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Literature
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• Causal Inference
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• Conditional Quantile
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• Local Estimating Equation (GRF)
▶ Athey,P., Tibshirani,J., and Wager,S. (2019)
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Outline of This study

Athey et al. (2019)’s result

• Although they showed the asymptotic nomarilty, they did not show
the rate of convergence and (closed form of) the asymptotic variance.

Our Contribution

• We show the “Rate of Convergence” and “Asymptotic Variance” in
closed form.

Key Idea

• We approximate the “Forest Weight” as a“Kernel Function”. Then,
the asymptotic theory is reduced to that of “Nadaraya-Watson type
estimator”.
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GRF model

Definition 1. (GRF model)

Suppose that a sequence of i.i.d. random vector
{(Xi, Yi) ∈ X × Y}i=1,...,n satisfies

E
[
ψθ(x)(Yi)|Xi = x

]
= 0 for all x ∈ X (1)

where

• θ ∈ Θ = {θ : X → R} : parameter of interest

• ψ : Θ× Y → R : some scoring function

(Note) ψ depends on the parameter for example

• mean : ψθ(x)(y) = y − θ(x)

• quantile : ψθ(x)(y) = τ − 1{y≤θ(x)} for some τ ∈ (0, 1)

• likelihood : ψθ(x)(y) = ∇ log(fθ(x)(y)) for some (localized) p.d.f f
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GRF estimator

Definition 2. (GRF estimator)

Given a data Dn := {(Xi, Yi)}i=1,...,n satisfying (1), an estimator of
θ = (θ(x))x∈X ∈ Θ (defined in Def 1) is defined by

θ̂(x) ∈ argmin
e∈R

{∣∣∣∣∣
n∑
i=1

αi(x)ψe(Yi)

∣∣∣∣∣
}

for all x ∈ X

where

• αi(x) ∈ [0, 1] : weight function based on Random Forests

αi(x) =
1

B

B∑
b=1

αbi(x), αbi(x) =
1{Xi∈Lb(x)}

|Lb(x)|

• B : number of trees

• Lb(x) : “leaf” of b-th tree containning the test point x ∈ X
• |Lb(x)| : subsample size falling in the leaf Lb(x)
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Image of Weights

figure 1: Illustration of the random forest weighting functon (Athey et al. 2019)
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Double Sample

Training 
data 
(D_n)

Test data 

Subsample 
(D_s^{(1)})

J-sample 
(D_s^{(b)})

_J
Subsample 
(D_s^{(b)})

Subsample 
(D_s^{(B)})

・
・
・

・
・
・

I-sample 
(D_s^{(b)})

_I

(i) Randomly choose  
subsample with size s 
without replacement

(ii) Randomly divide 
into J-sample and I-
sample with size s/2

(iii) Create 
regression tree 

based on J-sample

(iv) Create 
partitioning of space 

X based on (iii)

(v) Ctegorize
I-sample falling in 

each rectangle (leaf) 
based on (iv)

figure 2: Procedure of double sample
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Athey et al.’s Result

Theorem 5 of Athey et al. (2019)
Suppose Assumptions 1-6 and a forest trained according to Specification 1 with trees are grown
on subsamples of size s = nβ

satisfying (13). Finally, suppose that Var[ρ∗i (x)|Xi = x] > 0. Then, there is a sequence σn(x)

for which
(
θ̂n(x)− θ(x)

)
/σn(x)

d→ N(0, 1) and σ2
n(x) = polylog(n/s)−1s/n, where

polylog(n/s) is a function that is bounded away from 0 and increases at most polynomially with
the log-inverse sampling ratio log(n/s).

Problem

From the above result, we have for any x ∈ X

rn

(
θ̂n(x)− θ(x)

)
d→ N(0, σ2(x)).

Two quantities are missing.

• rate of convergence (rn)

• asymptotic varinace (σ2(x))
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Assumption

We impose the following assumptions.

Assumption
(A.1) There exists 2nd order moment, and strictly positive, continuous p.d.f. of (X,Y ) on

X × Y.

(A.2) (Lipschitz x-signal) Me(x) := E [ψe(Y )|X = x] is Lipschitz continuous on X .

(A.3) (Smooth identification) Me is twice continuously differentiable at e = θ with a uniformly
bounded second derivative, and that Ṁ(x) := ∂eMe(x)|e=θ(x) is invertible for all x ∈ X .

(A.4) (Lipschitz (θ)-variogram) supx∈X {|Var (ψe(Y )− ψe′ (Y )|X = x)|} ≤ L|e− e′|.

(A.5) (Regularity of ψ) ψe = λe + ζe where λe is Lipschitz continuous in e, ζe is monotone and
bounded function.

(A.6) (Existence of solutions) There exists θ̂n(x) in Definition 2 and
|
∑n

i=1 αi(x)ψθ̂n(x)(Yi)| ≤ Cmax{αi(x)} for some constant C ≥ 0.

(A.7) (Convexity) The score function ψe is a negative sub-gradient of a convex function, and
the expected score Me is the negative gradient of a strong convex function.
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Approximate Kernel Function

Definition 3. (Forest score and Approximate forest score)

Denote the forest score as Ψ(θ(x)) =
∑n

i=1 αi(x)ψθ(x)(Yi) for any
θ = (θ(x))x∈X ∈ Θ. We introduce the approximate forest score by

ΨKer(θ(x)) =

n∑
i=1

αKer
i (x)ψθ(x)(Yi), αKer

i (x) =
K ((x−Xi)/an)∑n
j=1K ((x−Xj)/an)

where an is a bandwidth and K is a Gaussian Kernel given by

K (u) =
1√
2π

exp

(
−1

2
u2

)
(Note) ΨKer(θ(x)) is a class of Nadaraya-Watson regression estimatiors and K is a kernel
function satisfied with∫ ∞

−∞
K(u)du = 1,

∫ ∞

−∞
uK(u)du = 0,

∫ ∞

−∞
u2K(u)du =

1

2
√
π
<∞
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Fitting Kernel Functions
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figure 3: Result for fitting some kernel functions such as Gaussian, Uniform,
Tiangle, Epanechinikov and Inverse when Yi = Xi +N(0, 1), Xi = i, n =

104, s = n0.7, an = 2 (log n/ log s)
2 × (s/n/2)

1/2.
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Fitting Kernel Functions (effect for some test points)
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figure 4: Result for test points as 0.1-quantile, 0.2-quantile, . . . ,0.8-quantile 0.9-quantile.
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Fitting Kernel Functions (effect for sample size)
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figure 5: Result for sample size (n) as 20, 50, 100, 200, 500, 1000, 2000, 3000, 5000.
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Fitting Kernel Functions (effect for subsample size)
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figure 6: Result for subsample size (s = nβ) as 50000.5, 50000.6, 50000.7, 50000.8.
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Asymptotic Normality

Lemma 1.

Let s ≡ s(n) = nβ with β ∈ (βmin, 1). Under Assumption 1, Specification
1 in Athey et al. (2019), and an = Cβ(s/n)

1/2, we have

max
i∈{1,...,n}

sup
x∈X ◦

∣∣αi(x)− αKer
i (x)

∣∣ = op

(
(nan)

−1/2
)

(Note1) “Specification 1” is the splitting rule for trees with (i) ω-regular (ii) random split (iii)
PNN (potential nearest neighbor) k-set in Athey.et.al. (2019).

(Note2) Athey et al. (2019) define the lower bound of β by

βmin := 1−
(
1 + π−1

(
log

(
ω−1

))
/
(
log

(
(1− ω)−1

)))−1

where (i) ω and (ii) π are defined in “Specification 1” (in which the size of rectangle m is
assumed to satisfy ⌊s/2⌋ωm ∈ [k, 2k − 1]).

(Note3) Cβ > 0 is a constant value depending on β. In the simulation study,

Cβ = 21/2(logn/ log s)2 = 21/2β−2.

(Note4) X ◦ ⊂ X is a compact set.
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Asymptotic Normality (cont.)

By some modification of Schuster (1972) or Stute (1984), we have the followings.

Lemma 2.

Under β ∈ (1/3, 3/5), for any fixed x ∈ X ◦ and Mθ(x)(x) = E
[
ψθ(x)(Y )|X = x

]
√
nan

{
ΨKer(θ(x))−Mθ(x)(x)

}
d→ N (0, V (x))

where

V (x) =

∫
u2K(u)duVar

(
ψθ(x)(Y )|X = x

)
=

1

2
√
π
Var

(
ψθ(x)(Y )|X = x

)
(Note1) Schuster (1972) or Stute (1984) require the condition na3n → ∞ and na5n → 0 in order
to vanish the asymptotic bias. In our case, we can see from β ∈ (1/3, 3/5) that

na3n = n
(
Cβ(n/s)

−1/2
)3

= C3
βn

(
(n1−β)−1/2

)3
= C3

βn
(3β−1)/2 → ∞

na5n = n
(
Cβ(n/s)

−1/2
)5

= C5
βn

(
(n1−β)−1/2

)5
= C5

βn
(5β−3)/2 → 0.

(Note2) However, when ω = 0.2, π = 0.1, it follows

βmin := 1−
(
1 + π−1

(
log

(
ω−1

))
/
(
log

(
(1− ω)−1

)))−1
= 0.9863249 /∈ (1/3, 3/5).
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Asymptotic Normality (cont.)

If both of Lemma 1 and Lemma 2 are satisfied under some condition, we have the
following result.

Theorem.
Under some condition satisfied with Lemmas 1 and 2, we have for any fixed x ∈ X ◦

√
nan

{
θ̂n(x)− θ(x)

}
d→ N

(
0,

V (x)

Ṁ2(x)

)
where Ṁ(x) = ∂eMe(x)|e=θ(x).

Remark.

The Cramér-Wold device may be applied to show that
√
nan

{
θ̂n(x)− θ(x)

}
converges

jointly in distribution at finitely many points x1, . . . , xk with θ̂n(x1), . . . , θ̂n(xk) being
asymptotically independent.
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Conclusion and Future Work

• Conclusion
▶ We considered the statistical estimation of functions defined by

solutions of local estimating equations by using Generalized Random
Forests (GRF) for i.i.d. data.

▶ We fund that the asymptotic theory of Nadaraya-Watson type
estimator is not directly applicable to that of GRF estimator and some
additional arguments are needed.

• Future Work
▶ Consider the asymptotic theory for the case of β ∈ (βmin, 1) ⊂ (3/5, 1)
▶ Numerical Result
▶ Extend the model from i.i.d. to dependent
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Thank you very much!
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Double Sample

Suppose that we can obtain a data,

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

Based on Dn, we generate sub-sample {Is,Js} = {DAI ,DAJ } as follows:

Definition.
Let s = s(n) be a sub-sample size with s < n. Let

As :=

{
A = {AI , AJ }, AI , AJ ⊂ {1, 2, . . . , n}

∣∣∣∣AI ∩AJ = ∅,∣∣∣AI
∣∣∣ = ⌊ s

2

⌋
,
∣∣∣AJ

∣∣∣ = ⌈ s
2

⌉}
For any A = {AI , AJ } ∈ As, we define two sub-samples Is and Js by
Is = DAI ,Js = DAJ where DA· = {(Xi, Yi)}i∈A· .
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Why Double Sample ?

The tree score T is constructed based on sub-samples {Is,Js} ⊂ Dn called the
Double-sampling (s: sub-sample size).

• Js-sample : To place the splits (i.e., partitioning of the covariate space)

• Is-sample : To do within-leaf estimation (i.e., estimation of the interest quantities
based on the elements of the Is-sample within the leaf)

• Thanks to the Double-sampling, regression tree (which is based on the Is-sample)
do not depend on the covariate space partitioning (which is based on the
Js-sample)!

• However, the sample size to be able to estimate becomes half.
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Splitting Rule

By using Js-sample, we consider the partitioning of the covariate space Rp.

Definition.
Given Js = Js(A), we define a sequence of partitions P0,P1, . . . by starting form
P0 = {X} and then, for each ℓ ≥ 1, construct Pℓ from Pℓ−1 by replacing one set
(parent node) P ∈ Pℓ−1 by (child node)

C1 := {x = (x1, . . . , xp) ∈ P ⊂ X : xξ ≤ ζ}
C2 := {x = (x1, . . . , xp) ∈ P ⊂ X : xξ > ζ}

where

• the split direction ξ ∈ {1, . . . , p} : randomly chosen (i.e., random split) a

• the split position ζ = ζ(ξ) ∈ {xξ ∈ Xj ∩ P} : chosen by optimizing a criterion
∆(C1, C2)

aIn case of Athey et al. (2019), ξ is defined by
ξ ∼ min{max{Poisson(m), 1}, p} at each step, where m > 0 is a turning
parameter.
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Criterion for Split Position

Athey et al. (2019) introduces the criterion for split position, which is an approximation
of

err(C1, C2) =
2∑

j=1

P[Xt ∈ Cj |Xt ∈ P ]E[(∥θ̂Cj (Js)− θ0(Xt)∥2|Xt ∈ Cj ]

where P is a parent node, C1, C2 are children, θ̂Cj (Js) is an estimator based on
Cj ⊂ Js and θ0 is the target function (true parameter).

Proposition 1,2 (Athey et al., 2019)

∆I(C1, C2) :=
nC1nC2

n2
P

∥∥∥θ̂C1(Js)− θ̂C2(Js)
∥∥∥2

∆II(C1, C2) :=

2∑
j=1

1

|{i : Xi ∈ Cj}|

∥∥∥∥∥∥
∑

i:Xi∈Cj

ρi

∥∥∥∥∥∥
2
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Example for Splitting

n = 499

n = 175

X1 ≤ 0.56

X1 > 0.56

One of the tree in quantile regression forest via GRF 
( s = 499,  -sample = 250, honest splitting )"

n = 324

X2 ≤ −0.86

X2 > −0.86

X2 ≤ 2.87

X2 > 2.87
…

…

…

…

n = 4

AR(2) : Yt = 0.5Yt−1 + 0.4Yt−2 + N(0,1)

n = 3

n = 5

n = 1

Leaves 
(terminal nodes)

…
…
…
…
…
…

data : {(5.18,5.61),6.05}
{(4.39,5.61),4.92}
{(4.98,5.84),4.51}
{(4.41,5.26),2.98}

{(Yt−1, Yt−2), Yt}

data : {(4.39,3.45),4.20}
{(5.84,4.72),4.98}
{(4.53,4.76),2.31}

figure 7: Example for splitting
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Splitting Rule (cont.)

For the above splitting rule, we impose the following assumption.

Assumption.

• (ω-regular) min(nC1 , nC2) ≥ ω × nP where nP , nC1 , nC2 are sample size of
P,C1, C2, respectively.

• (random split) P(ξ = j) ≥ π for all j ∈ {1, . . . , p}.
• (PNN (potential nearest neighbor) k-set) Let L ∈ Pℓ be a leaf of the tree and let
♯L := |{Xt : Xt ∈ L}| be a sub-sample size falling in L. Then ♯L satisfies
k ≤ ♯L ≤ 2k − 1 for some k ∈ N.
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Result for Test Data

figure 8: WNW predictor by Cai (2002) figure 9: tsQRF predictor
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