Global solutions to the stochastic reaction-diffusion equation with superlinear forcing and superlinear multiplicative noise

Mickey Salins

Boston University

msalins@bu.edu

June 27, 2023
Bounded spatial domain \(x \in D \subset \mathbb{R}^d \).

\[
\begin{cases}
\frac{\partial u}{\partial t}(t, x) = A u(t, x) + f(u(t, x)) + \sigma(u(t, x)) \dot{w}(t, x) & t > 0, \ x \in D, \\
u(t, x) = 0, \ x \in \partial D
\end{cases}
\]

- Second-order elliptic differential operator
 \[
 A = \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right).
 \]
Stochastic reaction-diffusion equation

Bounded spatial domain $x \in D \subset \mathbb{R}^d$.

\[
\begin{aligned}
\frac{\partial u}{\partial t}(t, x) &= A u(t, x) + f(u(t, x)) + \sigma(u(t, x)) \dot{w}(t, x) \quad t > 0, \quad x \in D, \\
u(t, x) &= 0, \quad x \in \partial D
\end{aligned}
\]

- Second-order elliptic differential operator
 \[A = \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right). \]
- Nonlinear reaction term $f(u(t, x))$
Bounded spatial domain $x \in D \subset \mathbb{R}^d$.

\[
\begin{cases}
\frac{\partial u}{\partial t}(t, x) = A u(t, x) + f(u(t, x)) + \sigma(u(t, x)) \dot{w}(t, x) & t > 0, \ x \in D, \\
u(t, x) = 0, \ x \in \partial D
\end{cases}
\]

- Second-order elliptic differential operator
 \[A = \sum_{i=1}^d \sum_{j=1}^d \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right). \]
- Nonlinear reaction term $f(u(t, x))$
- Multiplicative noise term $\sigma(u(t, x)) \dot{w}$.
The solution to the non-stochastic heat equation \(\frac{\partial u}{\partial t} = \frac{1}{2} \Delta u \), \(u(0, x) = u_0(x) \) can be written as a convolution with a heat kernel

\[
 u(t, x) = \int_D K(t, x, y)u_0(y)dy. \tag{1}
\]
The solution to the non-stochastic heat equation \(\frac{\partial u}{\partial t} = \frac{1}{2} \Delta u \),
\(u(0, x) = u_0(x) \) can be written as a convolution with a heat kernel

\[
 u(t, x) = \int_D K(t, x, y) u_0(y) dy. \tag{1}
\]

If the domain is the whole space then \(K(t, x, y) = (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2t}} \).
The solution to the non-stochastic heat equation $\frac{\partial u}{\partial t} = \frac{1}{2} \Delta u$, $u(0, x) = u_0(x)$ can be written as a convolution with a heat kernel

$$u(t, x) = \int_D K(t, x, y)u_0(y)dy. \quad (1)$$

If the domain is the whole space then $K(t, x, y) = (2\pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{2t}}$.

Duhamel’s principle gives the solution to the semilinear heat equation $\frac{\partial u}{\partial t} = \frac{1}{2} \Delta u + f(u)$

$$u(t, x) = \int_D K(t, x, y)u_0(y)dy + \int_0^t \int_D K(t-s, x, y)f(u(s, y))dyds.$$
This convolution is a semigroup $S(t) : C(D) \rightarrow C(D)$

$$S(t)u_0 = \int_D K(t, x, y)u_0(y)dy.$$
This convolution is a semigroup $S(t) : C(D) \rightarrow C(D)$

$$S(t)u_0 = \int_D K(t, x, y)u_0(y)dy.$$

We can write solution (suppressing the spatial variable)

$$u(t) = S(t)u_0 + \int_0^t S(t - s)f(u(s))ds.$$
This convolution is a semigroup $S(t) : C(D) \to C(D)$

$$S(t)u_0 = \int_D K(t, x, y)u_0(y)dy.$$

We can write solution (suppressing the spatial variable)

$$u(t) = S(t)u_0 + \int_0^t S(t-s)f(u(s))ds.$$

We want to perturb this in space and time by random perturbations

$$\frac{\partial u}{\partial t}(t, x) = \frac{1}{2} \Delta u(t, x) + f(u(t, x)) + \sigma(u(t, x)) \dot{w}.$$
This convolution is a semigroup $S(t) : C(D) \to C(D)$

$S(t)u_0 = \int_D K(t, x, y)u_0(y)dy$.

We can write solution (suppressing the spatial variable)

$$u(t) = S(t)u_0 + \int_0^t S(t - s)f(u(s))ds.$$

We want to perturb this in space and time by random perturbations

$$\frac{\partial u}{\partial t}(t, x) = \frac{1}{2}\Delta u(t, x) + f(u(t, x)) + \sigma(u(t, x))\dot{w}.$$

Formally, solution should be given by

$$u(t) = S(t)u_0 + \int_0^t S(t - s)f(u(s))ds + \int_0^t S(t - s)\sigma(u(s))dw(s).$$
Existence of global solutions

- Under reasonable assumptions on A and \dot{w}, the solutions are function-valued.

- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t > 0$. (Da Prato, Zabczyk)

- If σ is locally Lipschitz continuous with linear growth and f is locally Lipschitz continuous and features dissipative behaviors $\lim_{|x| \to \infty} f(x) = -\infty$, global solutions exist. (Brzezniak Peszat 1999, Iwata 1999, Cerrai 2003, Da Prato Röckner 2002, Marinelli Röckner 2010, Röckner Liu 2010)

- Mueller and collaborators (1991, with Sowers 1993, 1998, 2000) showed that in the space-time white noise case with $A = \partial^2_{xx}$, $f \equiv 0$ and $\sigma(u) = |u|^{\gamma}$, solutions never explode if $\gamma < \frac{3}{2}$ and explode with positive probability if $\gamma > \frac{3}{2}$.
Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t > 0$. (Da Prato, Zabczyk)

Mueller and collaborators (1991, with Sowers 1993, 1998, 2000) showed that in the space-time white noise case with $\mathcal{A} = \partial^2 / \partial x^2$, $f \equiv 0$ and $\sigma(u) = |u|^{\gamma}$, solutions never explode if $\gamma < \frac{3}{2}$ and explode with positive probability if $\gamma > \frac{3}{2}$. (Salins, BU)
Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t > 0$. (Da Prato, Zabczyk)
- If σ is locally Lipschitz continuous with linear growth and f is locally Lipschitz continuous and features dissipative behaviors

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = -\infty,$$

Existence of global solutions

- Under reasonable assumptions on A and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t > 0$. (Da Prato, Zabczyk)
- If σ is locally Lipschitz continuous with linear growth and f is locally Lipschitz continuous and features dissipative behaviors
 \[
 \lim_{|x| \to \infty} \frac{f(x)}{x} = -\infty,
 \]
- Mueller and collaborators (1991, with Sowers 1993, 1998, 2000) showed that in the space-time white noise case with $A = \frac{\partial^2}{\partial x^2}$, $f \equiv 0$ and $\sigma(u) = |u|^\gamma$, solutions never explode if $\gamma < \frac{3}{2}$ and explode with positive probability if $\gamma > \frac{3}{2}$.
Accretive vs. dissipative forcing

- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = +\infty \), \(f \) is superlinearly accretive.
Accretive vs. dissipative forcing

- If $\lim_{u \to \pm \infty} \frac{f(u)}{u} = +\infty$, f is superlinearly accretive.
- Accretive forces push solutions toward $\pm \infty$, possibly causing explosion – even without stochastic noise.
Accretive vs. dissipative forcing

- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = +\infty \), \(f \) is superlinearly accretive.
- Accretive forces push solutions toward \(\pm \infty \), possibly causing explosion – even without stochastic noise.
- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = -\infty \), \(f \) is superlinearly dissipative.
Accretive vs. dissipative forcing

- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = +\infty \), \(f \) is superlinearly accretive.

Accretive forces push solutions toward \(\pm \infty \), possibly causing explosion – even without stochastic noise.

- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = -\infty \), \(f \) is superlinearly dissipative.

Dissipative forces push solutions away from \(\pm \infty \), counteracting expansion due to noise.
Accretive vs. dissipative forcing

- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = +\infty \), \(f \) is superlinearly accretive.
- Accretive forces push solutions toward \(\pm \infty \), possibly causing explosion – even without stochastic noise.
- If \(\lim_{u \to \pm \infty} \frac{f(u)}{u} = -\infty \), \(f \) is superlinearly dissipative.
- Dissipative forces push solutions away from \(\pm \infty \), counteracting expansion due to noise.
- I outline some recent results about sufficient conditions in the accretive and dissipative settings that guarantee that mild solutions to the SRDE do not explode.
Technical Assumptions on A and \dot{w}

- Eigenvalues of A, $\{e_k(x)\}$ complete orthonormal basis of $L^2(D)$.
 \[A e_k = -\alpha_k e_k, \quad 0 \leq \alpha_k \leq \alpha_{k+1} \].

Formal definition of the noise: Sequence $\lambda_j \geq 0$

\[\dot{w}(t, x) = \infty \sum_{j=1}^{\infty} \lambda_j e_j(x) \, d\beta_j(t), \quad \beta_j(t) \text{ i.i.d. one-dimensional B.M.} \]

Condition (Cerrai 2003) - There exist $\theta > 0$, $\rho \in [2, +\infty)$

\[\sum_{k=1}^{\infty} \alpha_k - \theta k |e_k|^2_{L^\infty} < +\infty, \quad \sum_{j=1}^{\infty} \lambda_j \rho |e_j|^2_{L^\infty} < +\infty \text{ or } \sup_j \lambda_j < +\infty \quad (\rho = +\infty) \]

\[\eta := \theta (\rho - 2), \quad \rho < 1 \quad (\eta := \theta \text{ if } \rho = +\infty) \]
Technical Assumptions on \(A \) and \(\dot{w} \)

- Eigenvalues of \(A \), \(\{e_k(x)\} \) complete orthonormal basis of \(L^2(D) \).
 \[
 A e_k = -\alpha_k e_k, \quad 0 \leq \alpha_k \leq \alpha_{k+1}.
 \]

- Formal definition of the noise: Sequence \(\lambda_j \geq 0 \)
 \[
 \dot{w}(t, x) = \sum_{j=1}^{\infty} \lambda_j e_j(x) d\beta_j(t), \quad \beta_j(t) \text{ i.i.d. one-dimensional B.M.}
 \]
Technical Assumptions on A and \dot{w}

- Eigenvalues of A, $\{e_k(x)\}$ complete orthonormal basis of $L^2(D)$.
 \[Ae_k = -\alpha_k e_k, \quad 0 \leq \alpha_k \leq \alpha_{k+1}. \]

- Formal definition of the noise: Sequence $\lambda_j \geq 0$
 \[\dot{w}(t, x) = \sum_{j=1}^{\infty} \lambda_j e_j(x)d\beta_j(t), \quad \beta_j(t) \text{ i.i.d. one-dimensional B.M.} \]

- Condition (Cerrai 2003) - There exist $\theta > 0$, $\rho \in [2, +\infty]$
 \[\sum_{k=1}^{\infty} \alpha_k^{-\theta} |e_k|^2_{L^\infty} < +\infty, \quad \sum_{j=1}^{\infty} \lambda_j^\rho |e_j|^2_{L^\infty} < +\infty \text{ or sup } \lambda_j < +\infty (\rho = \infty) \]
 \[\eta := \frac{\theta(\rho - 2)}{\rho} < 1 \quad (\eta := \theta \text{ if } \rho = +\infty). \]
Technical Assumptions on A and \dot{w}

- Eigenvalues of A, $\{e_k(x)\}$ complete orthonormal basis of $L^2(D)$.
 $$Ae_k = -\alpha_k e_k, \quad 0 \leq \alpha_k \leq \alpha_{k+1}.$$

- Formal definition of the noise: Sequence $\lambda_j \geq 0$
 $$\dot{w}(t, x) = \sum_{j=1}^{\infty} \lambda_j e_j(x) d\beta_j(t), \quad \beta_j(t) \text{ i.i.d. one-dimensional B.M.}$$

- Condition (Cerrai 2003) - There exist $\theta > 0$, $\rho \in [2, +\infty]$
 $$\sum_{k=1}^{\infty} \alpha_k^{-\theta} |e_k|_{L^\infty}^2 < +\infty, \quad \sum_{j=1}^{\infty} \lambda_j^\rho |e_j|_{L^\infty}^2 < +\infty \text{ or } \sup_j \lambda_j < +\infty \quad (\rho = \infty)$$
 $$\eta := \frac{\theta(\rho - 2)}{\rho} < 1 \quad (\eta := \theta \text{ if } \rho = +\infty).$$

- Space Hölder continuity $\approx (1 - \eta)$. Time Hölder continuity $\approx \frac{1-\eta}{2}$.

Salins (BU) Superlinear SPDE June 27, 2023 7 / 28
Condition (Cerrai 2003) - There exist $\theta \in (0, 1)$, $\rho \in [2, +\infty]$ \[
\sum_{k=1}^{\infty} \alpha_k^{-\theta} |e_k|_{L^\infty}^2 < +\infty, \quad \sum_{j=1}^{\infty} \lambda_j^{\rho} |e_j|_{L^\infty}^2 < +\infty \text{ or } \sup_j \lambda_j < +\infty (\rho = \infty) \]

\[\eta := \frac{\theta (\rho - 2)}{\rho} < 1 \quad (\eta := \theta \text{ if } \rho = +\infty).\]

If D is a d-dimensional rectangle and $\mathcal{A} = \Delta$, then $\alpha_k \approx k^{\frac{2}{d}}$.
Example

- Condition (Cerrai 2003) - There exist $\theta \in (0, 1)$, $\rho \in [2, +\infty]$
 \[
 \sum_{k=1}^{\infty} \alpha_{k}^{-\theta} |e_{k}|_{L^{\infty}}^{2} < +\infty, \quad \sum_{j=1}^{\infty} \lambda_{j}^{\rho} |e_{j}|_{L^{\infty}}^{2} < +\infty \text{ or } \sup_{j} \lambda_{j} < +\infty \text{ (}\rho = \infty\text{)}
 \]
 \[
 \eta := \frac{\theta(\rho - 2)}{\rho} < 1 \quad \text{(}\eta := \theta \text{ if } \rho = +\infty\text{)}.
 \]

- If D is a d-dimensional rectangle and $A = \Delta$, then $\alpha_{k} \approx k^{\frac{2}{d}}$.

- If $d = 1$ we can take $\lambda_{j} \equiv 1$ (space-time white noise), $\rho = \infty$ $\theta \in (1/2, 1)$, $\eta = \theta$ arbitrarily close to $1/2$.
Condition (Cerrai 2003) - There exist $\theta \in (0, 1)$, $\rho \in [2, +\infty]$

$$
\sum_{k=1}^{\infty} \alpha_k^{-\theta} |e_k|^2_{L^\infty} < +\infty, \quad \sum_{j=1}^{\infty} \lambda_j^\rho |e_j|^2_{L^\infty} < +\infty \text{ or } \sup_j \lambda_j < +\infty \text{ (} \rho = \infty \text{)}
$$

$$
\eta := \frac{\theta(\rho - 2)}{\rho} < 1 \quad (\eta := \theta \text{ if } \rho = +\infty).
$$

- If D is a d-dimensional rectangle and $A = \Delta$, then $\alpha_k \approx k^{\frac{2}{d}}$.
- If $d = 1$ we can take $\lambda_j \equiv 1$ (space-time white noise), $\rho = \infty$, $\theta \in (1/2, 1)$, $\eta = \theta$ arbitrarily close to $1/2$.
- If $d > 1$, space-time white noise not allowed. On rectangular domains we need $\theta > \frac{d}{2}$, $\rho < \frac{2d}{d-2}$.
Superlinear σ when $f \equiv 0$

Heat equation on one spatial dimension. Space-time white noise.

Intuition: The $t^{-1/2}$ in the heat kernel $G(t, x, y) \approx e^{-|x-y|^2 / 2t \sqrt{2\pi t}}$ allows for extra growth.

Generalization to higher spatial dimensions and other more general conditions in dissertation by Bezdek.
Superlinear σ when $f \equiv 0$

- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}(t, x) + |u(t, x)|^\gamma \dot{w}(t, x)$.

Solutions never explode if $\gamma < \frac{3}{2}$.
Solutions explode with positive probability if $\gamma > \frac{3}{2}$.

Intuition: The $t^{-1/2}$ in the heat kernel $G(t, x, y) \approx e^{-|x-y|^2/2t}/\sqrt{2\pi t}$ allows for extra growth.

Generalization to higher spatial dimensions and other more general conditions in dissertation by Bezdek.
Superlinear σ when $f \equiv 0$

- Heat equation on one spatial dimension. Space-time white noise.
\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}(t, x) + |u(t, x)|^\gamma \dot{w}(t, x).
\]
- Solutions never explode if $\gamma < \frac{3}{2}$.

Intuition: The $t^{-1/2}$ in the heat kernel $G(t, x, y) \approx e^{-|x-y|^2/2t}/\sqrt{2\pi t}$ allows for extra growth.

Generalization to higher spatial dimensions and other more general conditions in dissertation by Bezdek.

Heat equation on one spatial dimension. Space-time white noise.

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} (t, x) + |u(t, x)|^\gamma \dot{w}(t, x). \]

Solutions never explode if \(\gamma < \frac{3}{2} \).

Solutions explode with positive probability if \(\gamma > \frac{3}{2} \).

Heat equation on one spatial dimension. Space-time white noise.
\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}(t, x) + |u(t, x)|^{\gamma} \dot{w}(t, x).
\]

Solutions never explode if \(\gamma < \frac{3}{2} \).

Solutions explode with positive probability if \(\gamma > \frac{3}{2} \).

Intuition: The \(t^{-1/2} \) in the heat kernel \(G(t, x, y) \approx e^{-\frac{|x-y|^2}{2t}} \sqrt{\frac{2}{2\pi t}} \) allows for extra growth.

Heat equation on one spatial dimension. Space-time white noise.

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} (t, x) + |u(t, x)|^\gamma \dot{w}(t, x). \]

Solutions never explode if \(\gamma < \frac{3}{2} \).

Solutions explode with positive probability if \(\gamma > \frac{3}{2} \).

Intuition: The \(t^{-1/2} \) in the heat kernel \(G(t, x, y) \approx e^{-\frac{|x-y|^2}{2t}} \sqrt{2\pi t} \) allows for extra growth.

Generalization to higher spatial dimensions and other more general conditions in dissertation by Bezdek.
Polynomially dissipative f – SDE example

- SDE on \mathbb{R}^d

$$dX(t) = -X(t)|X(t)|^{\beta-1}dt + (1 + |X(t)|)^\gamma dW(t)$$
Polynomially dissipative f – SDE example

- SDE on \mathbb{R}^d

 $$dX(t) = -X(t)|X(t)|^{\beta-1}dt + (1 + |X(t)|)^\gamma dW(t)$$

- If $\gamma \in [0, 1]$ then solutions cannot explode in finite time.
Polynomially dissipative f – SDE example

- SDE on \mathbb{R}^d

$$dX(t) = -X(t)|X(t)|^{\beta-1}dt + (1 + |X(t)|)^{\gamma}dW(t)$$

- If $\gamma \in [0, 1]$ then solutions cannot explode in finite time.
- If $\gamma < \frac{\beta+1}{2}$, then solutions cannot explode in finite time.
Polynomially dissipative f – SDE example

- SDE on \mathbb{R}^d

$$dX(t) = -X(t) |X(t)|^{\beta-1} dt + (1 + |X(t)|)^{\gamma} dW(t)$$

- If $\gamma \in [0, 1]$ then solutions cannot explode in finite time.
- If $\gamma < \frac{\beta+1}{2}$, then solutions cannot explode in finite time.
- Ito formula:

$$\mathbb{E}|X(t)|^2 = \mathbb{E}|X(0)|^2 + \mathbb{E} \int_0^t \left(-2|X(s)|^{\beta+1} + (1 + |X(s)|^{\gamma})^2\right) ds.$$
Polynomially dissipative f – SDE example

- SDE on \mathbb{R}^d

\[dX(t) = -X(t)|X(t)|^{\beta-1}dt + (1 + |X(t)|)^{\gamma}dW(t) \]

- If $\gamma \in [0, 1]$ then solutions cannot explode in finite time.
- If $\gamma < \frac{\beta+1}{2}$, then solutions cannot explode in finite time.
- Ito formula:

\[\mathbb{E}|X(t)|^2 = \mathbb{E}|X(0)|^2 + \mathbb{E} \int_0^t \left(-2|X(s)|^{\beta+1} + (1 + |X(s)|^{\gamma})^2 \right) ds. \]

- Similar conditions identified by Liu and Röckner (2010) for monotone SPDEs

\[2V^* \langle A(t, v), v \rangle_V + \|B(t, v)\|_V^2 + \theta \|v\|_V^\alpha \leq C + K \|v\|_H^2. \]
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^{\beta}$ for $|u| > c_0$,
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^\beta$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$,
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu|u|^{\beta}$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$, with

$$\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}.$$

Note: Trace-class noise means $\eta = 0$ and this coincides with the Itô formula condition $\gamma < \beta + 1/2$. When η not trace-class, Itô formula arguments are not available. As long as $\beta > 1$, γ can grow superlinearly.
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \text{sign}(u) \leq -\mu |u|^\beta$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$, with $
\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^{\beta}$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^{\gamma})$, with $\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Note: Trace-class noise means $\eta = 0$ and this coincides with the Ito formula condition $\gamma < \frac{\beta+1}{2}$.
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^\beta$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$, with $\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Note: Trace-class noise means $\eta = 0$ and this coincides with the Ito formula condition $\gamma < \frac{\beta+1}{2}$.
- When η not trace-class, Ito formula arguments are not available.
Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^\beta$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$, with

$$\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}.$$

Then mild solutions can never explode.

- Note: Trace-class noise means $\eta = 0$ and this coincides with the Ito formula condition $\gamma < \frac{\beta+1}{2}$.
- When η not trace-class, Ito formula arguments are not available.
- As long as $\beta > 1$, γ can grow superlinearly.
Idea of the proof

- Set up a sequence of stopping times

\[\tau_0 = \inf \{ t \geq 0 : |u(t)|_{L^\infty(D)} = 3^n c_0 \text{ for some } n \in \{1, 2, 3, \ldots\} \}, \]
Idea of the proof

- Set up a sequence of stopping times
 \[\tau_0 = \inf\{t \geq 0 : |u(t)|_{L^\infty(D)} = 3^n c_0 \text{ for some } n \in \{1, 2, 3, \ldots\}\}, \]

- If \(|u(\tau_n)|_{L^\infty} \geq 3^2 c_0\),
 \[\tau_{n+1} = \inf \left\{ t \geq \tau_n : \left| u(t) \right|_{L^\infty(D)} = 3 \left| u(\tau_k) \right|_{L^\infty(D)} \text{ or } \frac{1}{3} \left| u(\tau_n) \right|_{L^\infty(D)} \right\} \]
Idea of the proof

- Set up a sequence of stopping times

\[\tau_0 = \inf\{ t \geq 0 : |u(t)|_{L^\infty(D)} = 3^n c_0 \text{ for some } n \in \{1, 2, 3, \ldots\} \}, \]

- If \(|u(\tau_n)|_{L^\infty} \geq 3^2 c_0 \),

\[\tau_{n+1} = \inf\left\{ t \geq \tau_n : |u(t)|_{L^\infty(D)} = 3|u(\tau_k)|_{L^\infty(D)} \text{ or } \frac{1}{3}|u(\tau_n)|_{L^\infty(D)} \right\} \]

- If \(|u(\tau_n)|_{L^\infty(D)} = 3c_0 \),

\[\tau_{n+1} = \inf\{ t \geq \tau_n : |u(t)|_{L^\infty(D)} = 3|u(\tau_k)|_{L^\infty(D)} \}. \]
Idea of the proof

- There exist $C > 0$, $q > 1$ such that for any $k \in \mathbb{N}$, $\varepsilon > 0$,

$$
P(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \varepsilon) \leq C\varepsilon^q.
$$
Idea of the proof

- There exist $C > 0$, $q > 1$ such that for any $k \in \mathbb{N}$, $\varepsilon > 0$,

$$\mathbb{P} \left(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \varepsilon \right) \leq C\varepsilon^q.$$

- By Borel-Cantelli setting $\varepsilon = \frac{1}{k}$,

$$|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \frac{1}{k} \text{ a finite number of times.}$$
Idea of the proof

- There exist $C > 0$, $q > 1$ such that for any $k \in \mathbb{N}$, $\varepsilon > 0$,

$$
\mathbb{P}\left(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \varepsilon\right) \leq C\varepsilon^q.
$$

- By Borel-Cantelli setting $\varepsilon = \frac{1}{k}$,

$$
|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \frac{1}{k} \text{ a finite number of times.}
$$

- Eventually, $|u(\tau_k)|_{L^\infty}$ decreases or it takes more than $1/k$ time to triple. If it explodes it has more up steps than down steps.
Idea of the proof

- There exist $C > 0$, $q > 1$ such that for any $k \in \mathbb{N}$, $\varepsilon > 0$,

 \[\mathbb{P}\left(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \varepsilon\right) \leq C\varepsilon^q. \]

- By Borel-Cantelli setting $\varepsilon = \frac{1}{k}$,

 \[|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty} \text{ and } \tau_{k+1} - \tau_k < \frac{1}{k} \]
 a finite number of times.

- Eventually, $|u(\tau_k)|_{L^\infty}$ decreases or it takes more than $1/k$ time to triple. If it explodes it has more up steps than down steps.

- This is enough to prove that $\sum_k (\tau_{k+1} - \tau_k) = +\infty$. Cannot explode in finite time.
Idea of the proof

- If $\beta > 1$, the deterministic ODE $\frac{dv}{dt} = -|v(t)|^{\beta} \text{sign}(v(t))$ has solution $|v(t)| = |v(0)| - (\beta - 1) + Ct^{\beta - 1} \leq \max\{|v(0)|, Ct^{\beta - 1}\}$.
If $\beta > 1$, the deterministic ODE $\frac{dv}{dt} = -|v(t)|^\beta \text{sign}(v(t))$ has solution $|v(t)| = (|v(0)|^{-(\beta-1)} + Ct)^{-\frac{1}{\beta-1}}$.
Idea of the proof

- If $\beta > 1$, the deterministic ODE $\frac{dv}{dt} = -|v(t)|^\beta \text{sign}(v(t))$ has solution $|v(t)| = (|v(0)|^{-(\beta-1)} + Ct)^{-\frac{1}{\beta-1}} \leq \max\{|v(0)|, Ct^{-\frac{1}{\beta-1}}\}$.

Idea of the proof

- If $\beta > 1$, the deterministic ODE $\frac{dv}{dt} = -|v(t)|^\beta \text{sign}(v(t))$ has solution $|v(t)| = (|v(0)|^{-(\beta-1)} + Ct)^{-\frac{1}{\beta-1}} \leq \max\{|v(0)|, Ct^{-\frac{1}{\beta-1}}\}$.
- The mild solution to the SPDE

$$u(t + \tau_k) = S(t)u(\tau_k) + \int_{\tau_k}^{\tau_k+t} S(\tau_k + t - s)f(u(s))ds + \int_{\tau_k}^{\tau_k+t} S(\tau_k + t - s)\sigma(u(s))dW(s)$$
If $\beta > 1$, the deterministic ODE $\frac{dv}{dt} = -|v(t)|^\beta \text{sign}(v(t))$ has solution $|v(t)| = (|v(0)|^{-(\beta-1)} + Ct)^{-\frac{1}{\beta-1}} \leq \max\{|v(0)|, Ct^{-\frac{1}{\beta-1}}\}$.

The mild solution to the SPDE

$$u(t + \tau_k) = S(t)u(\tau_k) + \int_{\tau_k}^{\tau_k+t} S(\tau_k + t - s)f(u(s))ds + \int_{\tau_k}^{\tau_k+t} S(\tau_k + t - s)\sigma(u(s))dW(s)$$

If $Z_k(t) := \int_{\tau_k}^{\tau_k+t} S(\tau_k + t - s)\sigma(u(s))dW(s)$ satisfies $|Z_k(t)|_{L^\infty} \leq \frac{1}{3}|u(t + \tau_k)|_{L^\infty}$, for $t \in [0, \tau_k+1 - \tau_k]$, then

$$|u(t)|_{L^\infty} \leq \frac{3}{2} \left(|u(\tau_k)|_{L^\infty}^{-(\beta-1)} + Ct\right)^{-\frac{1}{\beta-1}}.$$
Idea of the proof

- Moment bounds (Cerrai 2003) – For $p > 1$ large enough, and small numbers $\alpha, \gamma \in (0, (1 - \eta)/2)$ such that $(\alpha - \frac{\zeta}{2})p > 1$ and

$$
\mathbb{E} \sup_{t \in [0, T]} \sup_{x \in D} |Z_k(t, x)|^p \leq C T^{p(\alpha - \frac{\zeta}{2}) - 1} \int_0^T \mathbb{E} \left(\int_0^t (t - s)^{-2\alpha - \eta} |\sigma(u(s + \tau_k))|_{L^\infty}^2 ds \right)^{\frac{p}{2}} dt.
$$
Idea of the proof

- Moment bounds (Cerrai 2003) – For $p > 1$ large enough, and small numbers $\alpha, \gamma \in (0, (1 - \eta)/2)$ such that $(\alpha - \frac{\zeta}{2})p > 1$ and

$$
\mathbb{E} \sup_{t \in [0,T]} \sup_{x \in D} |Z_k(t, x)|^p \\
\leq CT^{p(\alpha - \frac{\zeta}{2}) - 1} \int_0^T \mathbb{E} \left(\int_0^t (t - s)^{-2\alpha - \eta} |\sigma(u(s + \tau_k))|^{2}_{L^\infty} ds \right)^{\frac{p}{2}} dt.
$$

- $u(t + \tau_k)$ will decay like $t^{-\frac{1}{\beta - 1}}$ when $|Z_k(t)|_{L^\infty} \leq \frac{1}{3} |u(t + \tau_k)|_{L^\infty}$ so inner integral is bounded by

$$
C \int_0^t (t - s)^{-2\alpha - \eta} |u(\tau_k)|^{2}_{L^\infty} s^{-\frac{2(\gamma - 1)}{\beta - 1}} ds.
$$
Idea of the proof

- Moment bounds (Cerrai 2003) – For $p > 1$ large enough, and small numbers $\alpha, \gamma \in (0, (1 - \eta)/2)$ such that $(\alpha - \frac{\gamma}{2})p > 1$ and

$$\mathbb{E} \sup_{t \in [0,T]} \sup_{x \in D} |Z_k(t, x)|^p \leq C T^{p(\alpha - \frac{\gamma}{2}) - 1} \int_0^T \mathbb{E} \left(\int_0^t (t - s)^{-2\alpha - \eta} |\sigma(u(s + \tau_k))|_{L^\infty}^2 ds \right)^{\frac{p}{2}} dt.$$

- $u(t + \tau_k)$ will decay like $t^{-\frac{1}{\beta - 1}}$ when $|Z_k(t)|_{L^\infty} \leq \frac{1}{3} |u(t + \tau_k)|_{L^\infty}$ so inner integral is bounded by

$$C \int_0^t (t - s)^{-2\alpha - \eta} |u(\tau_k)|_{L^\infty}^2 s^{-\frac{2(\gamma - 1)}{\beta - 1}} ds.$$

- When $2\alpha + \eta + \frac{2(\gamma - 1)}{\beta - 1} < 1$, this inner integral is bounded as $t \downarrow 0$. (Beta function)
Idea of proof

- $\mathbb{P} \left(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty}, \tau_{k+1} - \tau_k < \varepsilon \left| u(\tau_k) \right|_{L^\infty} = c_0 3^n \right) \leq \mathbb{P} \left(\sup_{t \in [0, \varepsilon \wedge (\tau_{k+1} - \tau_k)]} |Z_k(t)|_{L^\infty} \geq \frac{1}{9} |u(\tau_k)|_{L^\infty} \left| u(\tau_k) \right|_{L^\infty} = c_0 3^n \right)$.

By Chebyshev's inequality, $\leq C\varepsilon (\alpha - \zeta^2)^{\frac{3}{3-n}}$.

Can be chosen so that $q = \alpha - \zeta^2 > 1$.

Setting $\varepsilon = 1/k$ and using the Borel-Centelli Lemma tells us that eventually it takes more than $1/k$ time for the L^∞ norm to triple. If it were to explode, then it would need more up steps than down steps. This is enough to guarantee that $\lim_{k \to \infty} \tau_k = +\infty$.

Idea of proof

- \(\mathbb{P}\left(|u(\tau_{k+1})|_{L^\infty} = 3|u(\tau_k)|_{L^\infty}, \tau_{k+1} - \tau_k < \varepsilon \left| u(\tau_k)|_{L^\infty} = c_03^n \right) \right) \leq \mathbb{P}\left(\sup_{t \in [0, \varepsilon \wedge (\tau_{k+1} - \tau_k)]} |Z_k(t)|_{L^\infty} \geq \frac{1}{9} |u(\tau_k)|_{L^\infty} \left| u(\tau_k)|_{L^\infty} = c_03^n \right) \right) \cdot \)

- By Chebyshev,

\[
\leq C \varepsilon^{(\alpha - \frac{\xi}{2})p} \frac{3^{np}}{3^{np}} \leq C \varepsilon^{(\alpha - \frac{\xi}{2})p},
\]
Idea of proof

- \(\mathbb{P} \left(\left| u(\tau_{k+1}) \right|_{L^\infty} = 3 \left| u(\tau_k) \right|_{L^\infty}, \tau_{k+1} - \tau_k < \varepsilon \left| u(\tau_k) \right|_{L^\infty} = c_0 3^n \right) \leq \mathbb{P} \left(\sup_{t \in [0, \varepsilon \wedge (\tau_{k+1} - \tau_k)]} \left| Z_k(t) \right|_{L^\infty} \geq \frac{1}{9} \left| u(\tau_k) \right|_{L^\infty} \right) \).

- By Chebyshev,

\[
\leq C \varepsilon^{(\alpha - \frac{\xi}{2})p} \frac{3^{np}}{3^{np}} \leq C \varepsilon^{(\alpha - \frac{\xi}{2})p},
\]

- Can be chosen so that \(q = \left(\alpha - \frac{\xi}{2} \right) p > 1. \)

- Setting \(\varepsilon = 1/k \) and using Borel-Centelli Lemma tell us that eventually it takes more than \(1/k \) time for the \(L^\infty \) norm to triple.
Idea of proof

- \(\mathbb{P} \left(\left| u(\tau_{k+1}) \right|_{L^\infty} = 3 \left| u(\tau_k) \right|_{L^\infty}, \tau_{k+1} - \tau_k < \varepsilon \left| u(\tau_k) \right|_{L^\infty} = c_0 3^n \right) \leq \mathbb{P} \left(\sup_{t \in [0, \varepsilon \wedge (\tau_{k+1} - \tau_k)]} |Z_k(t)|_{L^\infty} \geq \frac{1}{9} \left| u(\tau_k) \right|_{L^\infty} \right) \).
- By Chebyshev,
 \[\leq C \varepsilon^\left(\alpha - \frac{\zeta}{2} \right) p \frac{3^{np}}{3^{np}} \leq C \varepsilon^\left(\alpha - \frac{\zeta}{2} \right) p, \]

- Can be chosen so that \(q = \left(\alpha - \frac{\zeta}{2} \right) p > 1. \)
- Setting \(\varepsilon = 1/k \) and using Borel-Centelli Lemma tell us that eventually it takes more than \(1/k \) time for the \(L^\infty \) norm to triple.
- If it were to explode, then it would need more up steps than down steps. This is enough to guarantee that \(\lim \tau_k = +\infty. \)
Theorem (S. 2022 – same theorem)

Assume \(f(u)\text{sign}(u) \leq -\mu |u|^{\beta} \) for \(|u| > c_0 \), \(|\sigma(u)| \leq C(1 + |u|^{\gamma}) \), with \(\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2} \). Then mild solutions can never explode.
Example

Theorem (S. 2022 – same theorem)

Assume \(f(u) \text{sign}(u) \leq -\mu |u|^\beta \) for \(|u| > c_0\), \(|\sigma(u)| \leq C(1 + |u|^\gamma)\), with \(\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2} \). Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

\[
\frac{\partial u}{\partial t}(t, x) = \frac{\partial^2 u}{\partial x^2}(t, x) - |u(t, x)|^\beta \text{sign}(u(t, x)) + (1 + |u(t, x)|)^\gamma \dot{w}(t, x).
\]
Example

Theorem (S. 2022 – same theorem)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^{\beta} \text{ for } |u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^{\gamma})$, with $\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

\[
\frac{\partial u}{\partial t}(t, x) = \frac{\partial^2 u}{\partial x^2}(t, x) - |u(t, x)|^{\beta}\text{sign}(u(t, x)) + (1 + |u(t, x)|)^{\gamma}\dot{w}(t, x).
\]

- η can be chosen arbitrarily close to $\frac{1}{2}$ so if $\gamma < 1 + \frac{\beta-1}{4}$ then solutions cannot explode in finite time.
Theorem (S. 2022 – same theorem)

Assume $f(u)\text{sign}(u) \leq -\mu |u|^\beta$ for $|u| > c_0$, $|\sigma(u)| \leq C(1 + |u|^\gamma)$, with

$$\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2}.$$ Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

$$\frac{\partial u}{\partial t}(t, x) = \frac{\partial^2 u}{\partial x^2}(t, x) - |u(t, x)|^\beta \text{sign}(u(t, x)) + (1 + |u(t, x)|)^\gamma \dot{w}(t, x).$$

- η can be chosen arbitrarily close to $\frac{1}{2}$ so if $\gamma < 1 + \frac{\beta-1}{4}$ then solutions cannot explode in finite time.

- If $\beta \leq 3$, the Mueller results give a stronger result, so γ can be any value $\gamma < \frac{3}{2}$.
Theorem (S. 2022 – same theorem)

Assume \(f(u)\) sign\((u) \leq -\mu |u|^\beta \) for \(|u| > c_0, \) \(|\sigma(u)| \leq C(1 + |u|^\gamma) \), with \(\gamma < 1 + \frac{(1-\eta)(\beta-1)}{2} \). Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

\[
\frac{\partial u}{\partial t}(t, x) = \frac{\partial^2 u}{\partial x^2}(t, x) - |u(t, x)|^\beta \text{sign}(u(t, x)) + (1 + |u(t, x)|)^\gamma \dot{w}(t, x).
\]

- \(\eta \) can be chosen arbitrarily close to \(\frac{1}{2} \) so if \(\gamma < 1 + \frac{\beta-1}{4} \) then solutions cannot explode in finite time.
- If \(\beta \leq 3 \), the Mueller results give a stronger result, so \(\gamma \) can be any value \(\gamma < \frac{3}{2} \).
 - The semigroup causes \(t^{-\frac{1}{2}} \) decay but the nonlinear term causes \(t^{-\frac{1}{\beta-1}} \) decay.
Now we see the effect of superlinear accretive forcing

\[\lim_{|x| \to \infty} f(x) = \pm \infty. \]

Such a force pushes solutions toward \(\pm \infty \).

Does it cause explosion in finite time?

Osgood condition for ODE – Assume \(f \geq 0 \)

\[\frac{dv}{dt} = f(v(t)), \quad v(0) = c > 0, \]

Explodes in finite time if and only if

\[\int_{c}^{\infty} f(x) \, dx < \infty. \]
Now we see the effect of superlinear accretive f

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = +\infty.$$
Now we see the effect of superlinear accretive f

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = +\infty.$$

Such a force pushes solutions toward $\pm \infty$.
Now we see the effect of superlinear accretive f

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = +\infty.$$

Such a force pushes solutions toward $\pm \infty$.

Does it cause explosion in finite time?
Now we see the effect of superlinear accretive f

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = +\infty.$$

Such a force pushes solutions toward $\pm \infty$.

Does it cause explosion in finite time?

Osgood condition for ODE – Assume $f \geq 0$

$$\frac{dv}{dt} = f(v(t)), \ v(0) = c > 0,$$
Now we see the effect of superlinear accretive f

$$\lim_{|x| \to \infty} \frac{f(x)}{x} = +\infty.$$

Such a force pushes solutions toward $\pm \infty$.

Does it cause explosion in finite time?

Osgood condition for ODE – Assume $f \geq 0$

$$\frac{dv}{dt} = f(v(t)), \ v(0) = c > 0,$$

Explodes in finite time if and only if $\int_c^\infty \frac{1}{f(x)} \, dx < +\infty$.
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} \, dx < +\infty. \]
Examples of exploding/non-exploding ODEs

\[
\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} dx < +\infty.
\]

\[f(u) = u.\]
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} \, dx < +\infty. \]

\[f(u) = u. \text{ Solution: } v(t) = e^t. \]
Examples of exploding/non-exploding ODEs

\[
\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} dx < +\infty.
\]

- \(f(u) = u \). Solution: \(v(t) = e^{t} \).
- \(f(u) = u^{1+\varepsilon} \)
Examples of exploding/non-exploding ODEs

\[
\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} dx < +\infty.
\]

- \(f(u) = u \). Solution: \(v(t) = e^t \).
- \(f(u) = u^{1+\varepsilon} \) explodes in finite time. Solution: \(v(t) = (C - \varepsilon t)^{-\frac{1}{\varepsilon}} \).
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \] explodes iff \(\int_{c}^{\infty} \frac{1}{f(x)} dx < +\infty. \)

- \(f(u) = u \). Solution: \(v(t) = e^t \).
- \(f(u) = u^{1+\epsilon} \) explodes in finite time. Solution: \(v(t) = (C - \epsilon t)^{-\frac{1}{\epsilon}} \).
- \(f(u) = u \log(u) \).
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u. \) Solution: \(v(t) = e^t. \)
- \(f(u) = u^{1+\varepsilon} \) explodes in finite time. Solution: \(v(t) = (C - \varepsilon t)^{-\frac{1}{\varepsilon}}. \)
- \(f(u) = u \log(u). \) Solution: \(v(t) = e^{e^t}. \)
Examples of exploding/non-explosding ODEs

\[
\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} \, dx < +\infty.
\]

- \(f(u) = u\). Solution: \(v(t) = e^t\).
- \(f(u) = u^{1+\varepsilon}\) explodes in finite time. Solution: \(v(t) = (C - \varepsilon t)^{-\frac{1}{\varepsilon}}\).
- \(f(u) = u \log(u)\). Solution: \(v(t) = e^{e^t}\).
- \(f(u) = u(\log(u))^{1+\varepsilon}\)
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \] explodes iff
\[\int_c^\infty \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u \). Solution: \(v(t) = e^t \).
- \(f(u) = u^{1+\epsilon} \) explodes in finite time. Solution: \(v(t) = (C - \epsilon t)^{-\frac{1}{\epsilon}} \).
- \(f(u) = u \log(u) \). Solution: \(v(t) = e^{e^t} \).
- \(f(u) = u(\log(u))^{1+\epsilon} \) explodes in finite time.
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u. \) Solution: \(v(t) = e^{t}. \)
- \(f(u) = u^{1+\epsilon} \) explodes in finite time. Solution: \(v(t) = (C - \epsilon t)^{-\frac{1}{\epsilon}}. \)
- \(f(u) = u \log(u). \) Solution: \(v(t) = e^{e^{t}}. \)
- \(f(u) = u(\log(u))^{1+\epsilon} \) explodes in finite time.
- \(f(u) = u \log(u) \log \log(u). \)
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_c^\infty \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u \). Solution: \(v(t) = e^t \).
- \(f(u) = u^{1+\varepsilon} \) explodes in finite time. Solution: \(v(t) = (C - \varepsilon t)^{-\frac{1}{\varepsilon}} \).
- \(f(u) = u \log(u) \). Solution: \(v(t) = e^{e^t} \).
- \(f(u) = u(\log(u))^{1+\varepsilon} \) explodes in finite time.
- \(f(u) = u \log(u) \log \log(u) \). Solution: \(v(t) = e^{e^{e^t}} \).
Superlinear accretive ODE

Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u. \) Solution: \(v(t) = e^t. \)
- \(f(u) = u^{1+\epsilon} \) explodes in finite time. Solution: \(v(t) = (C - \epsilon t)^{-\frac{1}{\epsilon}}. \)
- \(f(u) = u \log(u). \) Solution: \(v(t) = e^{e^t}. \)
- \(f(u) = u(\log(u))^{1+\epsilon} \) explodes in finite time.
- \(f(u) = u \log(u) \log \log(u). \) Solution: \(v(t) = e^{e^{e^t}}. \)
- \(f(u) = u \log(u) \log \log(u) \log \log \log \log(u). \)
Examples of exploding/non-exploding ODEs

\[\frac{dv}{dt} = f(v(t)) \text{ explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} dx < +\infty. \]

- \(f(u) = u \). Solution: \(v(t) = e^t \).
- \(f(u) = u^{1+\varepsilon} \) explodes in finite time. Solution: \(v(t) = (C - \varepsilon t)^{-\frac{1}{\varepsilon}} \).
- \(f(u) = u \log(u) \). Solution: \(v(t) = e^{e^t} \).
- \(f(u) = u(\log(u))^{1+\varepsilon} \) explodes in finite time.
- \(f(u) = u \log(u) \log \log(u) \). Solution: \(v(t) = e^{e^t} \).
- \(f(u) = u \log(u) \log \log(u) \log \log \log(u) \). Solution: \(v(t) = e^{e^e e^t} \).
For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). \(\frac{\partial u}{\partial t} = \Delta u + |u|^p \) if \(p > 1 + \frac{2}{d} \).
For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). \(\frac{\partial u}{\partial t} = \Delta u + |u|^p \) if \(p > 1 + \frac{2}{d} \).

Bonder and Groisman (2009) showed that in the case of additive noise \(\sigma(u) \equiv 1 > 0 \), if \(\int_{c}^{\infty} \frac{1}{f(x)} \, dx < \infty \) for some \(c > 0 \), then the SRDE explodes in finite time with probability one.
Osgood condition for SRDE \(\frac{\partial u}{\partial t} = Au + f(u) + \sigma(u)\dot{W} \)

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). \(\frac{\partial u}{\partial t} = \Delta u + |u|^p \) if \(p > 1 + \frac{2}{d} \).
- Bonder and Groisman (2009) showed that in the case of additive noise \(\sigma(u) \equiv 1 > 0 \), if \(\int_c^\infty \frac{1}{f(x)}dx < \infty \) for some \(c > 0 \), then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when \(\sigma \) is constant.
Osgood condition for SRDE \(\frac{\partial u}{\partial t} = Au + f(u) + \sigma(u) \dot{W} \)

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). \(\frac{\partial u}{\partial t} = \Delta u + |u|^p \) if \(p > 1 + \frac{2}{d} \).

- Bonder and Groisman (2009) showed that in the case of additive noise \(\sigma(u) \equiv 1 > 0 \), if \(\int_c^\infty \frac{1}{f(x)} \, dx < \infty \) for some \(c > 0 \), then the SRDE explodes in finite time with probability one.

- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when \(\sigma \) is constant.
 - Explosion in finite time if \(\int_c^\infty \frac{1}{f(x)} \, dx < +\infty \) for some \(c > 0 \).
Osgood condition for SRDE $\frac{\partial u}{\partial t} = Au + f(u) + \sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t} = \Delta u + |u|^p$ if $p > 1 + \frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1 > 0$, if $\int_c^\infty \frac{1}{f(x)} dx < \infty$ for some $c > 0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.
 - Explosion in finite time if $\int_c^\infty \frac{1}{f(x)} dx < +\infty$ for some $c > 0$.
 - Global solution if $\int_c^\infty \frac{1}{f(x)} dx = +\infty$.
Osgood condition for SRDE $\frac{\partial u}{\partial t} = Au + f(u) + \sigma(u)\dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t} = \Delta u + |u|^p$ if $p > 1 + \frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1 > 0$, if $\int_c^\infty \frac{1}{f(x)} dx < \infty$ for some $c > 0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.
 - Explosion in finite time if $\int_c^\infty \frac{1}{f(x)} dx < +\infty$ for some $c > 0$.
 - Global solution if $\int_c^\infty \frac{1}{f(x)} dx = +\infty$.
- Dalang, Khoshnevisan, and Zhang (2019) showed that σ can be superlinear too. Studied the space-time white noise on a bounded one-dimensional spatial domain
 - Assume $|f(u)| \leq C(1 + |u| \log |u|)$, $\sigma \in o(|u|(\log |u|)^{1/4})$.
 - Then solutions never explode.
Theorem (S. 2022)

Assume \(f \) and \(\sigma \) are locally Lipschitz continuous functions. Assume that there exists a positive, increasing function \(h : [0, +\infty) \to [0, +\infty) \) such that

\[
\int_0^\infty \frac{1}{h(u)} du = \infty \quad \text{and} \quad |f(u)| \leq h(|u|)
\]

and there exists \(\gamma \in \left(0, \frac{1-\eta}{2}\right) \) such that

\[
|\sigma(u)| \leq |u|^{1-\gamma}(h(|u|))^{\gamma} \quad \text{for all } |u| > 1.
\]

Assume the initial data is bounded. Then there exists a unique global solution.
Theorem (S. 2022)

Assume \(f \) and \(\sigma \) are locally Lipschitz continuous functions. Assume that there exists a positive, increasing function \(h : [0, +\infty) \rightarrow [0, +\infty) \) such that

\[
\int_0^\infty \frac{1}{h(u)} \, du = \infty \quad \text{and} \quad |f(u)| \leq h(|u|)
\]

and there exists \(\gamma \in \left(0, \frac{1-\eta}{2}\right) \) such that

\[
|\sigma(u)| \leq |u|^{1-\gamma}(h(|u|))^{\gamma} \quad \text{for all } |u| > 1.
\]

Assume the initial data is bounded. Then there exists a unique global solution.

If \(h(u) = u \log(u) \log \log(u) \) then \(\sigma(u) \leq u \left(\log u \log \log u \right)^{\gamma} \).
Define the cutoff versions of \(f \) and \(\sigma \)

\[
 f_n(x) = \begin{cases}
 f(x) & \text{if } x \in [-3^n, 3^n] \\
 f(3^n) & \text{if } x > 3^n \\
 f(-3^n) & \text{if } x < -3^n
 \end{cases}
\]

By Cerrai (2003), there is a unique solution to

\[
 u_n(t) = S(t) u(0) + \int_0^t S(t-s) f_n(u_n(s)) \, ds + \int_0^t S(t-s) \sigma_n(u_n(s)) \, dw(s).
\]

Define stopping time \(\tau_n = \inf \{ t > 0 : \sup_{x \in D} |u_n(t, x)| > 3^n \} \).

Define local mild solution \(u(t, x) = u_n(t, x) \) for all \(t < \tau_n \). Solution EXPLODES in finite time if \(\sup_n \tau_n < +\infty \) and solution is global in time if \(\sup_n \tau_n = +\infty \).
Local mild solution and explosion

- Define the cutoff versions of f and σ

\[f_n(x) = \begin{cases}
 f(x) & \text{if } x \in [-3^n, 3^n] \\
 f(3^n) & \text{if } x > 3^n \\
 f(-3^n) & \text{if } x < -3^n
\end{cases} \]

- By Cerrai (2003), there is a unique solution to

\[u_n(t) = S(t)u(0) + \int_0^t S(t-s)f_n(u_n(s))ds + \int_0^t S(t-s)\sigma_n(u_n(s))dw(s). \]
Local mild solution and explosion

- Define the cutoff versions of f and σ

$$f_n(x) = \begin{cases}
 f(x) & \text{if } x \in [-3^n, 3^n] \\
 f(3^n) & \text{if } x > 3^n \\
 f(-3^n) & \text{if } x < -3^n
\end{cases}$$

- By Cerrai (2003), there is a unique solution to

$$u_n(t) = S(t)u(0) + \int_0^t S(t-s)f_n(u_n(s))ds + \int_0^t S(t-s)\sigma_n(u_n(s))dw(s).$$

- Define stopping time $\tau_n = \inf \{ t > 0 : \sup_{x \in D} |u_n(t, x)| > 3^n \}$.
Local mild solution and explosion

- Define the cutoff versions of f and σ

$$f_n(x) = \begin{cases} f(x) & \text{if } x \in [-3^n, 3^n] \\ f(3^n) & \text{if } x > 3^n \\ f(-3^n) & \text{if } x < -3^n \end{cases}$$

- By Cerrai (2003), there is a unique solution to

$$u_n(t) = S(t)u(0) + \int_0^t S(t-s)f_n(u_n(s))ds + \int_0^t S(t-s)\sigma_n(u_n(s))dw(s).$$

- Define stopping time $\tau_n = \inf \{ t > 0 : \sup_{x \in D} |u_n(t, x)| > 3^n \}$.
- Define local mild solution $u(t, x) = u_n(t, x)$ for all $t < \tau_n$.

Solution EXPLODES in finite time if $\sup_{\tau_n < \infty}$ and solution is global in time if $\sup_{\tau_n = \infty}$.

Salins (BU) Superlinear SPDE June 27, 2023 22 / 28
Local mild solution and explosion

- Define the cutoff versions of f and σ

\[
f_n(x) = \begin{cases}
 f(x) & \text{if } x \in [-3^n, 3^n] \\
 f(3^n) & \text{if } x > 3^n \\
 f(-3^n) & \text{if } x < -3^n
\end{cases}
\]

- By Cerrai (2003), there is a unique solution to

\[
u_n(t) = S(t)u(0) + \int_0^t S(t-s)f_n(u_n(s))ds + \int_0^t S(t-s)\sigma_n(u_n(s))dw(s).
\]

- Define stopping time $\tau_n = \inf \{ t > 0 : \sup_{x \in D} |u_n(t, x)| > 3^n \}$.
- Define local mild solution $u(t, x) = u_n(t, x)$ for all $t < \tau_n$.
- Solution EXPLODES in finite time if $\sup_n \tau_n < +\infty$ and solution is global in time if $\sup_n \tau_n = +\infty$.
Moment bounds on the stochastic convolution

- Due to Cerrai (2003).
Moment bounds on the stochastic convolution

- Due to Cerrai (2003).
- For any $\zeta \in (0, 1 - \eta)$, $p > \max \left\{ \frac{2}{1 - \eta - \zeta}, \frac{d}{\zeta} \right\}$, there exists $C = C(\zeta, p)$ such that for any adapted random field that is almost surely bounded

$$\mathbb{P} \left(\sup_{s \in [0,t]} \sup_{x \in D} |\Phi(t, x)| \leq M \right) = 1.$$

$$\mathbb{E} \sup_{t \in [0,\varepsilon]} \left| \int_0^t S(t - s)\Phi(s)dw(s) \right|_{L^\infty}^p \leq C M^p \varepsilon^{\frac{p(1 - \eta - \zeta)}{2}}. \quad (2)$$
• Due to Cerrai (2003).

• For any $\zeta \in (0, 1 - \eta)$, $p > \max \left\{ \frac{2}{1 - \eta - \zeta}, \frac{d}{\zeta} \right\}$, there exists $C = C(\zeta, p)$ such that for any adapted random field that is almost surely bounded

$$
\mathbb{P} \left(\sup_{s \in [0,t]} \sup_{x \in D} |\Phi(t, x)| \leq M \right) = 1.
$$

$$
\mathbb{E} \sup_{t \in [0,\varepsilon]} \left| \int_{0}^{t} S(t - s)\Phi(s)dw(s) \right|^{p}_{L^\infty} \leq CM^{p}\varepsilon^{\frac{p(1 - \eta - \zeta)}{2}}. \quad (2)
$$

• One interpretation is that time Hölder continuity is slightly worse than $\frac{1 - \eta}{2} -$ same number that describes how superlinear σ can be.
Idea of the proof

Consider the ODE \(\frac{dv}{dt} = f(v(t)) \) where \(|f(v)| \leq h(|v|) \) and \(\int_0^\infty \frac{1}{h(v)} dv = +\infty \) and \(h \) increasing.
Idea of the proof

- Consider the ODE $\frac{dv}{dt} = f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_0^\infty \frac{1}{h(v)} dv = +\infty$ and h increasing.
- Let $T_n = \inf\{t > 0 : |v(t)| = 2^n\}$.

So the times required to double have the property that $P(T_{n+1} - T_n) = +\infty$. Cannot explode in finite time.
Idea of the proof

- Consider the ODE \(\frac{dv}{dt} = f(v(t)) \) where \(|f(v)| \leq h(|v|) \) and \(\int_0^\infty \frac{1}{h(v)} dv = +\infty \) and \(h \) increasing.

- Let \(T_n = \inf\{t > 0 : |v(t)| = 2^n\} \).

- \(2^{n+1} = v(T_{n+1}) = v(T_n) + \int_{T_n}^{T_{n+1}} f(v(s)) ds \).

- This is enough to prove that solutions cannot explode in finite time.
Idea of the proof

- Consider the ODE \(\frac{dv}{dt} = f(v(t)) \) where \(|f(v)| \leq h(|v|) \) and \(\int_{0}^{\infty} \frac{1}{h(v)} dv = +\infty \) and \(h \) increasing.
- Let \(T_n = \inf\{t > 0 : |v(t)| = 2^n \} \).
- \(2^{n+1} = v(T_{n+1}) = v(T_n) + \int_{T_n}^{T_{n+1}} f(v(s))ds \).
 \[\leq 2^n + (T_{n+1} - T_n)h(2^{n+1}). \]
Idea of the proof

- Consider the ODE $\frac{dv}{dt} = f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_0^\infty \frac{1}{h(v)} dv = +\infty$ and h increasing.

- Let $T_n = \inf\{t > 0 : |v(t)| = 2^n\}$.

- $2^{n+1} = v(T_{n+1}) = v(T_n) + \int_{T_n}^{T_{n+1}} f(v(s)) ds$.

- $\leq 2^n + (T_{n+1} - T_n) h(2^{n+1})$.

- $\frac{2^n}{h(2^{n+1})} \leq T_{n+1} - T_n$.

This is enough to prove that solutions cannot explode in finite time.
Idea of the proof

- Consider the ODE $\frac{dv}{dt} = f(v(t))$ where $|f(v)| \leq h(|v|)$ and $
\int_0^\infty \frac{1}{h(v)} dv = +\infty$ and h increasing.

- Let $T_n = \inf\{ t > 0 : |v(t)| = 2^n \}$.

- $2^{n+1} = v(T_{n+1}) = v(T_n) + \int_{T_n}^{T_{n+1}} f(v(s)) ds.$

- $\leq 2^n + (T_{n+1} - T_n) h(2^{n+1}).$

- $\frac{2^n}{h(2^{n+1})} \leq T_{n+1} - T_n.$

- This is enough to prove that solutions cannot explode in finite time.

\[
\sum_n \frac{2^n}{h(2^{n+1})} = +\infty \iff \int_1^\infty \frac{2^x}{h(2^x)} dx = +\infty \iff \int_0^\infty \frac{1}{h(x)} dx = +\infty.
\]
Idea of the proof

- Consider the ODE $\frac{dv}{dt} = f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_0^\infty \frac{1}{h(v)} dv = +\infty$ and h increasing.

- Let $T_n = \inf\{t > 0 : |v(t)| = 2^n\}$.

- $2^{n+1} = v(T_{n+1}) = v(T_n) + \int_{T_n}^{T_{n+1}} f(v(s)) ds \leq 2^n + (T_{n+1} - T_n) h(2^{n+1})$.

- $\frac{2^n}{h(2^{n+1})} \leq T_{n+1} - T_n$.

- This is enough to prove that solutions cannot explode in finite time.

- So the times required to double have the property that $\sum (T_{n+1} - T_n) = +\infty$. Cannot explode in finite time.
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
- Let $a_n = \min\left\{\frac{3^{n-1}}{h(3^n)}, \frac{1}{n}\right\}$. Notice that $\sum a_n = +\infty$.
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
- Let $a_n = \min\left\{\frac{3^{n-1}}{h(3^n)}, \frac{1}{n}\right\}$. Notice that $\sum a_n = +\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1} - \tau_n \geq a_n$ for all large n.

For any fixed n and $t > 0$,

$u(\tau_n + t) = S(t)u(\tau_n) + \int_{\tau_n}^{\tau_n+t} S(t-s)f(u(s))ds + \int_{\tau_n}^{\tau_n+t} S(t-s)\sigma(u(s))dw(s).$

For $t \in [0, a_n + 1 \wedge (\tau_n + 1 - \tau_n)]$,

$|S(t)u(\tau_n)|_{L^\infty} \leq |u(\tau_n)|_{L^\infty} \leq 3^n.$

$\int_{\tau_n}^{\tau_n+t} S(t-s)f(u(s))ds_{L^\infty} \leq a_n + 1 \leq 3^n.$

$\int_{\tau_n}^{\tau_n+t} S(t-s)\sigma(u(s))dw(s)_{L^\infty} \leq a_n + 1 \leq 3^n.$
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
- Let $a_n = \min \left\{ \frac{3^{n-1}}{h(3^n)}, \frac{1}{n} \right\}$. Notice that $\sum a_n = +\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1} - \tau_n \geq a_n$ for all large n.
- For any fixed n and $t > 0$,
 \[
 u(\tau_n + t) = S(t)u(\tau_n) + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)f(u(s))ds \\
 + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s).
 \]
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
- Let $a_n = \min\left\{\frac{3^{n-1}}{h(3^n)}, \frac{1}{n}\right\}$. Notice that $\sum a_n = +\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1} - \tau_n \geq a_n$ for all large n.
- For any fixed n and $t > 0$,
 \[
 u(\tau_n + t) = S(t)u(\tau_n) + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)f(u(s))ds \\
 \quad + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s).
 \]
- For $t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]$
 \[
 |S(t)u(\tau_n)|_{L^\infty} \leq |u(\tau_n)|_{L^\infty} \leq 3^n.
 \]
Proof of global solutions

- Let $\tau_n = \inf\{t > 0 : |u(t)|_{L^\infty} > 3^n\}$.
- Let $a_n = \min \left\{ \frac{3^{n-1}}{h(3^n)}, \frac{1}{n} \right\}$. Notice that $\sum a_n = +\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1} - \tau_n \geq a_n$ for all large n.
- For any fixed n and $t > 0$,

$$u(\tau_n + t) = S(t)u(\tau_n) + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)f(u(s))ds$$

$$\quad \quad + \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s).$$

- For $t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]$

$$|S(t)u(\tau_n)|_{L^\infty} \leq |u(\tau_n)|_{L^\infty} \leq 3^n.$$

$$\left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)f(u(s))ds \right|_{L^\infty} \leq a_{n+1}h(3^{n+1}) \leq 3^n.$$
Proof of global solutions

- The only way that \((\tau_{n+1} - \tau_n)\) can be less than \(a_{n+1}\) is if

\[
\sup_{t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]} \left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s) \sigma(u(s)) dw(s) \right|_{L^\infty} > 3^n.
\]
The only way that $(\tau_{n+1} - \tau_n)$ can be less than a_{n+1} is if

$$\sup_{t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]} \left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s) \sigma(u(s)) dw(s) \right|_{L^\infty} > 3^n.$$
Proof of global solutions

- The only way that \((\tau_{n+1} - \tau_n)\) can be less than \(a_{n+1}\) is if

\[
\sup_{t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]} \left| \int_{\tau_n}^{\tau_n + t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty} > 3^n.
\]

\[
\mathbb{P}(\tau_{n+1} - \tau_n \leq a_{n+1}) \\
\leq \mathbb{P} \left(\sup_{t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]} \left| \int_{\tau_n}^{\tau_n + t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty} > 3^n \right)
\]

- Chebyshev

\[
\leq 3^{-np} \mathbb{E} \sup_{t \in [0, a_{n+1} \wedge (\tau_{n+1} - \tau_n)]} \left| \int_{\tau_n}^{\tau_n + t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty}^p.
\]
Proof of global solutions

- The only way that \((\tau_{n+1} - \tau_n)\) can be less than \(a_{n+1}\) is if

\[
\sup_{t \in [0,a_{n+1} \wedge (\tau_{n+1}-\tau_n)]} \left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty} > 3^n.
\]

\[
\mathbb{P}(\tau_{n+1} - \tau_n \leq a_{n+1}) \\
\leq \mathbb{P} \left(\sup_{t \in [0,a_{n+1} \wedge (\tau_{n+1}-\tau_n)]} \left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty} > 3^n \right)
\]

- Chebyshev

\[
\leq 3^{-np}\mathbb{E} \sup_{t \in [0,a_{n+1} \wedge (\tau_{n+1}-\tau_n)]} \left| \int_{\tau_n}^{\tau_n+t} S(\tau_n + t - s)\sigma(u(s))dw(s) \right|_{L^\infty}^p.
\]

- By the moment bounds and \(\sigma(u(s)) \leq 3^{(n+1)(1-\gamma)}(h(3^{n+1})\gamma),\)

\[
\leq 3^{-np} \frac{p(1-\eta-\zeta)}{2} 3^p(1-\gamma)(n+1)(h(3^{n+1}))\gamma p \leq Ca_{n+1}^{ \frac{p(1-\eta-\zeta-2\gamma)}{2}}
\]
Proof of global solution

\[\mathbb{P}(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2\gamma)}{2}} \leq C n^{-\frac{p(1-\eta-\zeta-2\gamma)}{2}}. \]
Proof of global solution

\[P(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq Ca_{n+1}^{\frac{p(1-\eta-\zeta-2\gamma)}{2}} \leq Cn^{-\frac{p(1-\eta-\zeta-2\gamma)}{2}}. \]

Choose \(\zeta \) small enough and \(p \) large enough to that exponent \(\frac{p(1-\eta-\zeta-2\gamma)}{2} > 1 \).
Proof of global solution

\[P(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq Ca_{n+1}^{p(1-\eta-\zeta-2\gamma)/2} \leq Cn^{-p(1-\eta-\zeta-2\gamma)/2}. \]

Choose \(\zeta \) small enough and \(p \) large enough to that exponent \(p(1-\eta-\zeta-2\gamma)/2 > 1 \).

By the Borel-Cantelli Lemma

\[\sum_n P(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq \sum_n Cn^{-q} \text{ for some } q > 1. \]
Proof of global solution

\[\mathbb{P}(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq Ca_{n+1}^{\frac{p(1-\eta-\zeta-2\gamma)}{2}} \leq Cn^{-\frac{p(1-\eta-\zeta-2\gamma)}{2}}. \]

Choose \(\zeta \) small enough and \(p \) large enough to that exponent
\[\frac{p(1-\eta-\zeta-2\gamma)}{2} > 1. \]

By the Borel-Cantelli Lemma

\[\sum_n \mathbb{P}(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq \sum_n Cn^{-q} \text{ for some } q > 1. \]

With probability one \(\tau_{n+1} - \tau_n > a_n \) for all large \(n \).
Proof of global solution

- \(P(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2\gamma)}{2}} \leq C n^{-\frac{p(1-\eta-\zeta-2\gamma)}{2}} \).

- Choose \(\zeta \) small enough and \(p \) large enough to that exponent \(\frac{p(1-\eta-\zeta-2\gamma)}{2} > 1 \).

- By the Borel-Cantelli Lemma

 \[
 \sum_n P(\tau_{n+1} - \tau_n \leq a_{n+1}) \leq \sum_n C n^{-q} \text{ for some } q > 1.
 \]

- With probability one \(\tau_{n+1} - \tau_n > a_n \) for all large \(n \).

- Therefore \(P(\sup_n \tau_n = +\infty) = 1 \).