# Using state space models to understand rhythmic dynamics in the brain

Emily P. Stephen Assistant Professor Boston University June 26, 2023

### **Electrophysiological voltage recordings**



Single Unit Local Field Potential Electrocorticography Electroencephalography 50 µm (LFP) (ECoG) (EEG) Multiunit Activity 3mm >2 cm 300 µm

#### Neural electrophysiology data (ephys) across scales



### The ephys power spectrum has a "power law" or 1/f<sup>α</sup> shape (linear on log-log scale)



Buzsáki (2006) Rhythms of the Brain

### **Rhythms are classically defined by narrow-band** peaks in the power spectrum



(Here, they have removed the log slope)

Buzsáki (2006) Rhythms of the Brain

frequency (Hz)

# Propofol-induced unconsciousness has slow and alpha rhythms



Purdon et al (2013) PNAS

# Rhythms are common (but not always oscillatory)



Cole and Voytek (2017) Trends Cog Sci

### Rhythms are common (but not always persistent)



Stokes et al. (2023) Sleep

### **Rhythms can interact across frequencies**



Mukamel et al (2014) J Neurosci

### Rhythms can interact across space



**Global Coherence.** Sorting the eigenvalues,  $S_1^{\gamma}(f) \ge S_2^{\gamma}(f) \ge ... \ge S_N^{\gamma}(f)$ , the ratio of the largest eigenvalue to the sum of eigenvalues is:

$$C_{\text{Global}}(f) = \frac{S_1^{Y}(f)}{\sum\limits_{i=1}^{N} S_i^{Y}(f)}.$$

Amount of the total power that is captured by the first eigenvalue of the cross-spectral matrix

What is the best way to quantify all of these effects?

What is the best model for a rhythm?



- Defining rhythms
  - Sinusoids
  - Analytic Signal
  - State Space Oscillators
- Rhythm separation
  - Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
  - Modeling interactions between rhythms
- Functional connectivity
  - Three different kinds of rhythmic networks

### Sinusoidal oscillations as phasors

Fourier Transform:

Phase

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{in\frac{2\pi k}{N}} = \frac{1}{N} \sum_{k=0}^{N-1} |X_k| e^{i\left(n\frac{2\pi k}{N} + \angle X_k\right)}$$

A discrete time signal is an average of complex phasors across frequencies, each with starting phase  $\angle X_k$ and amplitude  $|X_k|$  $|X_k| = \sqrt{X_{k,Re}^2 + X_{k,Im}^2}$  $\angle X_k = \operatorname{atan2}\left(X_{k,Im}, X_{k,Re}\right)$ Instantaneous  $\phi(t)$ 



https://upload.wikimedia.org/wikipedia/commons/8/89/Unfasor.gif12 0f 22

### Standard Analysis: Bandpass filter, Analytic Signal

#### (1) Bandpass Filter



(2) Compute Analytic Signal

 $X_t^a = X_t + iH(X_t)$ 

 $\approx a(t)e^{i(\omega_0 t + \theta_0)}$ 

If X<sub>t</sub> is *narrowband* 

#### But bandpass filtering imposes arbitrary cutoffs that may leave out signal and include noise

#### (3a) Instantaneous Phase



#### (3b) Instantaneous Amplitude



#### Non-sinusoidal oscillations as noisy phasors



#### The State Space Oscillator Model

#### Hidden state: K oscillators

$$\begin{bmatrix} x_{t+1,1}^{(k)} \\ x_{t+1,2}^{(k)} \end{bmatrix} = a \begin{bmatrix} \cos(2\pi f_k \Delta t) & -\sin(2\pi f_k \Delta t) \\ \sin(2\pi f_k \Delta t) & \cos(2\pi f_k \Delta t) \end{bmatrix} \begin{bmatrix} x_{t,1}^{(k)} \\ x_{t,2}^{(k)} \end{bmatrix} + \begin{bmatrix} v_{t,1}^{(k)} \\ v_{t,2}^{(k)} \end{bmatrix} \\ k = 1...K$$

$$\begin{bmatrix} v_{t,1}^{(k)} \\ v_{t,2}^{(k)} \end{bmatrix} \sim N\left( \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_k^2 & 0 \\ 0 & \sigma_k^2 \end{bmatrix} \right)$$

Observations: sum of real parts of the oscillators

 $y_t = \sum_{k=1}^{K} x_{t,1}^{(k)} + w_t \qquad w_t \sim N(0, \tau^2) \qquad \text{Inst. Amplitude} \qquad A_t^{(k)} = \sqrt{x_{t,1}^{(k)2} + x_{t,2}^{(k)2}} \\ \text{Inst. Phase} \quad \phi_t^{(k)} = \operatorname{atan2}\left(x_{t,2}^{(k)}, x_{t,1}^{(k)}\right)$ 

Matsuda and Komaki (2017). Neural Computation

# The model process has a parametric power spectrum, where each rhythm is broadband





Beck, Stephen, Purdon (2018) IEEE EMBC



- Defining rhythms
  - Sinusoids
  - Analytic Signal
  - State Space Oscillators
- Rhythm separation
  - Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
  - Modeling interactions between rhythms
- Functional connectivity
  - Three different kinds of rhythmic networks

## Can use classic state space techniques to estimate the hidden states and parameters (EM, filters/smoothers)





Beck, Stephen, Purdon (2018) IEEE EMBC





- Defining rhythms
  - Sinusoids
  - Analytic Signal
  - State Space Oscillators
- Rhythm separation
  - Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
  - Modeling interactions between rhythms
- Functional connectivity
  - Three different kinds of rhythmic networks

## Using the phase and amplitudes from the fitted model, we can estimate phase amplitude coupling





# The resulting models are much more powerful than standard techniques





Soulat, Stephen, Beck, Purdon (2022) Scientific Reports

# The models are more robust to nonsinusoidal and harmonic signals





Soulat, Stephen, Beck, Purdon (2022) Scientific Reports



- Defining rhythms
  - Sinusoids
  - Analytic Signal
  - State Space Oscillators
- Rhythm separation
  - Decomposition of a univariate signal into multiple time-domain oscillatory processes
- Phase amplitude coupling
  - Modeling interactions between rhythms
- Functional connectivity
  - Three different kinds of rhythmic networks

## Using SSOs for functional connectivity estimation with switching states

#### Common Oscillator Model



Multivariate observations

$$P(S_t = j | S_{t-1} = i) = Z_{ij}$$

$$(x_t | x_{t-1}, S_t = j) \sim N A_j x_{t-1} \Sigma_j$$

$$(y_t | x_t, S_t = j) \sim N B_j x_t, R)$$

Common Oscillator Model Correlated Noise Model Directed Influence Model



## The Common Oscillator Model can capture switching global coherence modes at fine time resolution



# The Common Oscillator model can learn switches from multiple overlapping rhythmic networks



27 of 22

### Conclusions

- × State space oscillators are a powerful, flexible framework for capturing neural oscillations
  - 🔀 Decomposing signals in the time domain
  - 🔀 Phase amplitude coupling
  - 🔀 Functional networks
- × Future directions:
  - X Other network models and applications
  - 🔀 Other observation models

29 of 22

### You can build the model with an iterative search





