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Nobel Prizes 2021

Physics: Awarded “for groundbreaking
contributions to our understanding of
complex systems.”

Economics: Awarded “for
methodological contributions to the
analysis of causal relationships."

« A complex system is composed of many components that
interact with each other in a nonlinear manner.

* Interactions may be directional (casual), signhed, and weighted.

« How to infer causal relationships of complex systems:
Physics marries economics.
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Study Complex Systems:
Challenges and Opportunities

Complex systems are
“‘complex” in terms of the
number of components and
interactions

Automatic high-throughput
measurement techniques make
it possible to monitor any
systems.

How can we extract causal
relationships underlying
complex systems using these
big data sets?

7~ Reactions [l
Metabolites ||

Single-cell analysis (Komarova 2016: Nature)



Network Modeling of Complex Systems

All components affect system
behavior through direct
and/or indirect pathways.

Network models of complex
systems capture direct and
Indirect effects.

Networks chart a roadmap of
how each element flows its
signal of influence within the
whole system.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516210/
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® Consider n objects (e.g., cells,
individuals)

® Measure p (i.e., 5) different
attributes (elements) of each
object

® Form an (n x p) data matrix

Current approaches can only
Infer an overall, less
iInformative network.

We want to infer sophisticated

networks from this data:

® Networks are object-specific
(individualized networks)

® Networks are context-
specific (e.g., diseased vs.
control)

® Bidirectional, signed, and
weighted interactions (fully
informative)




How to infer such sophisticated networks?

We introduce evolutionary game theory
by viewing inter-element interactions as a game



Game Theory The Nash equilibrium and a tit-for-tat strategy
For an evolving system, this game will occur
repeatedly, expressed as

Left Cat CCCCCCCCCDCCCCCCCCCD
Right Cat CCCCCCCCCDCCCCCCCCCR

Cooperative strategy (C)
Dangerous strategy (D)
Retreats (R)

The Nash
equilibrium (Nash
1950, PNAS )

Evolutionarily
stable strategy
(ESS) (Smith and
Price 1973, Nature)

Quantitative decision theory (Wu et al. 2021)

(1) The bigger cat chooses to cooperate with the smaller cat, when their strength ratio
IS beyond 0.61 (golden dissection ratio)

(2) The smaller cat would cheat the bigger cat, when their strength ratio is 0.38 to
0.61 (Fibonacci Retracement)




Lotka-Volterra (LV) predator-prey representation of ESS

Payoff of one cat (player) is determined by its /.
own strategy and the strategy of the other Cat“

Alfred J. Lotka  Vito Volterra
dPlldt - Ql(P]_) + Q1<_2(P2) (1880-1949)  (1860-1940)
dP,/dt 3 Q,(Py) +|Qz1(P1) e

1ir g8 Qs o(Py) Qo q(Py)
Independent Dependent
Node g, Mutualism + +
Antagonism - -
Aggression + -
Altruism - +

Bidirectional, signed, and weighted
interactions, outperforming traditional
models

Johnson, C.A., Smith, G.P., Yule, K. et al. Coevolutionary

transitions from antagonism to mutualism explained by the Co-
Opted Antagonist Hypothesis. Nat Commun 12, 2867 (2021).



Dynamic Systems and Dynamic Models

- Differential equations: (?O
» Ordinary differential equations (ODE)—-simplest /ﬁ)\
» Delay differential equations (DDE) 6
» Hybrid differential equations (HDE) @O
» Partial differential equations (PDE) /}
» Stochastic differential equations (SDE)
« Difference equations and state-space models
« Stochastic processes models: branching process etc.
« Agent-based models and cellular automata
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Dynamic Modeling 1 v 1w
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Networks beyond Dyadic Interactions

 Graph theory: pairwise interactions
« Hypergraph theory: high-order interactions

Taking high-order interactions into account
« Enhance our modeling capacities
* Help to more precisely characterize complex systems

Fhysics Reports 874 (3020} 1-92

REVIEW

duic10.1038/mature22898  FHE o Contents lists available at ScianceDiract

Physics Reports

Beyond pairwise mechanisms of species
coexistence in complex communities

Journal homepage: www.elsevier.com/locate/physrep

Jonathan M. Levine', Jordi Bascompte”, Peter B. Adler’ & Stefano Allesina®

Networks beyond pairwise interactions: Structure and
The tremendous diversity of species in ecological communities has motivated a century of researchinto the mechanisms d :
that maintain biodiversity. However, much of this work examines the coexistence of just pairs of competitors. This ynalnl C5
approach ignores those mechanisms of coexistence that emerge only in diverse competitive networks. Despite the poten-
tial for these mechanisms to create conditions under which the loss of one competitor triggers the loss of others, we lack 1 ¥ a,% HT1H b i ol H cielg
the knowledge needed to judge theirimportance for coexistence in nature. Progress requires borrowing insight from the FEdE_rl co Bﬂnlﬂ';ﬂn N Giulia CE n'_:enl ! laco F!G IElC(J[]Il'Il " Vito L.;_itDl".EI o0
study of multitrophic interaction networks, and coupling empirical data tomodels of competition. Maxime Lucas ™" s Alice Patania”“ . Jean-Gah riel You ng ', Giovanni Petri ™"



Paradigm Shift:
from Networks to Hypernetworks

A node affects the interaction between two other nodes
Interactions between two nodes is affected by a third
node




A Hypernetwork Theory: Modeling High-order Interaction

Networks

Consider an m-dimensional biosystem:

dg;j(t)
Cft - Qj(gj(t): @j) Independent
+ Z?:l Q,-(_j'(gj'(t): @jj’) First-order
+ X721 2721 Q1 1, (21,1, (01 0j,5,) Second-order
+ X1 X1 =1 X1 =1 Qi s (1170 js O 4, j5)  Third-order
_I_

af/

-] =#]=1,,m,]1 <]2 <j3=1,...,m

« It may include more terms that describe four and higher-way interactions if
needed.

« Different from pairwise network modeling, it treats predictors as interacting
networks at different orders.




What iIs the interaction z;;;,?

dg;(t)
el Qi(g;(®: ©;) Independent
+ 27'1:1 Qjej’(gj’(t): ®jj’) First-order
+ Z?I=1 27;=1 Qf“hfz (Zf1f2 (t): ®ff1f2) Second-order

j, i] — 17"';m; j]_ <]2 — 1,...,m

. "'\\']. Zjja | /_23 .
o ) Mutualism 1o 2

Antagonism 1<« 2
Aggression 1 -2
Altruism 12




How to define and quantify player-player interactions?

We introduce behavioral ecology theory

goose flying and fish schooling




A quantitative decision theory of animal conflict
(Wu and Jiang et al. 2021, Heliyon 7(7): e07621)

Player Y
Cooperative  Competitive

& . .

& | Mutualism Altruism
o
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>
~ S . .
A US Aggression | Antagonism

Mutualism-based hypernetworks, z.,
Altruism-based hypernetworks, z,
Aggression-based hypernetworks, z,,
Antagonism-based hypernetworks, z_,

Mathemathical descriptors of interactions

Player X

Player Y
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Experiemntal validation by Jiang et al. 2019,

2020; Wang et al. 2019, He et al. 2021




Experimental Validation of the Hypernetwork Theory

Randomly choose different lung cancer cell types and cultivate
them in monoculture, co-culture, and tri-culture

Cl
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D ED @ - @

C2+C3

By Shawn Rice, Penn State College of Medicine



Fundamental Core of the Hypernetwork Theory:
Evolutionary Game Dissection

In a socialized environment, the payoff of any player is decomposed in a way like this

dg;(t)
2= =Q,(g;(0): ©)) Independent
+ 27}:1 Qj(—j’(gj’(t): @jj’) First-order
T Z}?=1Z§Z=1 Qjejrjz (Zf1f2 (t): ®ff1j2) Second-order

j, 7l:,]= 1)"')m; j1 <]2 — 1,...,m

The independent component occurs when this player is assumed to be in
isolation.

If the estimated independent component value is consistent with that value
obtained from its monoculture, then this suggests that the dissection theory
works.




Experimental Validation from in vitro Cultural Experiment
Four lung cancer cell types
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Cell Line Growth

Tri-culture: Experiment 1 — LN229, SF763, LN18
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Cell Line Growth
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Disadvantages of Dynamic Models

Cohesive coordination of multiple
tissues — Human health

Unavailability of high-density
time-series measurements

* Impossible to collect

« Ethically impermissible

Human Cells

Limitations to curve fitting
« Time stable
* Resilient to perturbations

-3
Pancreas 3

The GTEX (Genotype-Tissue
Expression) Project: transcriptome
measured only once for one donor



https://commonfund.nih.gov/gtex

How to convert static data into their quasi-dynamic representation?

We implement allometric scaling law



Surface Area vs. Volume
Allometric
scaling 60 - |
law is a 50 . Power eguation
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Law: 5 40 - /
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Universal In nature

Allometric Scaling Law is a Biological Law

Individual elements vs. their whole system is the part-whole relationship.

©

log wing size
log wing size

log body size
Static Allometry (across individuals) (Shingleton 2010)

log body size

Power equation: Y = aX?, where «a is the
intercept and £ is the slope

West et al. (1997, Science)
proposed a fractal model to
interpret the power law.

West, Brown,
Enquist
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Ontogenetic Allometry (across ages)



GTEx Data Structure

Individual 1 ... n

Tissue 1 2 ... R 1 2 .. R,

“Gene expression

1 Y11(1) ¥11(2) ... Yu(R1) o Yin(1) Yin(2) - Y1n(Ry)

2 Y21(1) ¥21(2) o Y21(Ry) - Yan(1) Yon(2) - Yon(Rp)

m Ymi(1) Ymi1(2) - Ymi(R1) oo Yin(1) Ymn(2) -Ymn(Rn) | £
Ty Ty oo Tire e Ty Too oo Tomn :

Histological and clinical Em

1 211(1) z11(2) ... zp(Ry) oo Z3n(1) Z40(2) ... Z40(R)) 'EN

2 Zn(1) 71(2) ... Zn(Ry) o Z50(1) Zn(2) .o Zn(Ry) | 52

.5
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Expression Index (x104)

Expression index (EI) is defined
as the sum of expression of all
genes

Scaling individual genes vs. El




Data Modeling of Hypernetworks: A Preliminary Result

The Gut Microbiota

Papillibacter

Parasporoba cterium
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Eubacterium

Garciella
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Anaeroslipes

Davenport et al.’s (2015) data

* Include 184 Amish samples from a
founder, the Hutterites

« Measured at phylum, class, order,
family, genus, and species levels in
the winter and the coming summer.




Eight phyla: Hypergraph-based qdODEs

Vi (1) = Q;(y;(T: ©;) + Z Qjjr (y; (T3): 01 )+ Z Z Qjjij (Zhjz (T:): ®J<—J1J’2)

J1=1j,=1

2,7, (T1) = Qjyjp (%1, (T1): ©5,5,) + Z Qjrjpi (7 (T1): 0y 1)
=1

(:“ /\”29 High-order networks include

- o (1) how a pairwise interaction actively
affects a node (phylum)

(2) how a dyadic interaction is passively
affected by a node

Pairwise interaction is defined by z;,;,




Active Hypernetworks (mutualism)

Winter

Deinocosgus<=Thermus

Bacteroidetes
>

Verrucomicrobia
N

active

Actinobacteria

active

Lentisph erae

Firmicutes

_ W
Proteobacteria

Verrucomicrobia

Lentisphderae

Summer

active

isobacteria
' »

v
Proteobacteria

by Libo Jiang

Deinocosgus=Thermus

Bacteroidetes
>

Actinobacteria

active

Firmicutes



Highedge
Phylum Mutualism
' 1 Actinobacteria |12151618232526272835

W\ '\ |2 Bacteroidetes [ 1617182628
N 3 Deinococcus  [1213142324
-Thermus
4/ | [14 Firmicutes 1434
5 Fusobacteria | 1826272835363738575878

6 Lentisphaerae |36375657586878

7 Proteobacteria |68

8 Verrucomicrobial 36575878

passive passive



Hypernetwork Implications

Four categories of hypernetworks:
» Mutualism-based hypernetworks

» Antagonism-based hypernetworks
» Altruism-based hypernetworks

« Aggression-based hypernetworks

Cancer control as an example
» |f a cell promotes the cooperation of two cancer cells, then a drug is

developed to dismiss the function of this cell.

 |If the cooperation of two cells activates the growth of a cancer cell, then
a drug is designed to decouple their cooperation.



How to reconstruct networks from big data?

We integrate developmental modularity
theory



Modularity of Mind _ o _
A human brain has distinct regions

i THE REREGPO00 that think and function differently
NE‘W YO RKER » Divide all elements into distinct
- : - modules based on their similarity of
dynamic change pattern by functional
clustering (Kim et al. 2008, Genetics;
Wang et al. 2012, Briefings in
Bioinformatics).
» Divide each module into submodule
» Divide each submodule into sub-
submodule.

» This process stops until the number
of elements reaches Dunbar’s
number.




A multilayer, multiplex, and multifunctional network
from any number of elements

First Tier
Informative
- Causal
- Stable
SCCOHd Tlel‘ _ Sparse
Dynamic

Third Tier Omnidirectional

Personalized

Bottom
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