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Introduction



Background

• Recently, the estimation of conditional average treatment effect
using machine learning algorithms has been actively researched
(Kunzel et al., 2019).

τ(x) = E[Ya=1 − Ya=0 | X = x]

• For example, the following methods have been proposed:
• Causal forests (Athey et al., 2018; Wager and Athey, 2019)
• Bayesian additive regression trees (Hill, 2011; Hahn et al., 2020)
• Neural networks (Syrgkanis et al., 2019)

• In the problems of estimating causal effect, ML approach have
often shown better results compared to cases where researchers
fit parametric or nonparametric models (Dorie et al., 2019).
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Background : Interpretability of estimation result

• The problem work with machine learning is that they are a black
box approach because the estimator is composed by many
operators.

• Because of lack of interpretability of estimation result, there
may be cases that prevent to apply machine learning approach
in practice.

• Variable importance (also known as feature importance) is a
score that indicates how ”important” a feature is to the model.

• One of the popular use of variable importance is for Random
forest that is a criterion for measuring the contribution of
variables to predictions.

• Variable importance generally uses two measures: Mean
Decrease Accuracy (MDA) and Mean Decrease Impurity (MDI).
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The aim of this presentation

(1) Propose a variable importance measure for Generalized random
forests (GRF; Athey et al., 2019) extending exist variable
importance measure defined for random forests.

(2) Propose a variable importance for causal forest which is a one
example of (1).

(3) Perform the simulation and evaluate empirical performance of
proposed method.

Remark
Causal forests that is the method to estimate CATE is the one of the
examples of generalized random forests.
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What is Variable Importance ?

In the context of regression problems Y on X, variable importance is
defined as the difference of explained variance with

VI(X(j)) =

∫
x,y

{
y − m(−j)(x (−j))

}2
− {y − m(x)}2 fX,Y(x, y)dxdy

where

m(x) = E[Y | X = x] and m(−j)(x (−j)) = E[m(x) | X(−j) = x(−j)]

Variable importance is a total Sobol index (Bénard et al 2021) which
is defined as

VI(X(j)) =
Var(m(X))− Var(E[m(X)|X(−j)])

Var(Y)
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Variable Importance for random forest

In random forest, variable importance for variable X(j) is defined by
replacing m(x) with random forest estimates f (RF)(·):

V̂I(X(j)) =

∫
x,y

{
y − f̂ (RF)(x(−j))

}2
−
{

y − f̂ (RF)(x)
}2

fX,Y(x, y)dxdy

where

• f (RF)(x) is a random forest estimates of E[Y|X] using all
observed variables.

• f (RF)(x(−j)) is a random forest estimates of E[Y|X(−j)] using all
observed variables without X(j).

However, if compute VIs for all p variables, we need to fit random
forests p + 1 times. To prevent this, two types of VI estimates are
usually used.
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Variable Importance for random forest

• (a) Permutation type Variable importance is defined as follows:

1
n

n∑
i=1

{
Yi − f̂ (RF,OOB)(Xi,πj)

}2
−
{

Yi − f̂ (RF,OOB)(Xi)
}2

• where f̂ (RF,OOB)(·) is the Out-of-bags random forest predictor
and Xi,πj be the variable obtained by permuting the j-th
element of vector Xi among the observed data.

• (b) Tree randomization type variable importance is defined as
follows:

1
n

n∑
i=1

{
Yi − f̂ (RF,OOB,−j)(Xi)

}2
−
{

Yi − f̂ (RF,OOB)(Xi)
}2

• where f̂ (RF,OOB),(−j)(Xi) is the random forest predictor with
noise up trees which defined as later.
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(Remark) Variable Importance that uses in Python modules and
R packages

• VIs implemented in Each package/module are different.
• In Python’s {scikit-learn}, it is implemented as a method called
Train-test MDA.

• The R {randomForest} package uses a variable importance based
on the Tree estimator for Out-of-bags samples (BC-MDA)
proposed by Breiman (2001).

• The R {randomforestSRC} package uses variable importance
based on the Random Forest estimator for Out-of-bags samples
(IK-MDA) (Ishwaran, 2007).

In terms of accuracy, IK-MDA is generally superior to both Train-test
MDA and BC-MDA, so here we extended a method based on IK-MDA
to GRF.
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Generalized random forest



Problem Setting

• Let (Xi,Oi) ∈ X ×O, (i = 1, 2, ..., n) be i.i.d. observations from
(X,O) ∈ X ×O

• X = (X(1),X(2), ...,X(p)) is a features
• Variable O depends on the problem setting:
• In a regression problem, O = {Y}, where Y is outcomes.
• In a causal inference problem, O = {Y,A}, where A is the binary
treatment and Y is outcomes.
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Local estimating equation

Consider the problem of estimating a functional parameter θ(x),
which is defined as the solution to the following local estimation
equation.

Definition: Local Estimating Equation

E[ψθ(x),ν(x)(Oi)|Xi = x] = 0 (1)

Here, ψ(·) is the score function and ν(x) is the nuisance parameter.
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Local estimating equations - Examples (1)

• In the case of a general random forest: setting Oi = {Yi} and
the score function as

ψµ(x)(Yi) = Yi − µ(x) (2)

• In fact, the estimator of a random forest is the solution of the
following equation:

n∑
i=1

αi(x)(Yi − µ(x)) = 0 (3)
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Local estimating equations - Examples (2)

• In the case of q quantile regression model, setting Oi = {Yi}, we
have

ψθ(x)(Yi) = q · 1{Yi > θ(x)} − (1 − q)1{Yi ≤ θ(x)}

• In the case of regression model with instrumental variables:
Oi = {Yi,Wi,Zi} ∈ R× {0, 1} × {0, 1}, where Zi is an
instrumental variable, under the assumption that Zi ⊥⊥ εi|Xi
and Cov(Zi,Wi|Xi) ̸= 0, we have

ψτ(x),µ(x)(Oi) = {Yi − Wiτ(x)− µ(x)}
(

1
Zi

)
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Generalized random forest

The solution (θ(x), ν(x)) to the estimating equation (1) is generally
estimated as the solution to the kernel-weighted estimating
equation.

(
θ̂(x), ν̂(x)

)
∈ argminθ,ν

{∥∥∥∥∥
n∑

i=1
αi(x)ψθ,ν(Oi)

∥∥∥∥∥
2

}
(4)

The Generalized Random Forest is a framework that estimates the
weights αi(x) using a random forest.

These αi(x) are called forest-weights.
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Estimation of forest-weights αi(x)

• Let Tb, ; b = 1, 2, ..,B be a Decision/Regression Trees that are
base learner of random forest.

• Let Lb(x) be a set of data {Xi, i = 1, 2, ..., n} included in the leaf
of Tree Tb that contains point x.

Then, we define the forest-weights αi(x) as follows.

Definition: forest-weights

αi(x) =
1{Xi ∈ Lb(x)}

|Lb(x)|
, αi(x) =

1
B

B∑
b=1

αbi(x) (5)

• αi(x) represents the strength of the relationship between point
x and training data Xi.

• To compute αi(x), we use a Gradient Tree (Athey et al., 2019).
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Example: Forest Weights

• The samples that are
weighted when predicting
the red × are shown.

• In GRF, the weights αi(x)
are computed for all
samples i, and then
weighted estimating
equation 4 is solved.

• In other words, GRF
estimates the kernel
weighting function
nonparametrically using a
forest.
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Figure 1: Forest Weights
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Variable Importance for
Generalized random forests



Projected local estimating equation

To define Variable importance for generalized random forest, we first
define a projected local estimating equation.

Def : Projected local estimating equation
For original local estimating equation

E[ψθ(x),ν(x)(Oi)|Xi = x] = 0,

define the X(−j)-projected local estimating equation as:

E
[
ψθ(−j)(x(−j)),ν(−j)(x(−j))(Oi) | X(−j)

i = x(−j)
]
= 0. (6)

Under some regularity conditions, the following equation holds.

θ(−j)(x(−j)) = E[θ(X) | X(−j) = x(−j)]
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Variable Importance for functional parameter θ(x)

We extend the definition of variable importance measure to
functional parameter θ(x) as:

VI(X(j)) =

∫
x,y

{
θ(x)− θ(−j)(x(−j))

}2
− {θ(x)− θ(x)}2 fX,Y(x, y)dxdy

and define a total Sobol index for functional parameter θ(x) as

ST(j) =
Var(θ(X))− Var(E[θ(X)|X(−j)])

Var(θ(X))

=
Var(θ(X))− Var

(
θ(−j)(X(−j))

)
Var(θ(X))

• ST(X(j)) is the amount of explained output variance lost when
X(−j) is removed from the model.

• This quantity is the information that one finds a small group of
the most predictive covariates.
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VI for generalized random forests estimator

We replace θ(−j)(x(−j)) in the previous slide with GRF estimator
θ̂(−j)(x(−j)) and define the variable importance measure for GRF as:

V̂I(X(j)) =

∫
x,y

{
θ(x)− θ̂(−j)(x(−j))

}2
−
{
θ(x)− θ̂(x)

}2
fX,Y(x, y)dxdy

However, as a random forest, to compute VI(X(j)) for all j = 1, 2, ..., p
is computationally (more) expensive compared to RF.

Alternative approach are permutation and noise-up.

Remark
GRF estimator θ̂(x) has the consistency for θ(x), then V̂I(X(j))

converge to VI(X(j)) in probability.
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out-of-bags forest-weights

• Let Dn = {(Xi,Oi), i = 1, 2, ..., n} be observations.
• Let S(b) (b = 1, 2, ...,B) be a random subset of Dn with size sn.
• Let Tb be a fitted gradient trees on S(b), (b = 1, 2, ...,B).
• Define Λi′ as the index set of trees that do not include the
sample i′ ∈ {1, 2, ..., n} in S(b):

Λi′ =
{

b ∈ {1, 2, ...,B} | (Xi′ ,Oi′) ̸= S(b)
}

(7)

• For each b ∈ Λi′ , define Lb(Xi′) be the leaf of tree Tb that
contains Xi′ .

• This means the leaf Lb(x) is the subset of feature space X that
contains x which generated by tree Tb.
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Def: Out-of-bags forest Weights

Def: out-of-bags forest weights (OOB-FW)
Define the out-of-bags forest weights (OOB-FW) for the sample i′
as:

α
(OOB)
i (Xi′) =

1
|Λi′ |

∑
b∈Λi′

αbi(Xi′), αbi(Xi′) =
1{Xi ∈ Lb(Xi′)}

|Lb(Xi′)|
(8)

OOB-FW is defined through only trees Tb which does not use sample
i′ ∈ {1, 2, ..., n} for learning.
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Def: out-of-bags generalized random forest estimator

Def: Out-of-bags GRF Estimator
Define the solution of (4) under OOB-FW as Out-of-bags GRF
estimator (OOB-GRF estimator) for (θ(Xi′), ν(Xi′)):(

θ̂(OOB)(Xi′), ν̂
(OOB)(Xi′)

)
∈ argmin

θ,ν


∥∥∥∥∥∥

n∑
i=1,i ̸=i′

α
(OOB)
i (Xi′)ψθ,ν(Oi)

∥∥∥∥∥∥
2

 (9)

Out-of-bags GRF estimators
(
θ̂(OOB)(Xi′), ν̂

(OOB)(Xi′)
)
does not

depend on sample i′ itself.
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Permutation type out-of-bags GRF estimators

• Let Xi,πj be the variable obtained by permuting the j-th element
of vector Xi among the observed data.

• Let Xπj be the random variable vector obtained by replacing the
j-th element of the vector X with a random variable following
the distribution of X(j).

Def: Permutation type out-of-bags GRF Estimator
We define permutation type out-of-bags GRF Estimator for
(θ(Xi′), ν(Xi′)) as follows.(

θ̂(Xi′,πj), ν̂(Xi′,πj)
)

∈ argminθ,ν


∥∥∥∥∥∥

n∑
i=1,i̸=i′

αOOB
i (Xi′,πj)ψθ,ν(Oi)

∥∥∥∥∥∥
2

 (10)
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Permutation type Variable importance for GRF

• Substitute permutation type out-of-bags GRF Estimator to the
definition of VI of GRF, Permutation type VI for GRF can be
defined.

Permutation type VI for GRF with respect to X(j)

V̂I
(P)

(X(j)) =
1

NB,n

n∑
i=1

{
θ(Xi)− θ̂(OOB)(Xi,πj)

}2

−
{
θ(Xi)− θ̂(OOB)(Xi)

}2
(11)

where NB,n =
∑n

i=1 1{|Λi| > 0}.
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Noise-up Gradient tree ans its out-of-bags estimator

• Let X(−j) be the random variable obtained by removing the j-th
element from the random variable vector X.

X(−j) = (X(1), ...,X(j−1),X(j+1), ...,X(p))

• The Noise-up Tree for the variable X(j) is a method to
marginalize the Tree estimator Tb with respect to X(j) by making
all subsequent divisions random whenever the split rule
contains X(j) in Tb while searching for the leaf containing the
point x (Ishwaran, 2007).

• We define a Noise-up gradient tree T(−j)
b (x) that adapt previous

procedure on a gradient tree.
• Then we can define Noise-up out-of-bags forest weights using
noise-up tree T(−j)

b (x) for X(j), and denoted by α(OOB,−j)
i (Xi) by

same procedure for permutation type weights.
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(Image) Noise-up Gradient tree ans its out-of-bags estimator

25



(Image) Noise-up Gradient tree ans its out-of-bags estimator
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Noise-up Gradient tree ans its out-of-bags estimator

• This noise-up mechanism is designed to deteriorate the
terminal prediction value when passing through a node that
branches on X(j).

• Let’s denote the tree after noise-up on Tb as T (−j)
b .

• The predictive performance of T (−j)
b is closely related to the

Variable Importance (VI) of X(j), which is tightly connected to the
split position of xv in T.

• The more information X(j) holds, the X(j) split appears in near
the root node (at a shallow location) of the tree Tb

• T (−j)
b have worse accuracy compared to Tb. As a result, the VI of

X(j) increases.
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Out-of-bags Noise-Up GRF Estimator

Def: out-of-bags Noise-Up GRF Estimator
We define the out-of-bags Noise-Up GRF estimator for
(θ(X′

i), ν(X′
i)) as follows.(

θ̂(OOB,−j)(Xi′), ν̂
(OOB,−j)(Xi′)

)
∈ argminθ,ν


∣∣∣∣∣∣

n∑
i=1,i̸=i′

α
(OOB,−j)
i (Xi′)ψθ,ν(Oi)

∣∣∣∣∣∣
2

 (12)
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Noise-up type variable importance for GRF

Def: Noise-Up type variable importance for GRF with respect to X(j)

We define the Noise-up variable importance for the GRF estimator
with respect to variable X(j) as follows.

V̂I
(NU)

(X(j)) =
1

NB,n

n∑
i=1

{
θ(Xi)− θ̂(OOB,−j)(Xi)

}2

−
{
θ(Xi)− θ̂(OOB)(Xi)

}2
(13)
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Approximate variable importance
measure for GRF



Approximate variable importance measure for GRF

• In the definition of two VIs contains the true θ(Xi) , So this
estimator is computational infeasible.

• (Remark) original VIs for random forest are able to compute
because it defined only through observed Yi.

• We approximate two types of VIs for GRF that be able to
compute from observed data.

• By following theorem, mean squared error for parameter θ(x) is
approximated by score function.
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Proposal : Permutation type approximate variable importance

Here we define the approximate Permutation MDA and Noise-up MDA
for the variable X(j). (For clarity, superscript (OOB) are omitted)

Approximated Permutation type VI for X(j)

ÂVI
(P)

(X(j)) =
1

NB,n

n∑
i=1

{
ρ2(Xi,πj)− ρ2(Xi)

}
(14)

where

ρ(Xi) =

n∑
k=1,k ̸=i

αk(Xi)ξ
TV̂−1

θ̂(Xi),ν̂(Xi)
(Xi)ψθ̂(Xi),ν̂(Xi)

(Ok)
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Proposal : Noise-up type approximate variable importance

Approximated Noise-up type VI for X(j)

ÂVI
(NU)

(X(j)) =
1

NB,n

n∑
i=1

{{
ρ(−j)(X(−j)

i )
}2

− ρ2(Xi)

}
(15)

where

ρ(−j)(X(−j)
i ) =

n∑
k=1,k̸=i

αk(Xi)ξ
T{V̂(−j)(Xi)}−1ψ

(−j)
i (Ok)

and
V̂(−j)(Xi) = V̂

θ̂(−j)(X(−j)
i ),ν̂(−j)(X(−j)

i )
(Xi)

ψ
(−j)
i (Ok) = ψ

(−j)
θ̂(−j)(X(−j)

i ),ν̂(−j)(X(−j)
i )

(Ok)
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Theorem : Approximate VIs converge to original VI

Theorem (Nakamura, 2023)
Under some regularity conditions, including assumptions in Athey
et al.,(2019), estimation error of ÂVI

(P)
(X(j))− V̂I

(P)
(X(j)) goes to

zero, that is:

ÂVI
(P)

(X(j))− V̂I
(P)

(X(j))
P−→ 0 (16)

and

ÂVI
(NU)

(X(j))− V̂I
(NU)

(X(j))
P−→ 0 (17)

This result follows from next Lemma.

33



Lemma 1 : Approximate mean squared error of GRF

Lemma

Assuming that GRF satisfies the assumption of Athey et al., (2019),
let θ̂(x) be the solution of GRF for the point x for the score function
ψθ,ν(O), subsample size s, regularization parameter ω < 0.2,
random partition parameter π > 0, then

∥∥∥θ̂(x)− θ(x)
∥∥∥2

2
=

( n∑
i=1

αi(x)ξTV̂θ,ν(x)−1ψθ(x),ν(x)(Oi)

)2

(18)

+OP

max

s1−π· log((1−ω)−1)

log(ω−1)

n ,
( s

n

) 4
3

 (19)

holds, where

V̂θ,ν(x) :=
n∑

i=1
αi(x)∇Mθ,ν(x), Mθ,ν(x) = E[ψθ,ν(O)|Xi = x]
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Proposing Approximate Variable Importance

• From the theorem, two types of VIs (11) and (13) can be
approximated by only through the score function ψθ,ν(Oi)

without unobserved true parameters θ(x).
• Each of AVI are generalizations of variable importance for
random forest.

• The following theorem shows ÂVI does not always converges to
total Sobol index ST(j).
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Theorem : Convergence of Permutation type AVI

Theorem (Nakamura, 2023)

ÂVI
(P)

(X(j))
L1−→ E

[{
θ(X)− E[θ(Xπj)|X(−j)]

}2
]

and right term can be decomposed to total Sobol index and noise,

E

[{
θ(X)− E[θ(Xπj)|X(−j)]

}2
]
= Var(θ(X))× ST(j) +δ (20)

where δ can be expressed as

δ = E

[{
E[θ(X)|X(−j)]− E[θ(Xπj)|X(−j)]

}2
]

This theorem follows from Lemma 2.
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Lemma 2 : Approximation of MSE by OOB-GRF estimator

Lemma

Under the assumption of Athey et al. (2019), for fixed sample size n
and subsample size sn, and the number of Gradient trees
constituting the GRF are B, for i ∈ 1, 2, ..., n, the following relation
holds.∥∥∥∥E [{θ̂OOB

B,sn,n(Xi)− θ(Xi)
}2
]
− E

[
{θB,sn,n(X)− θ(X)}2

]∥∥∥∥ = O
(

1
B

)
where θ̂OOB

B,sn,n(Xi) is OOB estimator and θB,sn,n(X) is theoretical
random forest.

This lemma shows that the average prediction error of a random
forest for test point x ∈ X can be approximated by the out-of-bag
estimates. Furthermore, as the number of trees increases, then the
difference of them are vanished.
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Permutation type AVI convergence under some settings

Corollary 1: X is independent
If covariates X are independent then,

ÂVI
(P)

(X(j))
L1−→ Var(θ(X))× ST(j)

Corollary 2: θ(x) is additive
If θ(X) is additive, that is θ(X) =

∑
j θj(X(j))

ÂVI
(P)

(X(j))
L1−→ Var(θ(X))× ST(j)

mg

where ST(j) is total Sobol index and ST(j)
mg is marginal total sobol

index which is defined as:

ST(j) =
E[Var{θ(X)|X(−j)]}

Var(θ(X))
, ST(j)

mg =
E[Var(θ(Xπj)|X(−j)]

Var(θ(X))
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(Remark) What do ST(j) and ST(j)
mg mean ?

ST(j) (Total Sobol index)

• This quantity depends on joint distribution of X = (X(j),X(−j)).
• If there are some highly correlated variables with X(j) in X(j),

ST(j) becomes small.

ST(j)
mg (Marginal total Sobol index)

• This quantity depends on product of distribution

fX(−j)(x(−j))× fX(j)(x(j))

• Even if there are some highly correlated variables with X(j) in
X(j), ST(j)

mg does not change.
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Application to causal inference
and simulation



Settings

• As an application of variable importance for GRF, we consider to
estimate conditional average causal effect (CATE).

• Here we use R-loss (Nie and Wager, 2021) as a score function
that satisfies Neyman orthogonality (Chernozhukov et al., 2018).

• Let {Yi,Ai,Xi} are observations, where
• Ai ∈ {0, 1} : treatment variable
• Yi ∈ R : outcome variable
• Xi ∈ Rn : feature variables
• Yi,a=1, Yi,a=0 : potential outcomes
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R-loss

Under the strongly ignorable assignment

(Yi,a=1,Yi,a=0) ⊥⊥ Ai | Xi

and the propensity score π(x) := E[Ai|Xi = x] satisfies

0 < π(x) < 1 forall x ∈ X

Consider to estimate CATE which is defined as:

τ(x) = E [Ya=1 − Ya=0 | Xi = x]

R-loss for τ(x) is given by

ψτ(x)(Oi) = (Ai − π(Xi)) {(Yi − m(Xi))− (Ai − π(Xi)) τ(Xi)} (21)

In practice, m(x) and π(x) are estimated by cross-fitting.
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Setting

Simulation is performed under following setting.

• Feature variables are generated from

X(j) i.i.d.∼ N(0, 1) (j = 1, 2, ..., 20)

• Treatment variable is generated by

P(A = 1|X) = 0.6 · 1{X1 > 0}+ 0.4 · 1{X1 ≤ 0}

• Outcome variable Y is generated by

Y = A · τ(X) + µ(X) + ε

where εi ∼ N(0, 1),

τ(X) = 2min(X(1), 0)− 2(X(2))2 + X(3)(1 − X(4))2

and
µ(X) = X(5) +min(X(6), 0)
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Setting

• Data are generated with a sample size of n = 1000
• Estimate the causal effect τ(x) using a GRF with the R-Learner
score (21)

• Compute variable importances by ÂVI
(P)

and ÂVI
(NU)

,
respectively.
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Estimation Results

Permutation Noise-up
X1 0.2859 0.1761
X2 2.3114 2.0635
X3 2.6034 1.7526
X4 1.1118 0.7170
X5 0.0029 -0.0812
X6 0.0029 -0.0829
X7 0.0034 -0.0789
X8 0.0057 -0.0811
X9 0.0028 -0.0792

X10 0.0005 -0.0839

Permutation Noise-up
X11 0.0023 -0.0798
X12 0.0009 -0.0830
X13 0.0023 -0.0835
X14 0.0028 -0.0795
X15 0.0032 -0.0795
X16 0.0034 -0.0804
X17 0.0020 -0.0833
X18 0.0035 -0.0775
X19 0.0045 -0.0821
X20 0.0034 -0.0800

Table 1: Variable importance for conditional causal effects calculated for
Permutation and Noise-up
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Results
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Figure 2: Variable importance using Permutation (upper figure) and Noise-up
(lower figure)
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Results

• The results of the simulation are shown in Table 1 and Figure 2.
• From these results, it can be seen that the variables X(1), ...,X(4)

included in the conditional causal effect are estimated to have a
larger variable importance than other variables not included,
regardless of the method used.

• On the other hand, while Permutation estimates X(3) as having
the highest variable importance, Noise-up estimates X(2) as the
highest, showing a difference.

• The variable importance of Noise-up, although relatively small
for the variables 5 ≤ j ≤ 20 that are desired to be sufficiently
close to 0, is not close enough to 0.
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Summary of presentation

• We define a new variable importance measures for generalized
random forests and propose approximate variable importance
that is not depends on unobserved ground-truth θ(x)

• We show the two types of Approximate variable importance
measure ÂVI

(P)
and ÂVI

(NU)
converge to V̂I

(P)
and V̂I

(NU)
.

• As a specific application, we proposed variable importance for
conditional causal effects and We demonstrated the
effectiveness of the proposed method through simulation.
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Future Work

• It is known that Permutation MDA for random forest does not
work well when there is correlation between features or when
the functional parameter includes interactions. Also, Noise-up
MDA has a problem in terms of accuracy.

• We plan to resolve these issues by extending Projected CART by
B’enard et al (2022) to gradient tree.

• Implementing the algorithm in C++, and developing R packages
and Python modules.
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Thank you for Listening !
Have a nice day !
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Gradient Trees

The tree estimating θ(x), which is defined as the solution of the
estimation equation, is called a Gradient Tree (Athey et al., 2019). A
Gradient Tree is a recursive partitioning algorithm that divides nodes
by focusing on the heterogeneity of θ(x).

1. Labeling step: Using the data of parent node P, we estimate θ̂P
and ν̂P.

(θ̂P, ν̂P) ∈ argminθ,ν


∥∥∥∥∥ ∑

i:Xi∈P
ψθ,ν(Oi))

∥∥∥∥∥
2

 (22)

We then define ΓP as the consistent estimator for the derivative
of the score function, ∇E[ψθ̂P,ν̂P

|Xi ∈ P]. For example,

ΓP =
1

|i : Xi ∈ P|
∑

{i:Xi∈P}

∇ψθ̂P,ν̂P
(Oi). (23)

Using these, we construct pseudo-outcomes.

ρi = −ξTΓ−1
P ψθ̂P,ν̂P

(Oi) ∈ R (24)

Here, ξ is a vector that extracts the part corresponding to θ(·)
from ψ.
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Gradient Trees

2. Regression step: We partition the pseudo-outcome ρi just like
CART does. That is, we divide the parent node P into child nodes
C1 and C2 by using the variable X as a criterion, in order to
maximize the following criterion.

∆(C1,C2) =

2∑
j=1

1
|i : Xi ∈ Cj|

 ∑
i:Xi∈Cj

ρi

2

(25)

Athey, Tibshirani, and Wager (2019) have shown that maximizing the
evaluation function ∆ is asymptotically equivalent to minimizing the
following error.∑

j=1,2
Pr
[
X ∈ Cj

∣∣X ∈ P
]
E

[(
θ̂Cj − θ(X)

)2 ∣∣X ∈ Cj

]
(26)

Here, θ̂Cj is the solution of the estimation equation in child node Cj.
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Projected gradient trees

Projected gradient trees are a extension of Projected CART algorighm
proposed by Bénard et al.,(2021).

• An(X) is the cell of the original gradient tree partition where X
falls.

• A(−j)
n (X(−j)) is the projected partition

We respectively denote associate projected gradient tree and
projected out-of bags forest-weights as

T(−j)
b (X(j)) and α

(−j,OOB)
i (x(−j)

i′ ),

respectively defined as following slides

52



Projected gradient trees

α
(−j,OOB)
i (X(−j)

i′ ) =
1

|Λi′ |
∑

b∈Λi′

α
(−j)
bi (X(−j)

i′ ) (27)

α
(−j)
bi (X(−j)

i′ ) =
1{X(−j)

i ∈ Lb(X(−j)
i′ )}

|Lb(X(−j)
i′ )|

(28)
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Projected gradient trees

Define a projected out-of-bags generalized estimator for
(θ(−j,OOB)(X(−j)

i ), ν(−j,OOB)(X(−j)
i )) as:

Def: Projected out-of-bags GRF Estimator(
θ̂(OOB,−j)(X(−j)

i′ ), ν̂(−j,OOB)(X(−j)
i′ )

)
∈ argmin

θ,ν


∥∥∥∥∥∥

n∑
i=1,i̸=i′

α
(−j,OOB)
i (X(−j)

i′ )ψθ,ν(Oi)

∥∥∥∥∥∥
2

 (29)
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