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Introduction 1 (Preferential attachment model)
We consider the following model with preferential attachment (PAM);
(1) At time 0 there is one individual of fitness level 0.

(2) With probability p € [0, 1] there is a new birth.

There are two possibilities.

(2-a) with probability r € [0, 1] a mutation is born and has a fitness f
uniformly at random in [0, 1], or

(2-b) with probability 1 — r, the individual born has a fitness f with a
probability proportional to the number of individuas with fitness f among
the entire population present at that time.

Here we have caveat that, if there is no indvidual present at the time of
birth, then the fitness of the individual is sampled uniformly in [0, 1].

(3) With probability 1 — p there is a death event: an individual from the
population with the smallest fitness is eliminated.
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Suppose at time n the total population is of size N,,. Clearly N,, < n. The
demographic distribution of this population is given by

Xn = {(ki,x;) - ki e N,x; € [0,1],i =1,2,...,¢},

where the total population at time n is divided according to their fitness
levels x1, x2, ..., xg, with the size of the population with fitness x; being
exactly k;.

Thus at time n, the population N, is divided into exactly ¢ classes, each
class being identified by its fitness level x;.

In case there is no individual present at time n we take X, = ().

The process X, is a Markov process on the state space

X = {{0} U {(k,x)}xen : (k,x) € Nx [0,1], A C [0,1], #A < oo}

(k, x) is the state that k individuals exist on the fitness x.
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For a given f € (0,1), let Lf (respectively, Rf) denote the size of the
population at time n whose fitness levels are in [0, f] (respectively, in
(f,1]), i.e.

L= ok

(ki xi)E€Xn, ;i <f

Rf .= > k;,

(k,‘,X,‘)GXn, xi>f
Sp=1t{s €[0,1] : (k,s) € X, for some k > 1}.

Clearly, N, = Lf + RY.

Remark.
Sh is not a Markov chain since its transition depends on the number of
individuals at the lowest fitness.
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Results: Macroscopic behaviour

The model exhibits a phase transition at a critical fitness level f. = lp—rp
Theorem 1
(i) In case p < 1 — p, the population dies out infinitely often almost surely
in the sense that P(N, = 0 for infintely many n) = 1.

(ii) In case 1 — p < pr (i.e. fo < 1) the size of the population goes to
infinity as n — oo a.s. and the fitness levels of most of the population lies
in the interval [fc, 1], in the sense that
P( lim Ry _ 1) =1 and P(I|m|nfR”—_Rf >0)=1forany f > f..

n—oo N, N,
(iii) Incase pr <1—p < p (i.e. f >1and 1— p < p), the size of the
population goes to infinity as n — oo a.s., and the fitness levels of most of

the population lies near 1, in the sense that
f

. . Ry
P(,,I'_?QON”_OO)_L and P(nhrgoﬁn—l)—1Vf<fc/\1—1.
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Figure: Population (in log, scale) at various fitness levels.
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Results: Microscopic behaviour of case (i) (1 — p < rp)

UX(f) : the number of fitness levels x € [f, 1], each of which has exactly k
individuals at time n.

Then S, = 3", UX(0), the total number of fitness levels at time n.
We define the empirical distribution of size and fitness on N x [0, 1] :

S krea Un(F)—UK(F+)
Hn(A) = { 5, S, >0
3(0,0)(A)- S, =0
Theorem 2 Let 1 — p < pr (i.e. f <1). H, converges weakly to
1
P71 fcl[fc,l](x)dx, where
2p—1 ( 2p—1 )
p = —B 1 + —_ k , k e N, 1
g p(l—r) p(1—r) (1)

where B(a, b) is the Beta function with parameter a, b > 0.
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Remark for the case 1 — p < pr (i.e. f <1)

(i) Let Fo(f) denote the empirical distribution of fitnesses at time n. As a
corollary of Theorems 1 and 2, the following Glivenko-Cantelli-type result

holds:
f

c
1-—f

(ii) The distribution characterlzed by (1) is the Yule-Simon distribution
with parameter 2(1 - Since

Fa(f) =

as n — oo, a.s.

B(s, k) = O(k™), k- oo,

the probability density px, kK € N has m-th moment if and only if

2p—1

m ——

p(l—r)
o 2p—1
Forl—p<rp(ie fo.<1), 1< =y

Hideki Tanemura (Keio Univ.) On a model of evolution of subspecies Jun. 26 2023 8/32



Proportion of sites

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Population size

Figure: Theoretical and observed proportion of fitnesses with respect to
population size.
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Results: Case (iii) pr <1—p < p (i.e. f. > 1)
We introduce the increasing sequence {{,} defined by
&n = max{x : an individual of fitness x was eliminated by time n}.

1—p—pr
p(L—r)

Theorem 3 Let pr <1—p<p (i.e. fc>1). As n — oo,

Put v := € [0,1).

(i) incase pr=1—p (i.e. fc =1and 7 =0), the expected number of
individuals at a fitness level x € (§,,1) at time n is O(log n).
In addition 1 — &, = O(1/ log n).

(ii)incase pr<1—p<p(ie fo>1and~y € (0,1)), the expected

number of individuals at a fitness level x € (§,,1) at time n is O(n?).
In addition 1 — &, = O(n™7).
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Proof of Theorem 1

Lemma 4 (i) Letf. = % <1
(a) For f < f. we have

Lf
En _
nll_>ngo N, 0 as. (2)
P(Lf = 0 infinitely often) = 1. (3)
(b) For f > f. we have
P(Lf = 0 infinitely often) = 0. (4)

(ii) Letl—p<pandf.>1
(a) For f <1 we have (2) and (3).
(b) For f =1 we have (4).
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Proof of Theorem 1
(i) is obtained by the random walk comparison.

(ii) is derived from (i) of Lemma 4.
fe

R
Since N, = Lf + Rf, from (2) we have that P( lim -~ =1) =1.
n—oo N,

Moreover, considering the birth rate pr of mutants, as n — oo

# of them with a fitness between (a, b) C [fc, 1]
n

— pr(b—a), as.
by an application of the strong law of large numbers. Thus we have

. . RE—RZ _p(b-a)
Ilnn—]>!>r3>f N, = 2p—1"~

a.s.

This completes the proof of the statement of part (ii) of Theorem 1.
(iii) is derived from (ii) of Lemma 4.
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Proof of Lemma 4

For a fixed f € (0,1), the pair (L, RY) is a spatially inhomogeneous

Markov chain on Z4 x Zy, (Z+ = N U {0}) with transition probabilities
given by

(LR) If (LT, RT) e N x N

Lf
(Lf +1,RF) w. p. fpr—i—p(l—r)ﬁ”
n

Rf

(LFRF+1)  w.p. (1—Ffpr+p(l—r)-2

N,
(Lf —1,RY) w. p. 1—p.

(Lf1+17 R:+1) =

with the boundary condition (bc-1)-(bc-3)
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(be-1) If (L, Rf) = (0,0)
(1,0) w. p. fp

(Lhia R =2(0,1)  w.p. (1—F)p
(0,0) w.p.1—p

(bc-2) If (L, Rf) € {0} x N
(1, R)) w. p. fpr

(Ln—|—17 n+1) (0,RI+1) w. p. (1—F)pr+p(l—r)
(0,Rf —1) w.p.1—p

(be-3) If (Lf, Rf) € N x {0}

(Lf +1,0) w. p. fpr+p(1—r)

(Lhi1s Rhs1) = § (L5, 1) w. p. (1—="F)pr
(Lf —1,00 w.p.1-p
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Modified Markov chain (Ep)

The idea of the proof is that, since for f < f- A 1, R,f will be much larger
than Lf. We stochastically bound the spatially inhomogeneous Markov
chain by a spatially homogeneous Markov chain, and study the modified
Markov chain.

Define the spatially homogeneous Markov chains (Lf(¢), Rf(¢)), € € (0,1)
on Z_|_ X Z+ by

(Ep) If (Lf(c),Rf(¢)) e Nx N
(L +1(e). R +1(5))
(LT(e) +1,RE(e))  w. p. for +p(1—r)e

)
=< (Lf(e),Ri(e)+1) w.p. 1=Fpr+pl—r)(1—-e) (5)
(Lf(e) = 1,Rf(e)) w.p. 1—p

with the boundary condition (bc-1)-(bc-3).
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Modified Markov chain (Epn)

We also prepare an auxiliary Markov process. Let a = {ap}nen is a
sequence in [0,1]. We introduce the temporally inhomogeneous Markov
chains (Lf(a), Rf(a)) on Z; x Z, such that

(Epn) If (L}(a), R (a)) e N x N
(Lh41(a), Rh41(a)
(Lh@) + 1,Ri(a)) w. p. fpr+p(1—r)a, 1
={ (Lh(@),Ri(@)+1) w.p. (1—F)pr+p(l—r)(1—an1)
(Lh(@) —1,Ri(a)) w.p. 1—p.
with the boundary condition (bc-1)-(bc-3).
Note that N,(a) := Lf(a) + Rf(a) = N,.
We use this process when a = {a,} is an addapted process. In this case

the process is regarded as a Markov process on a random media.
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We couple the processes {(Lf(a),Rf(a)):n>1}st. ifa, <a, forne N
then

Lf(a) < Lf(d), Rf(a)>Ri(@a) foralln>1. (6)

f

We have, for pf := L:,

Lh=Lh(1ef}), RE =R ({oh}),
LH(0) < L, < Lh(1), RH(1) < R} < RI0). (7)

By the law of large numbers we have

Lf N
lim ﬁ = [for +p(1 —r)e =14 p], and lim L =2p—1, as,

n—oo N n—oo n
f(o) .— Lh (6)
and so, for pl(e) := , we have

for—1+4+p p(l—r)e
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We introduce the linear function defined by

for —1+p p(l—r)
h(x)—hf(x) = 1 + 2p—1X'

Note that Z1=0) > 0.

Suppose that f < f. A 1. A simple calculation shows that,

for—1+p 2p
h(0) = —— () <1— ——— < 1.
Let eg be the point such that h(eg) =0, i.e.
1-p)—f
o= B=P = for

p(l—r)
Note that £o could be > 1. Put All(-) = h(-) and AtKI+1(.) = hlKl(h(.)) for
any k € N. The we see that there exists ky € N such that

[AK(D)]y =0, k> ko. (9)
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From (7)
Ph(0) < ply < ph(1)
and from (8)
0= [A(0)]+ < limsupp, < [h(1)]+ 2.

Noting that pf, = pf({pf}), from (6)
Pr{ph(0)}) < ph < pr({pn(1)})  ass.
and from (8) and the continuity of the function h
0 < limsup pf, < [([A(V] )]s = (W] as.
n—00
Repeating this procedure, we have for any k € N.
0 < limsuppf, < [A¥(1)], as.

n—o00

From (9) we obtain (2) if f < fo A L.
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If f < fc A1, then fpr + p(1 — r)e < 1 — p for sufficiently small ¢ > 0, and
Lf(¢) is recurrent. From (2) we see that Lf hits the origin infinitely often.
This proves (3).

If f. < f <1, then1—p< fpr, and Lf(0) is transient. From (7) we have
(4)-
If f=1and 1—p < p, then Lf = N,, and we have (4).

This completes the proof of Lemma 4.
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Proof of Theorem 2

Ak(t1, n), k,t1,n € N : the event that a mutant born at time t; gets kK — 1
attachments until time n,

qk(tl, n) = P(Ak(tl, n))

Lemma 5 For the preferential attachment model with p =1, i.e
deaths, we have

n 2
1
E {E Z(lAk(tl,n) — qi(t1, n))} —0as n— oo.

t1=1

., o

Lemma 6 Let p=1. Foreach k € N
2—r
n'L[T;O; Z q(t1, n) = B (1 — k) = rpk.
t1=1
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Proof of Lemma 6
Proof. For k = 1, we have

qi(ti,n) =r ﬁ (1—11_,r>,

Jj=t1+1

since the number of individuals at time j — 1 is j and the probability that
the mutant who arrived at time t; gets an attachment at time j is %
For k =2

th—1

u 1—r,1—r, + 2(1—r)
w(t.n)=r > { J] (- i Nt 11 (1—f)}=
tb=t1+1 j=t;+1 j=tr+1
where ty is the time of the first attachment. Similarly for each k € N

kot (- -
awen=r > T 0=y

f<tr<--<t<nl=1j=t,+1 =1
£(1—r) 1 _ L(1-n)

tey 1—% T tep—A(1-r)"

where t,11 = n, and we used the equation
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By using Stirling’s formula we see that

tey1 ter1 .
El—r j—7 1—r) t
I o) 1 a

t,
J=tt1 J J=t1 b1

£(1—
) ( r)a tZ7 te-l-l — Q.

Now letting n — oo and taking t; = nx; we have

y X = 01 —r)
- qr(ty, n) ~ F/ <+ dXxy
n Z 0<x1<~~~<xk<1 H H

X X
=1 €+1 —1 £+1

1 k 1 1
=r(l- r)k_l/ dxlxll_r H/ dxg x, " = r/ dxlxll_r(l — Xll_r)k_:l
0 t=2/x 0

1
r 1 r 2—r

— dy yi-r(1 — y)k1 = B k.
1_r/0 y yi=r(1-y) T (1—#)

Then we have Lemma 6.
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Proof of Theorem 2

When p =1 From Lemmas 5 and 6 we have

1 2—
- Z 1A (t1,n) = ﬁB (1—_:, k) as n — oo, in probability.
t1=1

. .S
Noting that lim = = r,a.s. we have
n—oo N

n—o00 Sn 1—r

UK(f) — UK(f+ -
N > fe(0,1) Un(f) (f+) 1 B(i_:,k) =pk-  (10)

Noting that the fitness levels are uniformly distributed on [0, 1]

independently, and preferential attachment does not depend on the
position of fitnesses, we obtain Theorem 2 from (10) for p = 1.
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Next we consider the case where p € (0,1). We introduce another Markov
process Xy, n € Z., which is a pure birth process, as follows:

1. At time O there exists one individual at a fitness uniformly distributed
on (f.,1).

2. with probability p(1 — rf.) there is a new birth. There are two
possibilities;

. o opr(l—1Ff) p(l4+r) -1

th probability 7 := =

» with probability 7 (1= %) 1
a fitness uniformly distributed in [f;, 1],

1-— 1-—
» With probability 1 — 7:= PE=0 _ PA=1) i dividual born
p(l—rfc)  2p—1

has a fitness f with a probability proportional to the number of
individuals of fitness f and we increase the corresponding population of
fitness f by 1.

a mutant is born with

3. With probability 1 — p(1 — rf.) nothing happens, i.e. neither a birth
nor a death occurs.

Xny N € Zy = gk, Sp and U, )A<,,, neZy, = G, §,, and 0,,.
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Then by the same argument as the case p = 1 we see that

- Z qk(tla

A

(2 - C, k) and lim S0 _ pr(1 — fc).
— 7

t1 | 1 n—oo n
Hence
Zf601 ( ) — Uk(f+) 1 2—7F .
lim = B A,k = Pk-
n—00 S, 17 1-7

We know that for any ¢, deletions of individuals in [f. + €, 1) occur finitely
often almost surely as n — oc.

_ 2oFe(0,1) UK(f) — Us(f+) . e Y JK(F) — Ok(F+)

lim = lim a.s.

n—00 Sn n—oo Sn
and so (10) for p € (0, 1].
Noting that the fitnesses are uniformly distributed on [0, 1] independently,
and preferential attachment does not depend on the position of fitnesses,
we obtain Theorem 2 from (10).
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Proof of Theorem 3

Lemma 7 Let Yy, k € Z be a reflecting random walk with negative
drift on Z. Then there exists ¢ > 0 such that

(0. ]
P Y. > cl < 00.
; (jmax Yk > clogn) < o

Lemma8 Lletpr<l—p<p(ief>1). Let

My =t of individuals with fitness level < &, at time k. There exists
¢’ > 0 such that

o0
P My > c'log n) < co.
n; (max My > c'logn) < o
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We first prove (ii). From Lemma 8 we see that as n — oo,
# of individuals with fitness level < £, present at time n is O(log n), a.s.

From the strong law of large numbers and the central limit theorem we see
that as n — oo

N, = (2p —1)n+ O(\/n), as.
and forany 0 <a< b<1

# of fitness levels born in (a, b) = pr(b — a)n+ O(\/(b — a)n), as.

Thus, as n — oo

# of individuals in (£,,1] is (2p — 1)n+ O(+/n), ass. (11)
# of fitness levels > &, at time nis pr(1 — &,)n+ O(\/(1 — &n)n), ass.
(12)
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Hence, from ths same argument as in the proof of Lemma 7 with (11) and
(12), we have

P(a mutant is born at time t of fitness x > &, and N} = k|¢,)

k—1 tpp1—1 i

p(l—r)
~ pr(l —&n) > IT 11 ( 2p——1)>
t=ti<tr<--<ty<n | b=1 j=t,+1

n

. k(=) | [f7 et =n) ]
I (- Gy LH(

Pt 5 (2p— 1)fé+1_

where f, ~ g, implies ¢ < f,/g, < ¢’ with some ¢, ¢’ > 0.
p(1-r)
Put g := o T

Suppose that t; = ns; for some sequence 0 < 57 < --- 5, < 1.

tpp1—1 8 n %

I1 <1 _ gg) ~ (i) and [ (1 _ 5/3) ~ (Z) _—
. J Se+1 . J n
J=te+1 =
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E(#{ fitness levels > &, with k individuals at time n}|&,)
f of fitness levels > &, at time n is

N > t—1 P(a mutant born at time t of fitness level x > &, and NX = k|&,)

Pr(l - §n)

o fie) )i

1I<t=t1<tr<--<ty<n L{=1

1 51 sk
N/Bk_l/o /(; /0 EI_ISE ng S d51 / dSlSl 1 —51) -1
=2

Making the substitution y = sf we have

1
/ dsysP(1 — Py 6/ —y)k—ldy_B/s’(fB;r k).
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22
Noting that B(’BJF:l k)~ k~ - , we have

E(#individuals with a fitness level x > ¢, at time n )

n n

1 1

~S L A S Y A g1
=1 6 k=1

Then Theorem 3 (ii) is now proved by taking v:=1— % = ﬁ.

We prove (i). From (ii) we see that &, is asymptotically larger that n™= for
any €. Then we see that the number of individuals with fitness levels < &,
is O(n'/2), n — oo. Hence, by the same procedure we have

E(#individuals at time n with a fitness level x > &, )

~ ZkB(%,k) R Zkil/ﬁ ~logn for =1
k=1

k=1
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Thank you for your attention

Jun. 262023  32/32



