I'_':I____I__I'_I'_':

/i3 | Stopping rule:
[ B ] (1) leaf impurity < 0.1 Xroot impurity
(2) confidence < 20

28
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Clustering for Density Estimates of
Yellowfin tuna fork length

29
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Distance measures between clusters of distributions

For comparison, we performed clustering with three distances:

€ Modified Jensen—Shannon divergence (MJS)_ )
Dyvys(G1,G2) =my KL(f1|f{1,2}) + myKL( £ |f{1,2})

@ Earth Mover ‘s dlstance (EMD) (Henderson et al. 2015)
Derin (61, G2) = f F () — i ()| dy = f IFy () — Fy()] dx

— 00

@ Cramér-Von Mises type distance
Devm(G1,Go) = f (Fu(x) — Fy ()" dFP (x)

where F? is the overall average distribution function as F?

(m1 + mz)

30
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Dendrograms of 5° X 5° cells

Modified J-S Earth Mover’s Dist. Cramer-Von Mises

~~TT

@ clusters by modified J-S divergence and Cramer Von-Mises
distance are somehow similar compared to the clusters by Earth
Mover's distance

@ Earth Mover's distance produced a cluster with a small

confidence (sample size)
31
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Clusters and distributions of 5° X 5° cells |

S

Modified J-S Earth Mover’s Dist. Cramer Von-Mises

Modified J-S Earth Mover’s Dist. Cramer Von-Mises
n | n | n |
m (28] m
o o
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Comparison of results by three distances

€ Modified Jensen—Shannon divergence (MJS) o
Dypys(G1,G2) = my KL(f1|f{1,2}) + myKL( £ |f{1,2})
& Earth Mover ‘s distance (EMD) (Henderson et al. 2015)

(00]

1
Disn (G1, Ga) = fo Frt () — Fy ()| dy = f I, () — By ()] dx

cf. L1(G1,G,) = f_oooo|ﬁ(x) — f(x)| dx (T. Nguyen-Trang et al. 2022)
€ Cramér—Von Mises type distance

Dena(Gu.62) = e [ (R0 = () R ()

Measure Modified J-S Earth Mover’s Dist. Cramér Von-Mises

# of # of mean | # of  # of mean body | # of # of mean body

cells sets length(m) | cells sets length(m) | cells sets  length(m)
cluster 1 11 164 0.771 9 146 0.754 8 104 0.741
cluster 2 9 225 0.881 2 18 0.913 12 304 0.866
cluster 3 16 288 0.994 20 424 0.919 15 260 0.999
cluster 4 24 120 1.294 29 209 1.197 25 129 1.289

33
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Testing procedures for homogeneity
and the minimal homogeneous
tree structure

34
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Testing homogeneity of kernel density estimates

Cao and Keilegom (2006) considered the problem to test
HO: Fl — FZ
using the kernel density estimates f; and f , obtained from

two independent random samples,
.i.d. .i.d.
Xl' XTl ~bt F]J er---Ym ~bt Fz.

They defined a test statistics, showed its asymptotic
distribution and proposed a testing procedure for Hy: F; = F,

However, their testing procedure cannot be applied to test
the homogeneity of a cluster because member distributions
or samples are results of previous merges and are not
independent.

35
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Randomization sample for testing homogeneity

Squose g = {(fi!mi)Ji € G}' g = gL U QR an DM]S(QL' QR) =d.

H,y: G is homogeneous (i.e., all samples used to estimate ﬁ

are from the same distribution)

@ Generation of randomization sample t = (ty,t,, ", tx)
For k = 1,2,---, K, repeat the following steps

1.

2.
3.

Generate a sample x¥ of size m; from fg forall i € G
Compute density estimate ¥ with x¥ for all i € G
Perform clustering with G¥ = {(g{‘,mi),i S G}.

Let ¢, = DM]S(Ql’f,gﬁ) where GX and G¥ are two clusters
combined at the last step, that is, G = Gf U GX.

36
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Testing procedure for homogeneity of a cluster

@ Generate a randomization sample t of small size K; (e.g.100)
‘If #{tkltk > d,k — 1,2,'“,K1} = Ndl (eg 10)
then, [p value for d] is greater than % (e.g.0.1)
1

‘If #{tkltk > d,k — 1,2,'“,K1} < Ndl (eg 10)
then, compute the Chebyshev’ s upper bound U of P(X > d)
under H, computed with sample mean and variance of sample t

@ If the upper bound U < € (e.g.0.001)

__svar(t) )

(U= (d—F)2

then, |[p value for d] is less than U

@ If the upper bound U > ¢ (e.g.0.001)
then, generate a randomization sample of large size
K, (e.g.1000) and let Ny, = #{t} |t;, > d, k =1,2,---,K,}

[p value for d] = inf{p| P(W < N4,) < 0.05, W ~ Bin(K,,»)}

37
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Hierarchical testing procedure for homogeneity

Let Héj) be “Cluster G; is homogeneous”.

Because the null hypotheses have the Hierarchical structure,
G; o G; implies HY = HY,

the family—wise error rate is controlled at the significance level

@ with the following hierarchical testing procedure:

@ Test starts from the top, the cluster of all distributions

@ If the hypothesis is significant at @,
then, the hypothesis “the cluster is homogeneous” is rejected
The test proceeds to child clusters.

@ If the hypothesis is not significant at «,
then, the hypothesis “the cluster is homogeneous” is accepted

The child clusters are not tested.
38
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Boxplot of randomization samples with size K4
Not homogeneous ata = 0.01

34

A =,

ob

35

__4__.—'—_-_E—_|_

59

57

i

58

51%3%5

B |
2 [ |
5 |
i
3
uw
T T T T T T
0 5000 10000 15000 20000 25000 300
o3 [N ) S o
g 2 |-|]:|--+—.umm . . [ ]
o I_ [ +t-n-urohba-.
N ﬂ—b—lu- [ ]
B 7 Fm*"”"
T T T T T T
1] 500 1000 1500 2000 2500
2] t-- s
3 — |..|:|:|;-—--P-—.un R - .
+|+H m
}_. _____{..,- s s ]
T T T T T T T
0 100 200 300 400 500 600

Cannot be said “Not homogeneous” 39



0. O‘OO

inghua Workshop 2023

ure

th

S

trict

€S

wi

Bost
| Homogeneous tre

INimMa

The m

7}
(]
>
5 ©
Wy o ~ N =
L] w U i o
s = = = 2 8 3 £
Z 2 > % > = o =
5 BB Ba By mw
=1 ﬂ nb.w wl MW v Mw e hw o hw 5
%] — — o o » S
== 4 =38 =49 =349 =9 >
—2353 283983838388 TE L2
=00 U0 U0 Uo Vo ==
0o s 2
o]
[Ty} L5
Lo — 2%
= ) =N
o p—(
“
I

el e T |

ool s e

—_———— e ———

- ——

R i v el e e e

—_———— e ==

el e e Sl e

e === = o

|

it 0,

1
1
1
1
1
1
1
1
O ! g
1
1
1
1
1
1
1
1
1
1
1
1
R g

o
N
o =]
2, e
D — ==
o
%

0€

sprne|

40

-80

-120 -110 -100
longitude

-130

-140



Comparison of the results

Regression tree
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Near—homogeneous tree structure

Homogeneity might be too demanding for defining a cluster.

As a relaxed concept, we regard a cluster whose Chebyshev’ s
upper bound U obtained with random sample is less than 0,

Is hear—homogeneous with cut—off value 6.

Cut-off value  # of Terminal nodes in the minimal near-homogeneious tree

interval nodes
[31.32, o] 1 59
26.81, 31.32) 3 58, 49, 42
[15.08, 26.81) 5 55, 54, 52, 49, 42

14.20, 15.08) 7 5, 52, 50, 49, 42, (42), 21

0.94, 14.20) 10 52, 50, 49, 48, 44, 42, (42), (6), (34), 2

[9.41, 9.94) 11 52, 50, 49, 44, 43, 42, (42), (6), (34), 21 30
6.50, 9.41) 12 52, 50, 49, 44, 43, 42, (42), (6), (34), 21, (15), (29)
9.41, 9.94) 16 52,50, 49, 43, 42, (42). (6), (34), 21, (15). (29), 23, (40),

(28), (27), (41)

Numbers without parenthesis are node(merge) numbers and
numbers in parenthesis are original cell numbers 42
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Summary and future work

® We consider regression tree and hierarchical clustering
methods for distributions based on the modified Jensen—
Shannon divergence.

® We presented a testing procedure for homogeneity of a
cluster and a hierarchical testing procedure to find the
minimal homogeneous/near—homogeneous tree structure of
distributions.

® These methods and procedures are applied to the yellowfin
tuna fork length data

Future work

® We would like to extend the method to Bayesian clustering
for distributions with prior for partitions.

43
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Thank you fov your attention
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Standardized mJS of Nodes

Boston-Keio-Tsinghua Workshop 2023

Node | Std. | Upper | out of | out of p-value | parent child Signicance
ID mJS | bound 100 1000 node nodes

59 31.32 | 0.0010 0 < 0.0010 - 56, H& ok
58 26.81 | 0.0014 0 < 0.0014 59 57, 54 ok
57 28.99 | 0.0012 0 < 0.0007 58 52, 55 ok
56 36.61 | 0.0007 0 < 0.0007 59 49, 42 ok
55 14.20 | 0.0050 0 < 0.0050 57 40, 53 ok
54 15.08 | 0.0044 0 < 0.0044 H& 50, 47 ok
53 18.14 | 0.0030 0 < 0.0030 55 48, 44 ok
52 4.28 | 0.0547 1 3 0.0077 57 20, 51 ok
51 9.35 1 0.0114 0 0 0.0030 52 32, 45 ok
507 4.47 | 0.0502 1 6 0.0118 54 46, 31 *
49 6.03 | 0.0275 0 1 0.0047 56 34, 35 ok
48 9.94 | 0.0101 0 0 0.0030 53 30, 43 ok
A7 59.27 | 0.0003 0 < 0.0003 H4 —427 21 ok
46_ 9.01 | 0.0123 0 0 0.0030 50 25, 38 *
451 2.38 | 0.1759 5 31 0.0416 51 39,19 *
44 6.50 | 0.0237 0 0 0.0030 53 36, 37 ok
437 2.45 | 0.1662 6 37 0.0484 48 41, -43 *
427 2.59 | 0.1490 1 19 0.0278 56 29, 33 *
41 9.64 | 0.0108 0 0 0.0030 43 22,9 *
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