Global solutions to the stochastic reaction-diffusion equation with superlinear forcing and superlinear multiplicative noise

Mickey Salins

Boston University
msalins@bu.edu
June 27, 2023

Stochastic reaction-diffusion equation

Bounded spatial domain $x \in D \subset \mathbb{R}^{d}$.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t, x)=\mathcal{A} u(t, x)+f(u(t, x))+\sigma(u(t, x)) \dot{w}(t, x) \quad t>0, \quad x \in D \\
u(t, x)=0, \quad x \in \partial D
\end{array}\right.
$$

- Second-order elliptic differential operator

$$
\mathcal{A}=\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right) .
$$

Stochastic reaction-diffusion equation

Bounded spatial domain $x \in D \subset \mathbb{R}^{d}$.
$\left\{\begin{array}{l}\frac{\partial u}{\partial t}(t, x)=\mathcal{A} u(t, x)+f(u(t, x))+\sigma(u(t, x)) \dot{w}(t, x) \quad t>0, \quad x \in D, \\ u(t, x)=0, \quad x \in \partial D\end{array}\right.$

- Second-order elliptic differential operator

$$
\mathcal{A}=\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right)
$$

- Nonlinear reaction term $f(u(t, x))$

Stochastic reaction-diffusion equation

Bounded spatial domain $x \in D \subset \mathbb{R}^{d}$.

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t, x)=\mathcal{A} u(t, x)+f(u(t, x))+\sigma(u(t, x)) \dot{w}(t, x) \quad t>0, \quad x \in D \\
u(t, x)=0, \quad x \in \partial D
\end{array}\right.
$$

- Second-order elliptic differential operator

$$
\mathcal{A}=\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial}{\partial x_{j}}\right)
$$

- Nonlinear reaction term $f(u(t, x))$
- Multiplicative noise term $\sigma(u(t, x)) \dot{w}$.

Introduction to stochastic PDE

- The solution to the non-stochastic heat equation $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u$, $u(0, x)=u_{0}(x)$ can be written as a convolution with a heat kernel

$$
\begin{equation*}
u(t, x)=\int_{D} K(t, x, y) u_{0}(y) d y \tag{1}
\end{equation*}
$$

Introduction to stochastic PDE

- The solution to the non-stochastic heat equation $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u$, $u(0, x)=u_{0}(x)$ can be written as a convolution with a heat kernel

$$
\begin{equation*}
u(t, x)=\int_{D} K(t, x, y) u_{0}(y) d y \tag{1}
\end{equation*}
$$

- If the domain is the whole space then $K(t, x, y)=(2 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{2 t}}$.

Introduction to stochastic PDE

- The solution to the non-stochastic heat equation $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u$, $u(0, x)=u_{0}(x)$ can be written as a convolution with a heat kernel

$$
\begin{equation*}
u(t, x)=\int_{D} K(t, x, y) u_{0}(y) d y \tag{1}
\end{equation*}
$$

- If the domain is the whole space then $K(t, x, y)=(2 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{2 t}}$.
- Duhamel's principle gives the solution to the semilinear heat equation $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+f(u)$

$$
u(t, x)=\int_{D} K(t, x, y) u_{0}(y) d y+\int_{0}^{t} \int_{D} K(t-s, x, y) f(u(s, y)) d y d s
$$

Introduction to stochastic PDE

- This convolution is a semigroup $S(t): C(D) \rightarrow C(D)$ $S(t) u_{0}=\int_{D} K(t, x, y) u_{0}(y) d y$.

Introduction to stochastic PDE

- This convolution is a semigroup $S(t): C(D) \rightarrow C(D)$ $S(t) u_{0}=\int_{D} K(t, x, y) u_{0}(y) d y$.
- We can write solution (suppressing the spatial variable)

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) f(u(s)) d s
$$

Introduction to stochastic PDE

- This convolution is a semigroup $S(t): C(D) \rightarrow C(D)$ $S(t) u_{0}=\int_{D} K(t, x, y) u_{0}(y) d y$.
- We can write solution (suppressing the spatial variable)

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) f(u(s)) d s
$$

- We want to perturb this in space and time by random perturbations

$$
\frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \Delta u(t, x)+f(u(t, x))+\sigma(u(t, x)) \dot{w} .
$$

Introduction to stochastic PDE

- This convolution is a semigroup $S(t): C(D) \rightarrow C(D)$ $S(t) u_{0}=\int_{D} K(t, x, y) u_{0}(y) d y$.
- We can write solution (suppressing the spatial variable)

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) f(u(s)) d s
$$

- We want to perturb this in space and time by random perturbations

$$
\frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \Delta u(t, x)+f(u(t, x))+\sigma(u(t, x)) \dot{w} .
$$

- Formally, solution should be given by

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) f(u(s)) d s+\int_{0}^{t} S(t-s) \sigma(u(s)) d w(s)
$$

Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.

Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t>0$. (Da Prato, Zabczyk)

Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t>0$. (Da Prato, Zabczyk)
- If σ is locally Lipschitz continuous with linear growth and f is locally Lipschitz continuous and features dissipative behaviors

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=-\infty
$$

global solutions exist. (Brzezniak Peszat 1999, Iwata 1999, Cerrai 2003, Da Prato Röckner 2002, Marinelli Röckner 2010, Röckner Liu 2010)

Existence of global solutions

- Under reasonable assumptions on \mathcal{A} and \dot{w}, the solutions are function-valued.
- If f and σ are globally Lipschitz continuous, there exists a unique solution and solutions exist for all $t>0$. (Da Prato, Zabczyk)
- If σ is locally Lipschitz continuous with linear growth and f is locally Lipschitz continuous and features dissipative behaviors

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=-\infty
$$

global solutions exist. (Brzezniak Peszat 1999, Iwata 1999, Cerrai 2003, Da Prato Röckner 2002, Marinelli Röckner 2010, Röckner Liu 2010)

- Mueller and collaborators (1991, with Sowers 1993, 1998, 2000) showed that in the space-time white noise case with $\mathcal{A}=\frac{\partial^{2}}{\partial x^{2}}$, $f \equiv 0$ and $\sigma(u)=|u|^{\gamma}$, solutions never explode if $\gamma<\frac{3}{2}$ and explode with positive probability if $\gamma>\frac{3}{2}$.

Accretive vs. dissipative forcing

- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=+\infty, f$ is superlinearly accretive.

Accretive vs. dissipative forcing

- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=+\infty, f$ is superlinearly accretive.
- Accretive forces push solutions toward $\pm \infty$, possibly causing explosion - even without stochastic noise.

Accretive vs. dissipative forcing

- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=+\infty, f$ is superlinearly accretive.
- Accretive forces push solutions toward $\pm \infty$, possibly causing explosion - even without stochastic noise.
- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=-\infty, f$ is superlinearly dissipative.

Accretive vs. dissipative forcing

- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=+\infty, f$ is superlinearly accretive.
- Accretive forces push solutions toward $\pm \infty$, possibly causing explosion - even without stochastic noise.
- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=-\infty, f$ is superlinearly dissipative.
- Dissipative forces push solutions away from $\pm \infty$, counteracting expansion due to noise.

Accretive vs. dissipative forcing

- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=+\infty, f$ is superlinearly accretive.
- Accretive forces push solutions toward $\pm \infty$, possibly causing explosion - even without stochastic noise.
- If $\lim _{u \rightarrow \pm \infty} \frac{f(u)}{u}=-\infty, f$ is superlinearly dissipative.
- Dissipative forces push solutions away from $\pm \infty$, counteracting expansion due to noise.
- I outline some recent results about sufficient conditions in the accretive and dissipative settings that guarantee that mild solutions to the SRDE do not explode.

Technical Assumptions on \mathcal{A} and \dot{w}

- Eigenvalues of $\mathcal{A},\left\{e_{k}(x)\right\}$ complete orthonormal basis of $L^{2}(D)$.

$$
\mathcal{A} e_{k}=-\alpha_{k} e_{k}, \quad 0 \leq \alpha_{k} \leq \alpha_{k+1}
$$

Technical Assumptions on \mathcal{A} and \dot{w}

- Eigenvalues of $\mathcal{A},\left\{e_{k}(x)\right\}$ complete orthonormal basis of $L^{2}(D)$.

$$
\mathcal{A} e_{k}=-\alpha_{k} e_{k}, \quad 0 \leq \alpha_{k} \leq \alpha_{k+1}
$$

- Formal definition of the noise: Sequence $\lambda_{j} \geq 0$

$$
\dot{w}(t, x)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) d \beta_{j}(t), \quad \beta_{j}(t) \text { i.i.d. one-dimensional B.M. }
$$

Technical Assumptions on \mathcal{A} and \dot{w}

- Eigenvalues of $\mathcal{A},\left\{e_{k}(x)\right\}$ complete orthonormal basis of $L^{2}(D)$.

$$
\mathcal{A} e_{k}=-\alpha_{k} e_{k}, \quad 0 \leq \alpha_{k} \leq \alpha_{k+1}
$$

- Formal definition of the noise: Sequence $\lambda_{j} \geq 0$

$$
\dot{w}(t, x)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) d \beta_{j}(t), \quad \beta_{j}(t) \text { i.i.d. one-dimensional B.M. }
$$

- Condition (Cerrai 2003) - There exist $\theta>0, \rho \in[2,+\infty]$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \alpha_{k}^{-\theta}\left|e_{k}\right|_{L^{\infty}}^{2} & <+\infty, \sum_{j=1}^{\infty} \lambda_{j}^{\rho}\left|e_{j}\right|_{L^{\infty}}^{2}<+\infty \text { or } \sup _{j} \lambda_{j}<+\infty(\rho=\infty) \\
\eta & :=\frac{\theta(\rho-2)}{\rho}<1 \quad(\eta:=\theta \text { if } \rho=+\infty)
\end{aligned}
$$

Technical Assumptions on \mathcal{A} and \dot{w}

- Eigenvalues of $\mathcal{A},\left\{e_{k}(x)\right\}$ complete orthonormal basis of $L^{2}(D)$.

$$
\mathcal{A} e_{k}=-\alpha_{k} e_{k}, \quad 0 \leq \alpha_{k} \leq \alpha_{k+1}
$$

- Formal definition of the noise: Sequence $\lambda_{j} \geq 0$

$$
\dot{w}(t, x)=\sum_{j=1}^{\infty} \lambda_{j} e_{j}(x) d \beta_{j}(t), \quad \beta_{j}(t) \text { i.i.d. one-dimensional B.M. }
$$

- Condition (Cerrai 2003) - There exist $\theta>0, \rho \in[2,+\infty]$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \alpha_{k}^{-\theta}\left|e_{k}\right|_{L^{\infty}}^{2} & <+\infty, \sum_{j=1}^{\infty} \lambda_{j}^{\rho}\left|e_{j}\right|_{L^{\infty}}^{2}<+\infty \text { or } \sup _{j} \lambda_{j}<+\infty(\rho=\infty) \\
\eta & :=\frac{\theta(\rho-2)}{\rho}<1 \quad(\eta:=\theta \text { if } \rho=+\infty)
\end{aligned}
$$

- Space Hölder continuity $\approx(1-\eta)$. Time Hölder continuity $\approx \frac{1-\eta}{2}$.

Example

- Condition (Cerrai 2003) - There exist $\theta \in(0,1), \rho \in[2,+\infty]$

$$
\begin{gathered}
\sum_{k=1}^{\infty} \alpha_{k}^{-\theta}\left|e_{k}\right|_{L^{\infty}}^{2}<+\infty, \sum_{j=1}^{\infty} \lambda_{j}^{\rho}\left|e_{j}\right|_{L^{\infty}}^{2}<+\infty \text { or } \sup _{j} \lambda_{j}<+\infty(\rho=\infty) \\
\eta:=\frac{\theta(\rho-2)}{\rho}<1 \quad(\eta:=\theta \text { if } \rho=+\infty)
\end{gathered}
$$

- If D is a d-dimensional rectangle and $\mathcal{A}=\Delta$, then $\alpha_{k} \approx k^{\frac{2}{d}}$.

Example

- Condition (Cerrai 2003) - There exist $\theta \in(0,1), \rho \in[2,+\infty]$

$$
\begin{gathered}
\sum_{k=1}^{\infty} \alpha_{k}^{-\theta}\left|e_{k}\right|_{L^{\infty}}^{2}<+\infty, \sum_{j=1}^{\infty} \lambda_{j}^{\rho}\left|e_{j}\right|_{L}^{2}<+\infty \text { or } \sup _{j} \lambda_{j}<+\infty(\rho=\infty) \\
\eta:=\frac{\theta(\rho-2)}{\rho}<1 \quad(\eta:=\theta \text { if } \rho=+\infty) .
\end{gathered}
$$

- If D is a d-dimensional rectangle and $\mathcal{A}=\Delta$, then $\alpha_{k} \approx k^{\frac{2}{d}}$.
- If $d=1$ we can take $\lambda_{j} \equiv 1$ (space-time white noise), $\rho=\infty$ $\theta \in(1 / 2,1), \eta=\theta$ arbitrarily close to $1 / 2$.

Example

- Condition (Cerrai 2003) - There exist $\theta \in(0,1), \rho \in[2,+\infty]$

$$
\begin{gathered}
\sum_{k=1}^{\infty} \alpha_{k}^{-\theta}\left|e_{k}\right|_{L^{\infty}}^{2}<+\infty, \sum_{j=1}^{\infty} \lambda_{j}^{\rho}\left|e_{j}\right|_{L^{\infty}}^{2}<+\infty \text { or } \sup _{j} \lambda_{j}<+\infty(\rho=\infty) \\
\eta:=\frac{\theta(\rho-2)}{\rho}<1 \quad(\eta:=\theta \text { if } \rho=+\infty) .
\end{gathered}
$$

- If D is a d-dimensional rectangle and $\mathcal{A}=\Delta$, then $\alpha_{k} \approx k^{\frac{2}{d}}$.
- If $d=1$ we can take $\lambda_{j} \equiv 1$ (space-time white noise), $\rho=\infty$ $\theta \in(1 / 2,1), \eta=\theta$ arbitrarily close to $1 / 2$.
- If $d>1$, space-time white noise not allowed. On rectangular domains we need $\theta>\frac{d}{2}, \rho<\frac{2 d}{d-2}$.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(t, x)+|u(t, x)|^{\gamma} \dot{w}(t, x)$.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(t, x)+|u(t, x)|^{\gamma} \dot{w}(t, x)$.
- Solutions never explode if $\gamma<\frac{3}{2}$.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(t, x)+|u(t, x)|^{\gamma} \dot{w}(t, x)$.
- Solutions never explode if $\gamma<\frac{3}{2}$.
- Solutions explode with positive probability if $\gamma>\frac{3}{2}$.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(t, x)+|u(t, x)|^{\gamma} \dot{w}(t, x)$.
- Solutions never explode if $\gamma<\frac{3}{2}$.
- Solutions explode with positive probability if $\gamma>\frac{3}{2}$.
- Intuition: The $t^{-1 / 2}$ in the heat kernel $G(t, x, y) \approx \frac{e^{-\frac{|x-y|^{2}}{2 t}}}{\sqrt{2 \pi t}}$ allows for extra growth.

Superlinear σ when $f \equiv 0$

- Results by Mueller and collaborators (1993 w. Sowers,1997,1999, 2000).
- Heat equation on one spatial dimension. Space-time white noise.
- $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}(t, x)+|u(t, x)|^{\gamma} \dot{w}(t, x)$.
- Solutions never explode if $\gamma<\frac{3}{2}$.
- Solutions explode with positive probability if $\gamma>\frac{3}{2}$.
- Intuition: The $t^{-1 / 2}$ in the heat kernel $G(t, x, y) \approx \frac{e^{-\frac{|x-y|^{2}}{2 t}}}{\sqrt{2 \pi t}}$ allows for extra growth.
- Generalization to higher spatial dimensions and other more general conditions in dissertation by Bezdek.

Polynomially dissipative f - SDE example

- SDE on \mathbb{R}^{d}

$$
d X(t)=-X(t)|X(t)|^{\beta-1} d t+(1+|X(t)|)^{\gamma} d W(t)
$$

Polynomially dissipative f - SDE example

- SDE on \mathbb{R}^{d}

$$
d X(t)=-X(t)|X(t)|^{\beta-1} d t+(1+|X(t)|)^{\gamma} d W(t)
$$

- If $\gamma \in[0,1]$ then solutions cannot explode in finite time.

Polynomially dissipative f - SDE example

- SDE on \mathbb{R}^{d}

$$
d X(t)=-X(t)|X(t)|^{\beta-1} d t+(1+|X(t)|)^{\gamma} d W(t)
$$

- If $\gamma \in[0,1]$ then solutions cannot explode in finite time.
- If $\gamma<\frac{\beta+1}{2}$, then solutions cannot explode in finite time.

Polynomially dissipative f - SDE example

- SDE on \mathbb{R}^{d}

$$
d X(t)=-X(t)|X(t)|^{\beta-1} d t+(1+|X(t)|)^{\gamma} d W(t)
$$

- If $\gamma \in[0,1]$ then solutions cannot explode in finite time.
- If $\gamma<\frac{\beta+1}{2}$, then solutions cannot explode in finite time.
- Ito formula:

$$
\mathbb{E}|X(t)|^{2}=\mathbb{E}|X(0)|^{2}+\mathbb{E} \int_{0}^{t}\left(-2|X(s)|^{\beta+1}+\left(1+|X(s)|^{\gamma}\right)^{2}\right) d s
$$

Polynomially dissipative f - SDE example

- SDE on \mathbb{R}^{d}

$$
d X(t)=-X(t)|X(t)|^{\beta-1} d t+(1+|X(t)|)^{\gamma} d W(t)
$$

- If $\gamma \in[0,1]$ then solutions cannot explode in finite time.
- If $\gamma<\frac{\beta+1}{2}$, then solutions cannot explode in finite time.
- Ito formula:

$$
\mathbb{E}|X(t)|^{2}=\mathbb{E}|X(0)|^{2}+\mathbb{E} \int_{0}^{t}\left(-2|X(s)|^{\beta+1}+\left(1+|X(s)|^{\gamma}\right)^{2}\right) d s
$$

- Similar conditions identified by Liu and Röckner (2010) for monotone SPDEs

$$
2_{V^{*}}\langle A(t, v), v\rangle_{V}+\|B(t, v)\|_{2}^{2}+\theta\|v\|_{V}^{\alpha} \leq C+K\|v\|_{H}^{2} .
$$

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0}$,

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$,

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$.

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Note: Trace-class noise means $\eta=0$ and this coincides with the Ito formula condition $\gamma<\frac{\beta+1}{2}$.

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Note: Trace-class noise means $\eta=0$ and this coincides with the Ito formula condition $\gamma<\frac{\beta+1}{2}$.
- When η not trace-class, Ito formula arguments are not available.

Polynomially dissipative f - SRDE

- Goal: identify sufficient conditions on dissipativity strength of f and growth rate of σ to guarantee that mild solutions to SRDE never explode with non-trace-class noise.

Theorem (S. 2022)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Note: Trace-class noise means $\eta=0$ and this coincides with the Ito formula condition $\gamma<\frac{\beta+1}{2}$.
- When η not trace-class, Ito formula arguments are not available.
- As long as $\beta>1, \gamma$ can grow superlinearly.

Idea of the proof

- Set up a sequence of stopping times

$$
\tau_{0}=\inf \left\{t \geq 0:|u(t)|_{L^{\infty}(D)}=3^{n} c_{0} \text { for some } n \in\{1,2,3, \ldots\}\right\}
$$

Idea of the proof

- Set up a sequence of stopping times

$$
\tau_{0}=\inf \left\{t \geq 0:|u(t)|_{L^{\infty}(D)}=3^{n} c_{0} \text { for some } n \in\{1,2,3, \ldots\}\right\}
$$

- If $\left|u\left(\tau_{n}\right)\right|_{L^{\infty}} \geq 3^{2} c_{0}$,

$$
\tau_{n+1}=\inf \left\{t \geq \tau_{n}:|u(t)|_{L^{\infty}(D)}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}(D)} \text { or } \frac{1}{3}\left|u\left(\tau_{n}\right)\right|_{L^{\infty}(D)}\right\}
$$

Idea of the proof

- Set up a sequence of stopping times

$$
\tau_{0}=\inf \left\{t \geq 0:|u(t)|_{L^{\infty}(D)}=3^{n} c_{0} \text { for some } n \in\{1,2,3, \ldots\}\right\}
$$

- If $\left|u\left(\tau_{n}\right)\right|_{L^{\infty}} \geq 3^{2} c_{0}$,

$$
\tau_{n+1}=\inf \left\{t \geq \tau_{n}:|u(t)|_{L^{\infty}(D)}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}(D)} \text { or } \frac{1}{3}\left|u\left(\tau_{n}\right)\right|_{L^{\infty}(D)}\right\}
$$

- If $\left|u\left(\tau_{n}\right)\right|_{L^{\infty}(D)}=3 c_{0}$,

$$
\tau_{n+1}=\inf \left\{t \geq \tau_{n}:|u(t)|_{L^{\infty}(D)}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}(D)}\right\}
$$

Idea of the proof

- There exist $C>0, q>1$ such that for any $k \in \mathbb{N}, \varepsilon>0$,

$$
\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\varepsilon\right) \leq C \varepsilon^{q}
$$

Idea of the proof

- There exist $C>0, q>1$ such that for any $k \in \mathbb{N}, \varepsilon>0$,

$$
\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\varepsilon\right) \leq C \varepsilon^{q}
$$

- By Borel-Cantelli setting $\varepsilon=\frac{1}{k}$,

$$
\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\frac{1}{k} \text { a finite number of times. }
$$

Idea of the proof

- There exist $C>0, q>1$ such that for any $k \in \mathbb{N}, \varepsilon>0$,

$$
\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\varepsilon\right) \leq C \varepsilon^{q}
$$

- By Borel-Cantelli setting $\varepsilon=\frac{1}{k}$,

$$
\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\frac{1}{k} \text { a finite number of times. }
$$

- Eventually, $\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}$ decreases or it takes more than $1 / k$ time to triple. If it explodes it has more up steps than down steps.

Idea of the proof

- There exist $C>0, q>1$ such that for any $k \in \mathbb{N}, \varepsilon>0$,

$$
\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\varepsilon\right) \leq C \varepsilon^{q}
$$

- By Borel-Cantelli setting $\varepsilon=\frac{1}{k}$,

$$
\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}} \text { and } \tau_{k+1}-\tau_{k}<\frac{1}{k} \text { a finite number of times. }
$$

- Eventually, $\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}$ decreases or it takes more than $1 / k$ time to triple. If it explodes it has more up steps than down steps.
- This is enough to prove that $\sum_{k}\left(\tau_{k+1}-\tau_{k}\right)=+\infty$. Cannot explode in finite time.

Idea of the proof

- If $\beta>1$, the deterministic ODE $\frac{d v}{d t}=-|v(t)|^{\beta} \operatorname{sign}(v(t))$

Idea of the proof

- If $\beta>1$, the deterministic ODE $\frac{d v}{d t}=-|v(t)|^{\beta} \operatorname{sign}(v(t))$ has solution $|v(t)|=\left(|v(0)|^{-(\beta-1)}+C t\right)^{-\frac{1}{\beta-1}}$

Idea of the proof

- If $\beta>1$, the deterministic ODE $\frac{d v}{d t}=-|v(t)|^{\beta} \operatorname{sign}(v(t))$ has solution $|v(t)|=\left(|v(0)|^{-(\beta-1)}+C t\right)^{-\frac{1}{\beta-1}} \leq \max \left\{|v(0)|, C t^{-\frac{1}{\beta-1}}\right\}$.

Idea of the proof

- If $\beta>1$, the deterministic ODE $\frac{d v}{d t}=-|v(t)|^{\beta} \operatorname{sign}(v(t))$ has solution $|v(t)|=\left(|v(0)|^{-(\beta-1)}+C t\right)^{-\frac{1}{\beta-1}} \leq \max \left\{|v(0)|, C t^{-\frac{1}{\beta-1}}\right\}$.
- The mild solution to the SPDE

$$
\begin{aligned}
u\left(t+\tau_{k}\right)= & S(t) u\left(\tau_{k}\right)+\int_{\tau_{k}}^{\tau_{k}+t} S\left(\tau_{k}+t-s\right) f(u(s)) d s \\
& +\int_{\tau_{k}}^{\tau_{k}+t} S\left(\tau_{k}+t-s\right) \sigma(u(s)) d W(s)
\end{aligned}
$$

Idea of the proof

- If $\beta>1$, the deterministic ODE $\frac{d v}{d t}=-|v(t)|^{\beta} \operatorname{sign}(v(t))$ has solution $|v(t)|=\left(|v(0)|^{-(\beta-1)}+C t\right)^{-\frac{1}{\beta-1}} \leq \max \left\{|v(0)|, C t^{-\frac{1}{\beta-1}}\right\}$.
- The mild solution to the SPDE

$$
\begin{aligned}
u\left(t+\tau_{k}\right)= & S(t) u\left(\tau_{k}\right)+\int_{\tau_{k}}^{\tau_{k}+t} S\left(\tau_{k}+t-s\right) f(u(s)) d s \\
& +\int_{\tau_{k}}^{\tau_{k}+t} S\left(\tau_{k}+t-s\right) \sigma(u(s)) d W(s)
\end{aligned}
$$

- If $Z_{k}(t):=\int_{\tau_{k}}^{\tau_{k}+t} S\left(\tau_{k}+t-s\right) \sigma(u(s)) d W(s)$ satisfies

$$
\left|Z_{k}(t)\right|_{L^{\infty}} \leq \frac{1}{3}\left|u\left(t+\tau_{k}\right)\right|_{L^{\infty}}, \text { for } t \in\left[0, \tau_{k+1}-\tau_{k}\right]
$$

$$
|u(t)|_{L^{\infty}} \leq \frac{3}{2}\left(\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}^{-(\beta-1)}+C t\right)^{-\frac{1}{\beta-1}} .
$$

Idea of the proof

- Moment bounds (Cerrai 2003) - For $p>1$ large enough, and small numbers $\alpha, \gamma \in(0,(1-\eta) / 2)$ such that $\left(\alpha-\frac{\zeta}{2}\right) p>1$ and

$$
\begin{aligned}
& \mathbb{E} \sup _{t \in[0, T]} \sup _{x \in D}\left|Z_{k}(t, x)\right|^{p} \\
& \leq C T^{p\left(\alpha-\frac{\zeta}{2}\right)-1} \int_{0}^{T} \mathbb{E}\left(\int_{0}^{t}(t-s)^{-2 \alpha-\eta}\left|\sigma\left(u\left(s+\tau_{k}\right)\right)\right|_{L^{\infty}}^{2} d s\right)^{\frac{p}{2}} d t .
\end{aligned}
$$

Idea of the proof

- Moment bounds (Cerrai 2003) - For $p>1$ large enough, and small numbers $\alpha, \gamma \in(0,(1-\eta) / 2)$ such that $\left(\alpha-\frac{\zeta}{2}\right) p>1$ and

$$
\begin{aligned}
& \mathbb{E} \sup _{t \in[0, T]} \sup _{x \in D}\left|Z_{k}(t, x)\right|^{p} \\
& \leq C T^{p\left(\alpha-\frac{\zeta}{2}\right)-1} \int_{0}^{T} \mathbb{E}\left(\int_{0}^{t}(t-s)^{-2 \alpha-\eta}\left|\sigma\left(u\left(s+\tau_{k}\right)\right)\right|_{L^{\infty}}^{2} d s\right)^{\frac{p}{2}} d t .
\end{aligned}
$$

- $u\left(t+\tau_{k}\right)$ will decay like $t^{-\frac{1}{\beta-1}}$ when $\left|Z_{k}(t)\right|_{L^{\infty}} \leq \frac{1}{3}\left|u\left(t+\tau_{k}\right)\right|_{L^{\infty}}$ so inner integral is bounded by

$$
C \int_{0}^{t}(t-s)^{-2 \alpha-\eta}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}^{2} s^{-\frac{2(\gamma-1)}{\beta-1}} d s
$$

Idea of the proof

- Moment bounds (Cerrai 2003) - For $p>1$ large enough, and small numbers $\alpha, \gamma \in(0,(1-\eta) / 2)$ such that $\left(\alpha-\frac{\zeta}{2}\right) p>1$ and

$$
\begin{aligned}
& \mathbb{E} \sup _{t \in[0, T]} \sup _{x \in D}\left|Z_{k}(t, x)\right|^{p} \\
& \leq C T^{p\left(\alpha-\frac{\zeta}{2}\right)-1} \int_{0}^{T} \mathbb{E}\left(\int_{0}^{t}(t-s)^{-2 \alpha-\eta}\left|\sigma\left(u\left(s+\tau_{k}\right)\right)\right|_{L^{\infty}}^{2} d s\right)^{\frac{p}{2}} d t .
\end{aligned}
$$

- $u\left(t+\tau_{k}\right)$ will decay like $t^{-\frac{1}{\beta-1}}$ when $\left|Z_{k}(t)\right|_{L^{\infty}} \leq \frac{1}{3}\left|u\left(t+\tau_{k}\right)\right|_{L^{\infty}}$ so inner integral is bounded by

$$
C \int_{0}^{t}(t-s)^{-2 \alpha-\eta}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}^{2} s^{-\frac{2(\gamma-1)}{\beta-1}} d s
$$

- When $2 \alpha+\eta+\frac{2(\gamma-1)}{\beta-1}<1$, this inner integral is bounded as $t \downarrow 0$. (Beta function)

Idea of proof

- $\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}, \tau_{k+1}-\tau_{k}<\left.\varepsilon| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right) \leq$ $\mathbb{P}\left(\sup _{t \in\left[0, \varepsilon \wedge\left(\tau_{k+1}-\tau_{k}\right)\right]}\left|Z_{k}(t)\right|_{L^{\infty}} \geq\left.\frac{1}{9}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right)$.

Idea of proof

- $\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}, \tau_{k+1}-\tau_{k}<\left.\varepsilon| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right) \leq$ $\mathbb{P}\left(\sup _{t \in\left[0, \varepsilon \wedge\left(\tau_{k+1}-\tau_{k}\right)\right]}\left|Z_{k}(t)\right|_{L^{\infty}} \geq\left.\frac{1}{9}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right)$.
- By Chebyshev,

$$
\leq C \varepsilon^{\left(\alpha-\frac{\varsigma}{2}\right) p} \frac{3^{n p}}{3^{n p}} \leq C \varepsilon^{\left(\alpha-\frac{\varsigma}{2}\right) p},
$$

Idea of proof

- $\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}, \tau_{k+1}-\tau_{k}<\left.\varepsilon| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right) \leq$ $\mathbb{P}\left(\sup _{t \in\left[0, \varepsilon \wedge\left(\tau_{k+1}-\tau_{k}\right)\right]}\left|Z_{k}(t)\right|_{L^{\infty}} \geq\left.\frac{1}{9}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right)$.
- By Chebyshev,

$$
\leq C \varepsilon^{\left(\alpha-\frac{\zeta}{2}\right) p} \frac{3^{n p}}{3^{n p}} \leq C \varepsilon^{\left(\alpha-\frac{\zeta}{2}\right) p}
$$

- Can be chosen so that $q=\left(\alpha-\frac{\zeta}{2}\right) p>1$.
- Setting $\varepsilon=1 / k$ and using Borel-Centelli Lemma tell us that eventually it takes more than $1 / k$ time for the L^{∞} norm to triple.

Idea of proof

- $\mathbb{P}\left(\left|u\left(\tau_{k+1}\right)\right|_{L^{\infty}}=3\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}, \tau_{k+1}-\tau_{k}<\left.\varepsilon| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right) \leq$ $\mathbb{P}\left(\sup _{t \in\left[0, \varepsilon \wedge\left(\tau_{k+1}-\tau_{k}\right)\right]}\left|Z_{k}(t)\right|_{L^{\infty}} \geq\left.\frac{1}{9}\left|u\left(\tau_{k}\right)\right|_{L^{\infty}}| | u\left(\tau_{k}\right)\right|_{L^{\infty}}=c_{0} 3^{n}\right)$.
- By Chebyshev,

$$
\leq C \varepsilon^{\left(\alpha-\frac{\zeta}{2}\right) p} \frac{3^{n p}}{3^{n p}} \leq C \varepsilon^{\left(\alpha-\frac{\zeta}{2}\right) p}
$$

- Can be chosen so that $q=\left(\alpha-\frac{\zeta}{2}\right) p>1$.
- Setting $\varepsilon=1 / k$ and using Borel-Centelli Lemma tell us that eventually it takes more than $1 / k$ time for the L^{∞} norm to triple.
- If it were to explode, then it would need more up steps than down steps. This is enough to guarantee that $\lim \tau_{k}=+\infty$.

Example

Theorem (S. 2022 - same theorem)
Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

Example

Theorem (S. 2022 - same theorem)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)-|u(t, x)|^{\beta} \operatorname{sign}(u(t, x))+(1+|u(t, x)|)^{\gamma} \dot{w}(t, x)
$$

Example

Theorem (S. 2022 - same theorem)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)-|u(t, x)|^{\beta} \operatorname{sign}(u(t, x))+(1+|u(t, x)|)^{\gamma} \dot{w}(t, x) .
$$

- η can be chosen arbitrarily close to $\frac{1}{2}$ so if $\gamma<1+\frac{\beta-1}{4}$ then solutions cannot explode in finite time.

Example

Theorem (S. 2022 - same theorem)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)-|u(t, x)|^{\beta} \operatorname{sign}(u(t, x))+(1+|u(t, x)|)^{\gamma} \dot{w}(t, x) .
$$

- η can be chosen arbitrarily close to $\frac{1}{2}$ so if $\gamma<1+\frac{\beta-1}{4}$ then solutions cannot explode in finite time.
- If $\beta \leq 3$, the Mueller results give a stronger result, so γ can be any value $\gamma<\frac{3}{2}$.

Example

Theorem (S. 2022 - same theorem)

Assume $f(u) \operatorname{sign}(u) \leq-\mu|u|^{\beta}$ for $|u|>c_{0},|\sigma(u)| \leq C\left(1+|u|^{\gamma}\right)$, with $\gamma<1+\frac{(1-\eta)(\beta-1)}{2}$. Then mild solutions can never explode.

- Consider the non-linear heat equation on a one-dimensional interval with space-time white noise

$$
\frac{\partial u}{\partial t}(t, x)=\frac{\partial^{2} u}{\partial x^{2}}(t, x)-|u(t, x)|^{\beta} \operatorname{sign}(u(t, x))+(1+|u(t, x)|)^{\gamma} \dot{w}(t, x) .
$$

- η can be chosen arbitrarily close to $\frac{1}{2}$ so if $\gamma<1+\frac{\beta-1}{4}$ then solutions cannot explode in finite time.
- If $\beta \leq 3$, the Mueller results give a stronger result, so γ can be any value $\gamma<\frac{3}{2}$.
- The semigroup causes $t^{-\frac{1}{2}}$ decay but the nonlinear term causes $t^{-\frac{1}{\beta-1}}$ decay.

Superlinear accretive forcing

Superlinear accretive forcing

- Now we see the effect of superlinear accretive f

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=+\infty
$$

Superlinear accretive forcing

- Now we see the effect of superlinear accretive f

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=+\infty
$$

- Such a force pushes solutions toward $\pm \infty$.

Superlinear accretive forcing

- Now we see the effect of superlinear accretive f

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=+\infty
$$

- Such a force pushes solutions toward $\pm \infty$.
- Does it cause explosion in finite time?

Superlinear accretive forcing

- Now we see the effect of superlinear accretive f

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=+\infty
$$

- Such a force pushes solutions toward $\pm \infty$.
- Does it cause explosion in finite time?
- Osgood condition for ODE - Assume $f \geq 0$

$$
\frac{d v}{d t}=f(v(t)), v(0)=c>0
$$

Superlinear accretive forcing

- Now we see the effect of superlinear accretive f

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{x}=+\infty
$$

- Such a force pushes solutions toward $\pm \infty$.
- Does it cause explosion in finite time?
- Osgood condition for ODE - Assume $f \geq 0$

$$
\frac{d v}{d t}=f(v(t)), v(0)=c>0
$$

- Explodes in finite time if and only if $\int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$ explodes in finite time.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$ explodes in finite time.
- $f(u)=u \log (u) \log \log (u)$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$ explodes in finite time.
- $f(u)=u \log (u) \log \log (u)$. Solution: $v(t)=e^{e^{e^{t}}}$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$ explodes in finite time.
- $f(u)=u \log (u) \log \log (u)$. Solution: $v(t)=e^{e^{e^{t}}}$.
- $f(u)=u \log (u) \log \log (u) \log \log \log (u)$.

Superlinear accretive ODE

- Examples of exploding/non-exploding ODEs

$$
\frac{d v}{d t}=f(v(t)) \text { explodes iff } \int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty
$$

- $f(u)=u$. Solution: $v(t)=e^{t}$.
- $f(u)=u^{1+\varepsilon}$ explodes in finite time. Solution: $v(t)=(C-\varepsilon t)^{-\frac{1}{\varepsilon}}$.
- $f(u)=u \log (u)$. Solution: $v(t)=e^{e^{t}}$.
- $f(u)=u(\log (u))^{1+\varepsilon}$ explodes in finite time.
- $f(u)=u \log (u) \log \log (u)$. Solution: $v(t)=e^{e^{t^{t}}}$.
- $f(u)=u \log (u) \log \log (u) \log \log \log (u)$. Solution: $v(t)=e^{e^{e^{e^{t}}}}$.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1>0$, if $\int_{c}^{\infty} \frac{1}{f(x)} d x<\infty$ for some $c>0$, then the SRDE explodes in finite time with probability one.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1>0$, if $\int_{c}^{\infty} \frac{1}{f(x)} d x<\infty$ for some $c>0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1>0$, if $\int_{c}^{\infty} \frac{1}{f(x)} d x<\infty$ for some $c>0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.
- Explosion in finite time if $\int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty$ for some $c>0$.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1>0$, if $\int_{c}^{\infty} \frac{1}{f(x)} d x<\infty$ for some $c>0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.
- Explosion in finite time if $\int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty$ for some $c>0$.
- Global solution if $\int_{c}^{\infty} \frac{1}{f(x)} d x=+\infty$.

Osgood condition for SRDE $\frac{\partial u}{\partial t}=\mathcal{A} u+f(u)+\sigma(u) \dot{W}$

- For deterministic PDEs, Osgood condition does not fully characterize explosion (Fujita 1966). $\frac{\partial u}{\partial t}=\Delta u+|u|^{p}$ if $p>1+\frac{2}{d}$.
- Bonder and Groisman (2009) showed that in the case of additive noise $\sigma(u) \equiv 1>0$, if $\int_{c}^{\infty} \frac{1}{f(x)} d x<\infty$ for some $c>0$, then the SRDE explodes in finite time with probability one.
- Foondun and Nualart (2021) prove that Osgood condition is a characterization of explosion when σ is constant.
- Explosion in finite time if $\int_{c}^{\infty} \frac{1}{f(x)} d x<+\infty$ for some $c>0$.
- Global solution if $\int_{c}^{\infty} \frac{1}{f(x)} d x=+\infty$.
- Dalang, Khoshnevisan, and Zhang (2019) showed that σ can be superlinear too. Studied the space-time white noise on a bounded one-dimensional spatial domain
- Assume $|f(u)| \leq C(1+|u| \log |u|), \sigma \in o\left(|u|(\log |u|)^{\frac{1}{4}}\right)$.
- Then solutions never explode.

Result for accretive f

Theorem (S. 2022)

Assume f and σ are locally Lipschitz continuous functions. Assume that there exists a positive, increasing function $h:[0,+\infty) \rightarrow[0,+\infty)$ such that

$$
\begin{gathered}
\int_{0}^{\infty} \frac{1}{h(u)} d u=\infty \text { and } \\
|f(u)| \leq h(|u|)
\end{gathered}
$$

and there exists $\gamma \in\left(0, \frac{1-\eta}{2}\right)$ such that

$$
|\sigma(u)| \leq|u|^{1-\gamma}(h(|u|))^{\gamma} \text { for all }|u|>1 .
$$

Assume the initial data is bounded. Then there exists a unique global solution.

Result for accretive f

Theorem (S. 2022)

Assume f and σ are locally Lipschitz continuous functions. Assume that there exists a positive, increasing function $h:[0,+\infty) \rightarrow[0,+\infty)$ such that

$$
\begin{gathered}
\int_{0}^{\infty} \frac{1}{h(u)} d u=\infty \text { and } \\
|f(u)| \leq h(|u|)
\end{gathered}
$$

and there exists $\gamma \in\left(0, \frac{1-\eta}{2}\right)$ such that

$$
|\sigma(u)| \leq|u|^{1-\gamma}(h(|u|))^{\gamma} \text { for all }|u|>1 .
$$

Assume the initial data is bounded. Then there exists a unique global solution.

If $h(u)=u \log (u) \log \log (u)$ then $\sigma(u) \leq u(\log u \log \log u)^{\gamma}$.

Local mild solution and explosion

- Define the cutoff versions of f and σ

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } x \in\left[-3^{n}, 3^{n}\right] \\ f\left(3^{n}\right) & \text { if } x>3^{n} \\ f\left(-3^{n}\right) & \text { if } x<-3^{n}\end{cases}
$$

Local mild solution and explosion

- Define the cutoff versions of f and σ

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } x \in\left[-3^{n}, 3^{n}\right] \\ f\left(3^{n}\right) & \text { if } x>3^{n} \\ f\left(-3^{n}\right) & \text { if } x<-3^{n}\end{cases}
$$

- By Cerrai (2003), there is a unique solution to

$$
u_{n}(t)=S(t) u(0)+\int_{0}^{t} S(t-s) f_{n}\left(u_{n}(s)\right) d s+\int_{0}^{t} S(t-s) \sigma_{n}\left(u_{n}(s)\right) d w(s)
$$

Local mild solution and explosion

- Define the cutoff versions of f and σ

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } x \in\left[-3^{n}, 3^{n}\right] \\ f\left(3^{n}\right) & \text { if } x>3^{n} \\ f\left(-3^{n}\right) & \text { if } x<-3^{n}\end{cases}
$$

- By Cerrai (2003), there is a unique solution to

$$
u_{n}(t)=S(t) u(0)+\int_{0}^{t} S(t-s) f_{n}\left(u_{n}(s)\right) d s+\int_{0}^{t} S(t-s) \sigma_{n}\left(u_{n}(s)\right) d w(s)
$$

- Define stopping time $\tau_{n}=\inf \left\{t>0: \sup _{x \in D}\left|u_{n}(t, x)\right|>3^{n}\right\}$.

Local mild solution and explosion

- Define the cutoff versions of f and σ

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } x \in\left[-3^{n}, 3^{n}\right] \\ f\left(3^{n}\right) & \text { if } x>3^{n} \\ f\left(-3^{n}\right) & \text { if } x<-3^{n}\end{cases}
$$

- By Cerrai (2003), there is a unique solution to

$$
u_{n}(t)=S(t) u(0)+\int_{0}^{t} S(t-s) f_{n}\left(u_{n}(s)\right) d s+\int_{0}^{t} S(t-s) \sigma_{n}\left(u_{n}(s)\right) d w(s)
$$

- Define stopping time $\tau_{n}=\inf \left\{t>0: \sup _{x \in D}\left|u_{n}(t, x)\right|>3^{n}\right\}$.
- Define local mild solution $u(t, x)=u_{n}(t, x)$ for all $t<\tau_{n}$.

Local mild solution and explosion

- Define the cutoff versions of f and σ

$$
f_{n}(x)= \begin{cases}f(x) & \text { if } x \in\left[-3^{n}, 3^{n}\right] \\ f\left(3^{n}\right) & \text { if } x>3^{n} \\ f\left(-3^{n}\right) & \text { if } x<-3^{n}\end{cases}
$$

- By Cerrai (2003), there is a unique solution to

$$
u_{n}(t)=S(t) u(0)+\int_{0}^{t} S(t-s) f_{n}\left(u_{n}(s)\right) d s+\int_{0}^{t} S(t-s) \sigma_{n}\left(u_{n}(s)\right) d w(s)
$$

- Define stopping time $\tau_{n}=\inf \left\{t>0: \sup _{x \in D}\left|u_{n}(t, x)\right|>3^{n}\right\}$.
- Define local mild solution $u(t, x)=u_{n}(t, x)$ for all $t<\tau_{n}$.
- Solution EXPLODES in finite time if $\sup _{n} \tau_{n}<+\infty$ and solution is global in time if $\sup _{n} \tau_{n}=+\infty$.

Moment bounds on the stochastic convolution

- Due to Cerrai (2003).

Moment bounds on the stochastic convolution

- Due to Cerrai (2003).
- For any $\zeta \in(0,1-\eta), p>\max \left\{\frac{2}{1-\eta-\zeta}, \frac{d}{\zeta}\right\}$, there exists $C=C(\zeta, p)$ such that for any adapted random field that is almost surely bounded

$$
\begin{gather*}
\mathbb{P}\left(\sup _{s \in[0, t]} \sup _{x \in D}|\Phi(t, x)| \leq M\right)=1 \\
\mathbb{E} \sup _{t \in[0, \varepsilon]}\left|\int_{0}^{t} S(t-s) \Phi(s) d w(s)\right|_{L^{\infty}}^{p} \leq C M^{p} \varepsilon^{\frac{p(1-\eta-\zeta)}{2}} . \tag{2}
\end{gather*}
$$

Moment bounds on the stochastic convolution

- Due to Cerrai (2003).
- For any $\zeta \in(0,1-\eta), p>\max \left\{\frac{2}{1-\eta-\zeta}, \frac{d}{\zeta}\right\}$, there exists $C=C(\zeta, p)$ such that for any adapted random field that is almost surely bounded

$$
\begin{gather*}
\mathbb{P}\left(\sup _{s \in[0, t]} \sup _{x \in D}|\Phi(t, x)| \leq M\right)=1 \\
\mathbb{E} \sup _{t \in[0, \varepsilon]}\left|\int_{0}^{t} S(t-s) \Phi(s) d w(s)\right|_{L^{\infty}}^{p} \leq C M^{p} \varepsilon^{\frac{p(1-\eta-\zeta)}{2}} . \tag{2}
\end{gather*}
$$

- One interpretation is that time Hölder continuity is slightly worse than $\frac{1-\eta}{2}$ - same number that describes how superlinear σ can be.

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.
- $2^{n+1}=v\left(T_{n+1}\right)=v\left(T_{n}\right)+\int_{T_{n}}^{T_{n+1}} f(v(s)) d s$.

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.
- $2^{n+1}=v\left(T_{n+1}\right)=v\left(T_{n}\right)+\int_{T_{n}}^{T_{n+1}} f(v(s)) d s$.

$$
\leq 2^{n}+\left(T_{n+1}-T_{n}\right) h\left(2^{n+1}\right) .
$$

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.
- $2^{n+1}=v\left(T_{n+1}\right)=v\left(T_{n}\right)+\int_{T_{n}}^{T_{n+1}} f(v(s)) d s$.
$\leq 2^{n}+\left(T_{n+1}-T_{n}\right) h\left(2^{n+1}\right)$.
- $\frac{2^{n}}{h\left(2^{n+1}\right)} \leq T_{n+1}-T_{n}$.

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.
- $2^{n+1}=v\left(T_{n+1}\right)=v\left(T_{n}\right)+\int_{T_{n}}^{T_{n+1}} f(v(s)) d s$.

$$
\leq 2^{n}+\left(T_{n+1}-T_{n}\right) h\left(2^{n+1}\right)
$$

- $\frac{2^{n}}{h\left(2^{n+1}\right)} \leq T_{n+1}-T_{n}$.
- This is enough to prove that solutions cannot explode in finite time.

$$
\sum_{n} \frac{2^{n}}{h\left(2^{n+1}\right)}=+\infty \text { iff } \int_{1}^{\infty} \frac{2^{x}}{h\left(2^{x}\right)} d x=+\infty \text { iff } \int_{0}^{\infty} \frac{1}{h(x)} d x=+\infty
$$

Idea of the proof

- Consider the ODE $\frac{d v}{d t}=f(v(t))$ where $|f(v)| \leq h(|v|)$ and $\int_{0}^{\infty} \frac{1}{h(v)} d v=+\infty$ and h increasing.
- Let $T_{n}=\inf \left\{t>0:|v(t)|=2^{n}\right\}$.
- $2^{n+1}=v\left(T_{n+1}\right)=v\left(T_{n}\right)+\int_{T_{n}}^{T_{n+1}} f(v(s)) d s$.
$\leq 2^{n}+\left(T_{n+1}-T_{n}\right) h\left(2^{n+1}\right)$.
- $\frac{2^{n}}{h\left(2^{n+1}\right)} \leq T_{n+1}-T_{n}$.
- This is enough to prove that solutions cannot explode in finite time.

$$
\sum_{n} \frac{2^{n}}{h\left(2^{n+1}\right)}=+\infty \text { iff } \int_{1}^{\infty} \frac{2^{x}}{h\left(2^{x}\right)} d x=+\infty \text { iff } \int_{0}^{\infty} \frac{1}{h(x)} d x=+\infty
$$

- So the times required to double have the property that $\sum\left(T_{n+1}-T_{n}\right)=+\infty$. Cannot explode in finite time.

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.
- Let $a_{n}=\min \left\{\frac{3^{n-1}}{h\left(3^{n}\right)}, \frac{1}{n}\right\}$. Notice that $\sum a_{n}=+\infty$.

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.
- Let $a_{n}=\min \left\{\frac{3^{n-1}}{h\left(3^{n}\right)}, \frac{1}{n}\right\}$. Notice that $\sum a_{n}=+\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1}-\tau_{n} \geq a_{n}$ for all large n.

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.
- Let $a_{n}=\min \left\{\frac{3^{n-1}}{h\left(3^{n}\right)}, \frac{1}{n}\right\}$. Notice that $\sum a_{n}=+\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1}-\tau_{n} \geq a_{n}$ for all large n.
- For any fixed n and $t>0$,

$$
\begin{aligned}
u\left(\tau_{n}+t\right)=S(t) u\left(\tau_{n}\right) & +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) f(u(s)) d s \\
& +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)
\end{aligned}
$$

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.
- Let $a_{n}=\min \left\{\frac{3^{n-1}}{h\left(3^{n}\right)}, \frac{1}{n}\right\}$. Notice that $\sum a_{n}=+\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1}-\tau_{n} \geq a_{n}$ for all large n.
- For any fixed n and $t>0$,

$$
\begin{aligned}
u\left(\tau_{n}+t\right)=S(t) u\left(\tau_{n}\right) & +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) f(u(s)) d s \\
& +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)
\end{aligned}
$$

- For $t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]$

$$
\left|S(t) u\left(\tau_{n}\right)\right|_{L^{\infty}} \leq\left|u\left(\tau_{n}\right)\right|_{L^{\infty}} \leq 3^{n} .
$$

Proof of global solutions

- Let $\tau_{n}=\inf \left\{t>0:|u(t)|_{L^{\infty}}>3^{n}\right\}$.
- Let $a_{n}=\min \left\{\frac{3^{n-1}}{h\left(3^{n}\right)}, \frac{1}{n}\right\}$. Notice that $\sum a_{n}=+\infty$.
- Goal of the proof: Show that eventually $\tau_{n+1}-\tau_{n} \geq a_{n}$ for all large n.
- For any fixed n and $t>0$,

$$
\begin{aligned}
u\left(\tau_{n}+t\right)=S(t) u\left(\tau_{n}\right) & +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) f(u(s)) d s \\
& +\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)
\end{aligned}
$$

- For $t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]$

$$
\begin{gathered}
\left|S(t) u\left(\tau_{n}\right)\right|_{L^{\infty}} \leq\left|u\left(\tau_{n}\right)\right|_{L^{\infty}} \leq 3^{n} . \\
\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) f(u(s)) d s\right|_{L^{\infty}} \leq a_{n+1} h\left(3^{n+1}\right) \leq 3^{n} .
\end{gathered}
$$

Proof of global solutions

- The only way that $\left(\tau_{n+1}-\tau_{n}\right)$ can be less than a_{n+1} is if

$$
\sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L_{\infty}}>3^{n}
$$

Proof of global solutions

- The only way that $\left(\tau_{n+1}-\tau_{n}\right)$ can be less than a_{n+1} is if

$$
\begin{aligned}
& \quad \sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n} . \\
& \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \\
& \leq \mathbb{P}\left(\sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n}\right)
\end{aligned}
$$

Proof of global solutions

- The only way that $\left(\tau_{n+1}-\tau_{n}\right)$ can be less than a_{n+1} is if

$$
\begin{aligned}
& \quad \sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n} . \\
& \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \\
& \leq \mathbb{P}\left(\sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n}\right)
\end{aligned}
$$

- Chebyshev

$$
\leq 3^{-n p} \mathbb{E} \sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}^{p}
$$

Proof of global solutions

- The only way that $\left(\tau_{n+1}-\tau_{n}\right)$ can be less than a_{n+1} is if

$$
\begin{aligned}
& \quad \sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n} . \\
& \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \\
& \leq \mathbb{P}\left(\sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}>3^{n}\right)
\end{aligned}
$$

- Chebyshev

$$
\leq 3^{-n p} \mathbb{E} \sup _{t \in\left[0, a_{n+1} \wedge\left(\tau_{n+1}-\tau_{n}\right)\right]}\left|\int_{\tau_{n}}^{\tau_{n}+t} S\left(\tau_{n}+t-s\right) \sigma(u(s)) d w(s)\right|_{L^{\infty}}^{p}
$$

- By the moment bounds and $\sigma(u(s)) \leq 3^{(n+1)(1-\gamma)}\left(h\left(3^{n+1}\right)^{\gamma}\right.$,

$$
\leq 3^{-n p} a_{n+1^{2}}^{\frac{p(1-\eta-\zeta)}{}} 3^{p(1-\gamma)(n+1)}\left(h\left(3^{n+1}\right)\right)^{\gamma p} \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2 \gamma)}{2}}
$$

Proof of global solution

- $\mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq C a_{n+1}^{\frac{p(1-n-\zeta-2 n)}{2}} \leq C n^{-\frac{p(1-n-\zeta-2 n)}{2}}$.

Proof of global solution

- $\mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq C a_{n+1}^{\frac{p(1-n-\zeta-2 n)}{2}} \leq C n^{-\frac{p(1-n-\zeta-2 n)}{2}}$.
- Choose ζ small enough and p large enough to that exponent $\frac{p(1-\eta-\zeta-2 \gamma)}{2}>1$.

Proof of global solution

- $\mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2 \gamma)}{2}} \leq C n^{-\frac{p(1-\eta-\zeta-2 \gamma)}{2}}$.
- Choose ζ small enough and p large enough to that exponent $\frac{p(1-\eta-\zeta-2 \gamma)}{2}>1$.
- By the Borel-Cantelli Lemma

$$
\sum_{n} \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq \sum_{n} C n^{-q} \text { for some } q>1
$$

Proof of global solution

- $\mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2 \gamma)}{2}} \leq C n^{-\frac{p(1-\eta-\zeta-2 \gamma)}{2}}$.
- Choose ζ small enough and p large enough to that exponent $\frac{p(1-\eta-\zeta-2 \gamma)}{2}>1$.
- By the Borel-Cantelli Lemma

$$
\sum_{n} \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq \sum_{n} C n^{-q} \text { for some } q>1
$$

- With probability one $\tau_{n+1}-\tau_{n}>a_{n}$ for all large n.

Proof of global solution

- $\mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq C a_{n+1}^{\frac{p(1-\eta-\zeta-2 \gamma)}{2}} \leq C n^{-\frac{p(1-\eta-\zeta-2 \gamma)}{2}}$.
- Choose ζ small enough and p large enough to that exponent $\frac{p(1-\eta-\zeta-2 \gamma)}{2}>1$.
- By the Borel-Cantelli Lemma

$$
\sum_{n} \mathbb{P}\left(\tau_{n+1}-\tau_{n} \leq a_{n+1}\right) \leq \sum_{n} C n^{-q} \text { for some } q>1
$$

- With probability one $\tau_{n+1}-\tau_{n}>a_{n}$ for all large n.
- Therefore $\mathbb{P}\left(\sup _{n} \tau_{n}=+\infty\right)=1$.

Thank you

