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e Conditional Mean (RF)

» Breiman (2001), Biau et al. (2008), Biau (2012), Scornet et al.
(2015), Davis and Nielsen (2020)

Causal Inference

» Wager and Walther (2015), Athey and Imbens (2016), Wager and
Athey (2018)

Conditional Quantile
» Meinshausen (2006), S-N-Shibuki

Survival Function
» Ishwaran and Kogalur (2010), Cui et al. (2023)

Local Estimating Equation (GRF)
» Athey,P., Tibshirani,J., and Wager,S. (2019)
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Outline of This study

Athey et al. (2019)'s result

e Although they showed the asymptotic nomarilty, they did not show
the rate of convergence and (closed form of) the asymptotic variance.
Our Contribution

e We show the “Rate of Convergence” and “Asymptotic Variance” in
closed form.

Key Idea

e We approximate the “Forest Weight” as a“Kernel Function”. Then,

the asymptotic theory is reduced to that of “Nadaraya-Watson type
estimator” .
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GRF model

Definition 1. (GRF model)

Suppose that a sequence of i.i.d. random vector
{(Xi,Y;) € X X V}iz,.. n satisfies

E [thp)(Yi)|Xi =2] =0 forallz e X (1)

where
e € ©®={0:X — R} : parameter of interest
e 1) : 0 x Y — R : some scoring function

(Note) 1) depends on the parameter for example
e mean : Yy (y) =y — 0(z)
e quantile : Yy (y) = 7 — 1{y<g(z)} for some 7 € (0,1)
o likelihood : vy, (y) = V1og(fo(x)(y)) for some (localized) p.d.f f
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GRF estimator

Definition 2. (GRF estimator)

Given a data D), := {(X;, Y;) }i=1,...n satisfying (1), an estimator of
0 = (0(z))zex € © (defined in Def 1) is defined by

0" .
(x) € arg min {

3" ai(@)e(Yi)
=1

} forallz ¢ X

where

e «;(z) €[0,1] : weight function based on Random Forests

1{Xi€Lb($)}
i (0771 ’ (07 S —r—=—7 1
=B Z w@),  anle) == o)

e B : number of trees
o Ly(x) :

“leaf” of b-th tree containning the test point z € X
o |Ly(z)| : subsample size falling in the leaf Ly(x)
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Image of Weights
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figure 1: Illustration of the random forest weighting functon (Athey et al. 2019)
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Double Sample

(Sgb:f{TBlﬁ (iii) Create (iv) Create
= regression tree partitioning of space
Training . based on J-sample Xbased on (iii)

data

J-sample
O (D_sM(v) [
J -
Subsample
(D_s™(b)}) l
|-sample
(D_s™M(b)}) o [©
o
- o |0 o
Test data _(ii) Randomly divide ° °
into J-sample and |- .
Stibsample sample with size s/2 (v) Ctegorize

(D_sM®B)))

|-sample falling in
each rectangle (leaf)
(i) Randomly choose based on (iv)
subsample with size s

without replacement

figure 2: Procedure of double sample
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Athey et al.’s Result

Theorem 5 of Athey et al. (2019)

Suppose Assumptions 1-6 and a forest trained according to Specification 1 with trees are grown
on subsamples of size s = nf

satisfying (13). Finally, suppose that Var[p;(x)|X; = 2] > 0. Then, there is a sequence o, ()
for which <én(x) — 9(30)) Jon(x) 4 N(0,1) and o2 (x) = polylog(n/s)~'s/n, where
polylog(n/s) is a function that is bounded away from 0 and increases at most polynomially with
the log-inverse sampling ratio log(n/s).

Problem
From the above result, we have for any x € X

o (én(x) - e(x)) 4 N0, 0% ().

Two quantities are missing.
e rate of convergence (r,)

e asymptotic varinace (o%(z))
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Assumption

We impose the following assumptions.

(A1)

(A2)

(A.3)

There exists 2nd order moment, and strictly positive, continuous p.d.f. of (X,Y") on
X X ).

(Lipschitz z-signal) Me(x) := E [¢e(Y)|X = z] is Lipschitz continuous on X.

(Smooth identification) Me. is twice continuously differentiable at e = 6 with a uniformly
bounded second derivative, and that M () := 0e Me(2)|c—g(s) is invertible for all z € X.

(Lipschitz (6)-variogram) sup,cx {|Var (e(Y) — e (V)| X = z)|} < Lle — €/|.

(Regularity of ¥) e = Ae + (e where Xc is Lipschitz continuous in e, (e is monotone and
bounded function.

(Existence of solutions) There exists ,, () in Definition 2 and
(v ai(x)wén(z)(Y,-)\ < Cmax{a;(z)} for some constant C > 0.

(Convexity) The score function 1. is a negative sub-gradient of a convex function, and
the expected score M, is the negative gradient of a strong convex function.
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Approximate Kernel Function

Definition 3. (Forest score and Approximate forest score)

Denote the forest score as W(6(x)) = > 7" | a(2)g(y) (Vi) for any
0 = (0(x))zex € ©. We introduce the approximate forest score by

K ((z — Xi)/an)
> K ((z = Xj)/an)

where a,, is a bandwidth and K is a Gaussian Kernel given by

K (u) = \/127 o <—%u2>

(Note) WKer(g(z)) is a class of Nadaraya-Watson regression estimatiors and K is a kernel
function satisfied with

\I/Ker Z az wQ(m) (Y) ag(er(x) =

oo [oo] oo
/ K(u)du =1, / uK (u)du =0, / WK (u)du = ———= < o0
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Fitting Kernel Functions

test.point = 0.4, n=1000 s= 0.7
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figure 3: Result for fitting some kernel functions such as Gaussian, Uniform,
Tiangle, Epanechinikov and Inverse when Y; = X; + N(0,1), X; =14, n=
104, s =n°7, a, = 2(logn/logs)* x (s/n/2)1/2.
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Fitting Kernel Functions (

fect for some test point
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Fitting Kernel Functions (effect for sample size)
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figure 5: Result for sample size (n) as 20,50, 100, 200, 500, 1000, 2000, 3000, 5000.
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Fitting Kernel Functions (effect for subsample size)
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figure 6: Result for subsample size (s = n?) as 5000°-5, 5000°-6, 500007, 5000°-8.
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Asymptotic Normality

Let s = s(n) = n” with 8 € (Bmin, 1). Under Assumption 1, Specification
1 in Athey et al. (2019), and a,, = C3(s/n)'/2, we have

x| sup Jaq(@) = ol (2)| = o ((nan) 1)

(Notel) “Specification 1" is the splitting rule for trees with (i) w-regular (ii) random split (iii)
PNN (potential nearest neighbor) k-set in Athey.et.al. (2019).

(Note2) Athey et al. (2019) define the lower bound of 3 by

Bmin =1 — (1 + 7t (10g (wil)) / <log ((1 fw)71>))

where (i) w and (ii) 7 are defined in “Specification 1" (in which the size of rectangle m is
assumed to satisfy |s/2|w™ € [k, 2k — 1]).

-1

(Note3) Cjg > 0 is a constant value depending on 3. In the simulation study,
Cp = 2'/2(logn/log s)? = 21/25=2.

(Note4) X° C X is a compact set.
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Asymptotic Normality (cont.)

By some modification of Schuster (1972) or Stute (1984), we have the followings.

Lemma 2.
Under 8 € (1/3,3/5), for any fixed z € X° and Mpy(o)(z) = E [¢g(a) (V)| X = z]

N {\yKef(e(x)) - Mg@(x)} 4 N(0,V(z))
where

V(z) = /u2K(u)duVar (Yo)(Y)|X =2) = ﬁ\/ar (Vo) (Y)|X = 2)

(Notel) Schuster (1972) or Stute (1984) require the condition na2 — oo and na2 — 0 in order
to vanish the asymptotic bias. In our case, we can see from 3 € (1/3,3/5) that

3 3

nad =n (Cg(n/s)_l/Q) = an ((nl_ﬁ)_l/z) = C’gn(g’ﬁ_l)/2 — 00
5 5

nad :n<CB(n/s)_l/2) = C’gn ((nl_ﬂ)_l/Q) = an(5ﬂ_3)/2 — 0.

(Note2) However, when w = 0.2, 7 = 0.1, it follows

Banin = 1 — (1 4771 (log (w™1)) / <1og ((1 - w)*l))y1 = 0.9863249 ¢ (1/3,3/5).
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Asymptotic Normality (cont.)

If both of Lemma 1 and Lemma 2 are satisfied under some condition, we have the
following result.

Theorem.
Under some condition satisfied with Lemmas 1 and 2, we have for any fixed z € X°
2 V(z)
nay, 4 0n(x) — 0(x ﬁ>N<0, : )
Vi {fn(2) - 0(x) } e

where M(z) = 9e Me(2)|e=p(z)-

Remark.

The Cramér-Wold device may be applied to show that \/na., {én(m) = 9(30)} converges

jointly in distribution at finitely many points z1, ...,z with én(a:l), e ,én(xk) being
asymptotically independent.
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Conclusion and Future Work

e Conclusion

» We considered the statistical estimation of functions defined by
solutions of local estimating equations by using Generalized Random
Forests (GRF) for i.i.d. data.

» We fund that the asymptotic theory of Nadaraya-Watson type
estimator is not directly applicable to that of GRF estimator and some
additional arguments are needed.

e Future Work

» Consider the asymptotic theory for the case of 8 € (Bmin, 1) C (3/5,1)
» Numerical Result
» Extend the model from i.i.d. to dependent
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Thank you very much!
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Double Sample

Suppose that we can obtain a data,
Dy = {(Xla Y1)7 ) (X’ﬂ7 Yn)} .
Based on D,,, we generate sub-sample {Z;, 7} = {D4z,D 5} as follows:

Definition.

Let s = s(n) be a sub-sample size with s < n. Let

A, ::{A:{AI,AJ}, AT A7 c{1,2,...,n}|ATn A7 =,

#=13]. |47 =[5}

For any A = {AZ, A7} € A;, we define two sub-samples Z; and J; by
Zs =Dyz,TJs = Dyg where Dy = {(X;,Y5) bica--
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Why Double Sample ?

The tree score T is constructed based on sub-samples {Z,, Js} C D, called the
Double-sampling (s: sub-sample size).

e 7J,-sample : To place the splits (i.e., partitioning of the covariate space)

® T,-sample : To do within-leaf estimation (i.e., estimation of the interest quantities
based on the elements of the Z;-sample within the leaf)

sample / sample / testdata
data set
split estimate test
L )
T

training data

® Thanks to the Double-sampling, regression tree (which is based on the Z,-sample)
do not depend on the covariate space partitioning (which is based on the
Js-sample)!

® However, the sample size to be able to estimate becomes half.
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Splitting Rule

By using Js-sample, we consider the partitioning of the covariate space R”.

Definition.

Given J, = J,(A), we define a sequence of partitions Py, P1, ... by starting form
Po = {X} and then, for each £ > 1, construct P, from P,_1 by replacing one set
(parent node) P € P, by (child node)
C, = {x:(xl,...,xp)GPCX:xg SC}
Cy:={z=(21,...,2p) EP C X :2¢ >(}

where
® the split direction € € {1,...,p} : randomly chosen (i.e., random split) *

e the split position ¢ = ((&§) € {z¢ € X; N P} : chosen by optimizing a criterion
A(C1,Cs)

“In case of Athey et al. (2019), £ is defined by
& ~ min{max{Poisson(m), 1}, p} at each step, where m > 0 is a turning
parameter.
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Criterion for Split Position

Athey et al. (2019) introduces the criterion for split position, which is an approximation
of

err(C1,C2) = ) PIX: € Cy|X: € PIE[(|6c, () — 60(X0)|*| X € C]

=1

where P is a parent node, C1,C> are children, écj (Js) is an estimator based on
Cj C Js and B is the target function (true parameter).

Proposition 1,2 (Athey et al., 2019)

R . 2
Ax(Cr, Co) 1= " e, (7,) = by ()
P
2
An(Cl,Cz)i:i:ﬁ Z pi
= [{i: Xi € Gy} X, €0,
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Example for Splitting

One of the tree in quantile regression forest via GRF

(s =499, 7-sample = 250, honest splitting ) AR(2) ¥, = 0.5Y,_, +04Y,, + N(O.1)

Leaves

(terminal nodes)

n=4
S ((Yiepy Y, V)
data : {(5.18,5.61),6.05}

4.39,5.61),4.92
w175 {( ):4.92}

’ ((4.98,5.84).4.51)
. % . ((4.41,5.26),2.98)
W v e
. data: {(439.3.45).4.20)
+

: {(5.84,4.72),4.98}
k % {(4.53,4.76),2.31}
.56 X’L7 :

n =499

n =324

=
]
w

A
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Splitting Rule (cont.)

For the above splitting rule, we impose the following assumption.

® (w-regular) min(nc,,nc,) > w X np where np,ne, ,ne, are sample size of
P, C1, Cy, respectively.
e (random split) P(¢ = j) >« forall j € {1,...,p}.

® (PNN (potential nearest neighbor) k-set) Let L € P; be a leaf of the tree and let
#L := [{X¢ : Xt € L}| be a sub-sample size falling in L. Then {L satisfies
k < #L < 2k — 1 for some k € N.
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Result for Test Data

[a] o
s upper estimated s upper estimated
— lower estimated — lower estimated
n n
o 9 It
o (=]
LI .
. il y i R AL Vi P ' . ML‘.‘
[’} [} W LR
3 o ] ol (H T A |
T O T O - ki MUY,
; o ; o I ( | h
I "
WA
n n
o o
] Q
Jan. 30, 2018 Jan. 30, 2018
0 °
ol o
T T T T T T
2018 2019 2020 2018 2019 2020

Apple Inc. stack fell frime

figure 8: WNW predictor by Cai (2002)

Apple Inc. stock fell Time

figure 9: tsQRF predictor
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