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Stochastic reaction-diffusion equation

Bounded spatial domain x ∈ D ⊂ Rd.
∂u

∂t
(t, x) = Au(t, x) + f(u(t, x)) + σ(u(t, x))ẇ(t, x) t > 0, x ∈ D,

u(t, x) = 0, x ∈ ∂D

Second-order elliptic differential operator

A =
∑d

i=1

∑d
j=1

∂
∂xi

(
aij(x)

∂
∂xj

)
.

Nonlinear reaction term f(u(t, x))

Multiplicative noise term σ(u(t, x))ẇ.
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Introduction to stochastic PDE

The solution to the non-stochastic heat equation ∂u
∂t = 1

2∆u,
u(0, x) = u0(x) can be written as a convolution with a heat kernel

u(t, x) =

∫
D
K(t, x, y)u0(y)dy. (1)

If the domain is the whole space then K(t, x, y) = (2πt)−
d
2 e−

|x−y|2
2t .

Duhamel’s principle gives the solution to the semilinear heat
equation ∂u

∂t = 1
2∆u+ f(u)

u(t, x) =

∫
D
K(t, x, y)u0(y)dy +

∫ t

0

∫
D
K(t− s, x, y)f(u(s, y))dyds.
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Introduction to stochastic PDE

This convolution is a semigroup S(t) : C(D) → C(D)
S(t)u0 =

∫
D K(t, x, y)u0(y)dy.

We can write solution (suppressing the spatial variable)

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(u(s))ds.

We want to perturb this in space and time by random
perturbations

∂u

∂t
(t, x) =

1

2
∆u(t, x) + f(u(t, x)) + σ(u(t, x))ẇ.

Formally, solution should be given by

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(u(s))ds+

∫ t

0
S(t− s)σ(u(s))dw(s)
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Existence of global solutions

Under reasonable assumptions on A and ẇ, the solutions are
function-valued.

If f and σ are globally Lipschitz continuous, there exists a unique
solution and solutions exist for all t > 0. (Da Prato, Zabczyk)

If σ is locally Lipschitz continuous with linear growth and f is
locally Lipschitz continuous and features dissipative behaviors

lim
|x|→∞

f(x)

x
= −∞,

global solutions exist. (Brzezniak Peszat 1999, Iwata 1999, Cerrai
2003, Da Prato Röckner 2002, Marinelli Röckner 2010, Röckner
Liu 2010)

Mueller and collaborators (1991, with Sowers 1993, 1998, 2000)

showed that in the space-time white noise case with A = ∂2

∂x2 ,
f ≡ 0 and σ(u) = |u|γ , solutions never explode if γ < 3

2 and
explode with positive probability if γ > 3

2 .
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Accretive vs. dissipative forcing

If limu→±∞
f(u)
u = +∞, f is superlinearly accretive.

Accretive forces push solutions toward ±∞, possibly causing
explosion – even without stochastic noise.

If limu→±∞
f(u)
u = −∞, f is superlinearly dissipative.

Dissipative forces push solutions away from ±∞, counteracting
expansion due to noise.

I outline some recent results about sufficient conditions in the
accretive and dissipative settings that guarantee that mild
solutions to the SRDE do not explode.
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Technical Assumptions on A and ẇ

Eigenvalues of A, {ek(x)} complete orthonormal basis of L2(D).

Aek = −αkek, 0 ≤ αk ≤ αk+1.

Formal definition of the noise: Sequence λj ≥ 0

ẇ(t, x) =
∞∑
j=1

λjej(x)dβj(t), βj(t) i.i.d. one-dimensional B.M.

Condition (Cerrai 2003) - There exist θ > 0, ρ ∈ [2,+∞]
∞∑
k=1

α−θ
k |ek|2L∞ < +∞,

∞∑
j=1

λρ
j |ej |

2
L∞ < +∞ or sup

j
λj < +∞ (ρ = ∞)

η :=
θ(ρ− 2)

ρ
< 1 (η := θ if ρ = +∞) .

Space Hölder continuity ≈ (1− η). Time Hölder continuity ≈ 1−η
2 .
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ẇ(t, x) =

∞∑
j=1

λjej(x)dβj(t), βj(t) i.i.d. one-dimensional B.M.

Condition (Cerrai 2003) - There exist θ > 0, ρ ∈ [2,+∞]
∞∑
k=1

α−θ
k |ek|2L∞ < +∞,

∞∑
j=1

λρ
j |ej |

2
L∞ < +∞ or sup

j
λj < +∞ (ρ = ∞)

η :=
θ(ρ− 2)

ρ
< 1 (η := θ if ρ = +∞) .
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Example

Condition (Cerrai 2003) - There exist θ ∈ (0, 1), ρ ∈ [2,+∞]

∞∑
k=1

α−θ
k |ek|2L∞ < +∞,

∞∑
j=1

λρ
j |ej |

2
L∞ < +∞ or sup

j
λj < +∞ (ρ = ∞)

η :=
θ(ρ− 2)

ρ
< 1 (η := θ if ρ = +∞) .

If D is a d-dimensional rectangle and A = ∆, then αk ≈ k
2
d .

If d = 1 we can take λj ≡ 1 (space-time white noise), ρ = ∞
θ ∈ (1/2, 1), η = θ arbitrarily close to 1/2.

If d > 1, space-time white noise not allowed. On rectangular
domains we need θ > d

2 , ρ < 2d
d−2 .
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Superlinear σ when f ≡ 0

Results by Mueller and collaborators (1993 w. Sowers,1997,1999,
2000).

Heat equation on one spatial dimension. Space-time white noise.
∂u
∂t = ∂2u

∂x2 (t, x) + |u(t, x)|γẇ(t, x).
Solutions never explode if γ < 3

2 .

Solutions explode with positive probability if γ > 3
2 .

Intuition: The t−1/2 in the heat kernel G(t, x, y) ≈ e−
|x−y|2

2t√
2πt

allows

for extra growth.

Generalization to higher spatial dimensions and other more
general conditions in dissertation by Bezdek.
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Polynomially dissipative f – SDE example

SDE on Rd

dX(t) = −X(t)|X(t)|β−1dt+ (1 + |X(t)|)γdW (t)

If γ ∈ [0, 1] then solutions cannot explode in finite time.

If γ < β+1
2 , then solutions cannot explode in finite time.

Ito formula:

E|X(t)|2 = E|X(0)|2 + E
∫ t

0

(
−2|X(s)|β+1 + (1 + |X(s)|γ)2

)
ds.

Similar conditions identified by Liu and Röckner (2010) for
monotone SPDEs

2V ∗ ⟨A(t, v), v⟩V + ∥B(t, v)∥22 + θ∥v∥αV ≤ C +K∥v∥2H .
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Polynomially dissipative f - SRDE

Goal: identify sufficient conditions on dissipativity strength of f
and growth rate of σ to guarantee that mild solutions to SRDE
never explode with non-trace-class noise.

Theorem (S. 2022)

Assume f(u)sign(u) ≤ −µ|u|β for |u| > c0, |σ(u)| ≤ C(1 + |u|γ), with
γ < 1 + (1−η)(β−1)

2 . Then mild solutions can never explode.

Note: Trace-class noise means η = 0 and this coincides with the
Ito formula condition γ < β+1

2 .

When η not trace-class, Ito formula arguments are not available.

As long as β > 1, γ can grow superlinearly.
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Idea of the proof

Set up a sequence of stopping times

τ0 = inf{t ≥ 0 : |u(t)|L∞(D) = 3nc0 for some n ∈ {1, 2, 3, ...}},

If |u(τn)|L∞ ≥ 32c0,

τn+1 = inf

{
t ≥ τn : |u(t)|L∞(D) = 3|u(τk)|L∞(D) or

1

3
|u(τn)|L∞(D)

}

If |u(τn)|L∞(D) = 3c0,

τn+1 = inf{t ≥ τn : |u(t)|L∞(D) = 3|u(τk)|L∞(D)}.
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Idea of the proof

There exist C > 0, q > 1 such that for any k ∈ N, ε > 0,

P (|u(τk+1)|L∞ = 3|u(τk)|L∞ and τk+1 − τk < ε) ≤ Cεq.

By Borel-Cantelli setting ε = 1
k ,

|u(τk+1)|L∞ = 3|u(τk)|L∞ and τk+1−τk <
1

k
a finite number of times.

Eventually, |u(τk)|L∞ decreases or it takes more than 1/k time to
triple. If it explodes it has more up steps than down steps.

This is enough to prove that
∑

k(τk+1 − τk) = +∞. Cannot
explode in finite time.
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Idea of the proof

If β > 1, the deterministic ODE dv
dt = −|v(t)|βsign(v(t))

has

solution |v(t)| =
(
|v(0)|−(β−1) + Ct

)− 1
β−1 ≤ max{|v(0)|, Ct

− 1
β−1 }.

The mild solution to the SPDE

u(t+ τk) =S(t)u(τk) +

∫ τk+t

τk

S(τk + t− s)f(u(s))ds

+

∫ τk+t

τk

S(τk + t− s)σ(u(s))dW (s)

If Zk(t) :=
∫ τk+t
τk

S(τk + t− s)σ(u(s))dW (s) satisfies

|Zk(t)|L∞ ≤ 1
3 |u(t+ τk)|L∞ , for t ∈ [0, τk+1 − τk],

|u(t)|L∞ ≤ 3

2

(
|u(τk)|

−(β−1)
L∞ + Ct

)− 1
β−1

.
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Idea of the proof

Moment bounds (Cerrai 2003) – For p > 1 large enough, and small
numbers α, γ ∈ (0, (1− η)/2) such that (α− ζ

2)p > 1 and

E sup
t∈[0,T ]

sup
x∈D

|Zk(t, x)|p

≤ CT p(α− ζ
2
)−1

∫ T

0
E
(∫ t

0
(t− s)−2α−η|σ(u(s+ τk))|2L∞ds

) p
2

dt.

u(t+ τk) will decay like t
− 1

β−1 when |Zk(t)|L∞ ≤ 1
3 |u(t+ τk)|L∞ so

inner integral is bounded by

C

∫ t

0
(t− s)−2α−η|u(τk)|2L∞s

− 2(γ−1)
β−1 ds.

When 2α+ η + 2(γ−1)
β−1 < 1, this inner integral is bounded as t ↓ 0.

(Beta function)
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Idea of proof

P
(
|u(τk+1)|L∞ = 3|u(τk)|L∞ , τk+1 − τk < ε

∣∣∣|u(τk)|L∞ = c03
n
)
≤

P
(
supt∈[0,ε∧(τk+1−τk)]

|Zk(t)|L∞ ≥ 1
9 |u(τk)|L∞

∣∣∣|u(τk)|L∞ = c03
n
)
.

By Chebyshev,

≤ Cε(α−
ζ
2)p

3np

3np
≤ Cε(α−

ζ
2)p,

Can be chosen so that q =
(
α− ζ

2

)
p > 1.

Setting ε = 1/k and using Borel-Centelli Lemma tell us that
eventually it takes more than 1/k time for the L∞ norm to triple.

If it were to explode, then it would need more up steps than down
steps. This is enough to guarantee that lim τk = +∞.
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Example

Theorem (S. 2022 – same theorem)

Assume f(u)sign(u) ≤ −µ|u|β for |u| > c0, |σ(u)| ≤ C(1 + |u|γ), with
γ < 1 + (1−η)(β−1)

2 . Then mild solutions can never explode.

Consider the non-linear heat equation on a one-dimensional
interval with space-time white noise

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x)−|u(t, x)|βsign(u(t, x))+(1+ |u(t, x)|)γẇ(t, x).

η can be chosen arbitrarily close to 1
2 so if γ < 1 + β−1

4 then
solutions cannot explode in finite time.
If β ≤ 3, the Mueller results give a stronger result, so γ can be any
value γ < 3

2 .

The semigroup causes t−
1
2 decay but the nonlinear term causes

t−
1

β−1 decay.
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Superlinear accretive forcing

Now we see the effect of superlinear accretive f

lim
|x|→∞

f(x)

x
= +∞.

Such a force pushes solutions toward ±∞.

Does it cause explosion in finite time?

Osgood condition for ODE – Assume f ≥ 0

dv

dt
= f(v(t)), v(0) = c > 0,

Explodes in finite time if and only if
∫∞
c

1
f(x)dx < +∞.
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Superlinear accretive ODE

Examples of exploding/non-exploding ODEs

dv

dt
= f(v(t)) explodes iff

∫ ∞

c

1

f(x)
dx < +∞.

f(u) = u. Solution: v(t) = et.

f(u) = u1+ε explodes in finite time. Solution: v(t) = (C − εt)−
1
ε .

f(u) = u log(u). Solution: v(t) = ee
t
.

f(u) = u(log(u))1+ε explodes in finite time.

f(u) = u log(u) log log(u). Solution: v(t) = ee
et

.

f(u) = u log(u) log log(u) log log log(u). Solution: v(t) = ee
ee

t

.
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Osgood condition for SRDE ∂u
∂t = Au+ f(u) + σ(u)Ẇ

For deterministic PDEs, Osgood condition does not fully
characterize explosion (Fujita 1966). ∂u

∂t = ∆u+ |u|p if p > 1 + 2
d .

Bonder and Groisman (2009) showed that in the case of additive
noise σ(u) ≡ 1 > 0, if

∫∞
c

1
f(x)dx < ∞ for some c > 0, then the

SRDE explodes in finite time with probability one.

Foondun and Nualart (2021) prove that Osgood condition is a
characterization of explosion when σ is constant.

Explosion in finite time if
∫∞
c

1
f(x)dx < +∞ for some c > 0.

Global solution if
∫∞
c

1
f(x)dx = +∞.

Dalang, Khoshnevisan, and Zhang (2019) showed that σ can be
superlinear too. Studied the space-time white noise on a bounded
one-dimensional spatial domain

Assume |f(u)| ≤ C(1 + |u| log |u|), σ ∈ o(|u|(log |u|) 1
4 ).

Then solutions never explode.
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characterization of explosion when σ is constant.

Explosion in finite time if
∫∞
c

1
f(x)dx < +∞ for some c > 0.

Global solution if
∫∞
c

1
f(x)dx = +∞.

Dalang, Khoshnevisan, and Zhang (2019) showed that σ can be
superlinear too. Studied the space-time white noise on a bounded
one-dimensional spatial domain

Assume |f(u)| ≤ C(1 + |u| log |u|), σ ∈ o(|u|(log |u|) 1
4 ).

Then solutions never explode.
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Result for accretive f

Theorem (S. 2022)

Assume f and σ are locally Lipschitz continuous functions. Assume
that there exists a positive, increasing function h : [0,+∞) → [0,+∞)
such that ∫ ∞

0

1

h(u)
du = ∞ and

|f(u)| ≤ h(|u|)

and there exists γ ∈
(
0, 1−η

2

)
such that

|σ(u)| ≤ |u|1−γ(h(|u|))γ for all |u| > 1.

Assume the initial data is bounded. Then there exists a unique global
solution.

If h(u) = u log(u) log log(u) then σ(u) ≤ u (log u log log u)γ .
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Local mild solution and explosion

Define the cutoff versions of f and σ

fn(x) =


f(x) if x ∈ [−3n, 3n]

f(3n) if x > 3n

f(−3n) if x < −3n

By Cerrai (2003), there is a unique solution to

un(t) = S(t)u(0)+

∫ t

0
S(t−s)fn(un(s))ds+

∫ t

0
S(t−s)σn(un(s))dw(s).

Define stopping time τn = inf {t > 0 : supx∈D |un(t, x)| > 3n} .
Define local mild solution u(t, x) = un(t, x) for all t < τn.

Solution EXPLODES in finite time if supn τn < +∞ and solution
is global in time if supn τn = +∞.
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Moment bounds on the stochastic convolution

Due to Cerrai (2003).

For any ζ ∈ (0, 1− η), p > max
{

2
1−η−ζ ,

d
ζ

}
, there exists

C = C(ζ, p) such that for any adapted random field that is almost
surely bounded

P

(
sup
s∈[0,t]

sup
x∈D

|Φ(t, x)| ≤ M

)
= 1.

E sup
t∈[0,ε]

∣∣∣∣∫ t

0
S(t− s)Φ(s)dw(s)

∣∣∣∣p
L∞

≤ CMpε
p(1−η−ζ)

2 . (2)

One interpretation is that time Hölder continuity is slightly worse
than 1−η

2 – same number that describes how superlinear σ can be.
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One interpretation is that time Hölder continuity is slightly worse
than 1−η

2 – same number that describes how superlinear σ can be.

Salins (BU) Superlinear SPDE June 27, 2023 23 / 28



Idea of the proof

Consider the ODE dv
dt = f(v(t)) where |f(v)| ≤ h(|v|) and∫∞

0
1

h(v)dv = +∞ and h increasing.

Let Tn = inf{t > 0 : |v(t)| = 2n}.
2n+1 = v(Tn+1) = v(Tn) +

∫ Tn+1

Tn
f(v(s))ds.

≤ 2n + (Tn+1 − Tn)h(2
n+1).

2n

h(2n+1)
≤ Tn+1 − Tn.

This is enough to prove that solutions cannot explode in finite
time.∑
n

2n

h(2n+1)
= +∞ iff

∫ ∞

1

2x

h(2x)
dx = +∞ iff

∫ ∞

0

1

h(x)
dx = +∞.

So the times required to double have the property that∑
(Tn+1 − Tn) = +∞. Cannot explode in finite time.
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Proof of global solutions

Let τn = inf{t > 0 : |u(t)|L∞ > 3n}.

Let an = min
{

3n−1

h(3n) ,
1
n

}
. Notice that

∑
an = +∞.

Goal of the proof: Show that eventually τn+1 − τn ≥ an for all
large n.
For any fixed n and t > 0,

u(τn + t) = S(t)u(τn) +

∫ τn+t

τn

S(τn + t− s)f(u(s))ds

+

∫ τn+t

τn

S(τn + t− s)σ(u(s))dw(s).

For t ∈ [0, an+1 ∧ (τn+1 − τn)]

|S(t)u(τn)|L∞ ≤ |u(τn)|L∞ ≤ 3n.∣∣∣∣∫ τn+t

τn

S(τn + t− s)f(u(s))ds

∣∣∣∣
L∞

≤ an+1h(3
n+1) ≤ 3n.
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Proof of global solutions

The only way that (τn+1 − τn) can be less than an+1 is if

sup
t∈[0,an+1∧(τn+1−τn)]

∣∣∣∣∫ τn+t

τn

S(τn + t− s)σ(u(s))dw(s)

∣∣∣∣
L∞

> 3n.

P(τn+1 − τn ≤ an+1)

≤ P

(
sup

t∈[0,an+1∧(τn+1−τn)]

∣∣∣∣∫ τn+t

τn

S(τn + t− s)σ(u(s))dw(s)

∣∣∣∣
L∞

> 3n

)

Chebyshev

≤ 3−npE sup
t∈[0,an+1∧(τn+1−τn)]

∣∣∣∣∫ τn+t

τn

S(τn + t− s)σ(u(s))dw(s)

∣∣∣∣p
L∞

.

By the moment bounds and σ(u(s)) ≤ 3(n+1)(1−γ)(h(3n+1)γ ,

≤ 3−npa
p(1−η−ζ)

2
n+1 3p(1−γ)(n+1)(h(3n+1))γp ≤ Ca

p(1−η−ζ−2γ)
2

n+1
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Proof of global solution

P(τn+1 − τn ≤ an+1) ≤ Ca
p(1−η−ζ−2γ)

2
n+1 ≤ Cn− p(1−η−ζ−2γ)

2 .

Choose ζ small enough and p large enough to that exponent
p(1−η−ζ−2γ)

2 > 1.

By the Borel-Cantelli Lemma∑
n

P(τn+1 − τn ≤ an+1) ≤
∑
n

Cn−q for some q > 1.

With probability one τn+1 − τn > an for all large n.

Therefore P (supn τn = +∞) = 1.
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Thank you
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