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(Here, they have 
removed the log slope)
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Troughmax can 
precede LOC

Peakmax only 
occurs when the 

subject is 
unarousable
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Amount of the total power that is 
captured by the first eigenvalue of 

the cross-spectral matrix

What is the best way to 
quantify all of these effects?

What is the best model 
for a rhythm?
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 Defining rhythms
 Sinusoids
 Analytic Signal
 State Space Oscillators

 Rhythm separation
 Decomposition of a univariate signal into multiple time-domain oscillatory processes

 Phase amplitude coupling
 Modeling interactions between rhythms

 Functional connectivity
 Three different kinds of rhythmic networks
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Real

Imaginary

Signal = projection onto 
Real axis

Phasor
Amplitude = vector length

Phase = starting angle

https://upload.wikimedia.org/wikipedia/commons/8/89/Unfasor.gif

Instantaneous 
Phase

Fourier Transform:

But neural rhythms aren’t sinusoidal!
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(1) Bandpass Filter (2) Compute Analytic 
Signal

(3a) Instantaneous Phase

(3b) Instantaneous Amplitude

But bandpass filtering imposes arbitrary cutoffs that 
may leave out signal and include noise

If Xt is narrowband
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Rotate by 
at each time
step

Decay
(for 

stability)

Gaussian 
Noise

This is the foundation of the State 
Space Oscillator (SSO) Model

A rotating 2-D vector autoregressive process can be 
interpreted as a noisy phasor:
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Hidden state: K oscillators

Observations: sum of real parts of the oscillators

Inst. Amplitude

Inst. Phase
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Better at capturing transient and 
non-sinusoidal rhythms
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Magnitude of 
Coupling

Phase of 
Coupling

Fitted 
Amplitude
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Multivariate observations

Common Oscillator Model

Common Oscillator Model
Correlated Noise Model
Directed Influence Model



26 of 22

Common Oscillator
Alpha rhythm B matrices

Global Coherence
Magnitude at alpha
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 State space oscillators are a powerful, flexible framework for 
capturing neural oscillations
 Decomposing signals in the time domain
 Phase amplitude coupling
 Functional networks

 Future directions:
 Other network models and applications
 Other observation models
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