Using state space models to understand rhythmic dynamics in the brain

Emily P. Stephen Assistant Professor Boston University June 26, 2023

Electrophysiological voltage recordings

Single Unit 50 μ m Local Field Potential Electrocorticography (LFP) Multiunit Activity 300 μm (ECoG) 3mm Electroencephalography (EEG) >2 cm

Neural electrophysiology data (ephys) across scales

The ephys power spectrum has a "power law" or $1/f^{\alpha}$ shape (linear on log-log scale)

Rhythms are classically defined by narrow-band peaks in the power spectrum

(Here, they have removed the log slope)

Buzsáki (2006) Rhythms of the Brain 5 of 22

Propofol-induced unconsciousness has slow and alpha rhythms

Rhythms are common (but not always oscillatory)

Cole and Voytek (2017) Trends Cog Sci

Rhythms are common (but not always persistent)

Stokes et al. (2023) Sleep

Rhythms can interact across frequencies

Mukamel et al (2014) J Neurosci 9 of 22

Rhythms can interact across space

Global Coherence. Sorting the eigenvalues, $S_1^Y(f) \geq S_2^Y(f) \geq ... \geq S_N^Y(f)$, the ratio of the largest eigenvalue to the sum of eigenvalues is:

$$
C_{\text{Global}}(f) = \frac{S_1^Y(f)}{\sum\limits_{i=1}^N S_i^Y(f)}.
$$

Amount of the total power that is captured by the first eigenvalue of the cross -spectral matrix

What is the best way to quantify all of these effects?

What is the best model for a rhythm?

- **Defining rhythms**
	- **Sinusoids**
	- **Analytic Signal**
	- State Space Oscillators
- Rhythm separation
	- Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
	- Modeling interactions between rhythms
- **Functional connectivity**
	- **Three different kinds of rhythmic networks**

Sinusoidal oscillations as phasors

Fourier Transform:

Phase

$$
x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{in \frac{2\pi k}{N}} = \frac{1}{N} \sum_{k=0}^{N-1} |X_k| e^{i \left(n \frac{2\pi k}{N} + \angle X_k \right)}
$$

A discrete time signal is an average of complex phasors across frequencies, each with starting phase $\angle X_k$ and amplitude $|X_k|$ $|X_k| = \sqrt{X_{k,Re}^2 + X_{k,Im}^2}$ $\angle X_k = \text{atan2}(X_{k,Im}, X_{k,Re})$ Instantaneous $\phi(t)$

https://upload.wikimedia.org/wikipedia/commons/8/89/Unfasor.gif12 of 22

But neural rhythms aren't sinusoidal!

Standard Analysis: Bandpass filter, Analytic Signal

(1) Bandpass Filter (2) Compute Analytic **Signal**

 $X_t^a = X_t + iH(X_t)$

 $\approx a(t)e^{i(\omega_0 t + \theta_0)}$

If X_t is *narrowband*

But bandpass filtering imposes arbitrary cutoffs that may leave out signal and include noise

(3a) Instantaneous Phase

(3b) Instantaneous Amplitude

Non-sinusoidal oscillations as noisy phasors

The State Space Oscillator Model

Hidden state: K oscillators

$$
\begin{bmatrix} x_{t+1,1}^{(k)} \\ x_{t+1,2}^{(k)} \end{bmatrix} = a \begin{bmatrix} \cos(2\pi f_k \Delta t) & -\sin(2\pi f_k \Delta t) \\ \sin(2\pi f_k \Delta t) & \cos(2\pi f_k \Delta t) \end{bmatrix} \begin{bmatrix} x_{t,1}^{(k)} \\ x_{t,2}^{(k)} \end{bmatrix} + \begin{bmatrix} v_{t,1}^{(k)} \\ v_{t,2}^{(k)} \end{bmatrix} \quad k = 1...K
$$
\n
$$
\begin{bmatrix} v_{t,1}^{(k)} \\ v_{t,2}^{(k)} \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_k^2 & 0 \\ 0 & \sigma_k^2 \end{bmatrix} \right)
$$

Observations: sum of real parts of the oscillators

 K Inst. Amplitude $A_t^{(k)} = \sqrt{x_{t,1}^{(k)2} + x_{t,2}^{(k)2}}$ $y_t = \sum x_{t,1}^{(k)} + w_t$ $w_t \sim N(0, \tau^2)$ Inst. Phase $\phi_t^{(k)} = \text{atan2}\left(x_{t,2}^{(k)}, x_{t,1}^{(k)}\right)$ $k=1$

Matsuda and Komaki (2017). Neural Computation and the state of 22 and 22 an

The model process has a parametric power spectrum, where each rhythm is broadband

Beck, Stephen, Purdon (2018) IEEE EMBC 17 of 22

- Defining rhythms
	- **Sinusoids**
	- Analytic Signal
	- State Space Oscillators
- Rhythm separation
	- Decomposition of a univariate signal into multiple time-domain oscillatory processes
- **Phase amplitude coupling**
	- Modeling interactions between rhythms
- **Functional connectivity**
	- **Three different kinds of rhythmic networks**

Can use classic state space techniques to estimate the hidden states and parameters (EM, filters/smoothers)

Beck, Stephen, Purdon (2018) IEEE EMBC 19 Of 2018 19 Of 2018

- Defining rhythms
	- **Sinusoids**
	- Analytic Signal
	- State Space Oscillators
- Rhythm separation
	- Decomposition of a univariate signal into multiple time-domain oscillatory processes
- **Phase amplitude coupling**
	- Modeling interactions between rhythms
- **Functional connectivity**
	- **Three different kinds of rhythmic networks**

Using the phase and amplitudes from the fitted model, we can estimate phase amplitude coupling

The resulting models are much more powerful than standard techniques

Soulat, Stephen, Beck, Purdon (2022) Scientific Reports 22 of 22 of 22 of 22

The models are more robust to nonsinusoidal and harmonic signals

Soulat, Stephen, Beck, Purdon (2022) Scientific Reports 23 of 22

- Defining rhythms
	- **Sinusoids**
	- **Analytic Signal**
	- State Space Oscillators
- Rhythm separation
	- Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
	- Modeling interactions between rhythms
- **Functional connectivity**
	- **Three different kinds of rhythmic networks**

Using SSOs for functional connectivity estimation with switching states

Common Oscillator Model

Multivariate observations

$$
P(S_t = j | S_{t-1} = i) = Z_{ij}
$$

\n
$$
(x_t | x_{t-1}, S_t = j) \sim N \boxed{A_j}_{t-1} \boxed{\Sigma_j}
$$

\n
$$
(y_t | x_t, S_t = j) \sim N \boxed{B_j x_t, R}
$$

Common Oscillator Model Correlated Noise Model Directed Influence Model

The Common Oscillator Model can capture switching global coherence modes at fine time resolution

The Common Oscillator model can learn switches from multiple overlapping rhythmic networks

27 of 22

Conclusions

- \times State space oscillators are a powerful, flexible framework for capturing neural oscillations
	- $\mathcal X$ Decomposing signals in the time domain
	- $\mathbb X$ Phase amplitude coupling
	- **K** Functional networks
- \times Future directions:
	- **X** Other network models and applications
	- **X** Other observation models

of 22

You can build the model with an iterative search

