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Nobel Prizes 2021

Physics: Awarded “for groundbreaking 

contributions to our understanding of 

complex systems.”

Economics: Awarded “for 

methodological contributions to the 

analysis of causal relationships."

• A complex system is composed of many components that 

interact with each other in a nonlinear manner.

• Interactions may be directional (casual), signed, and weighted.

• How to infer causal relationships of complex systems: 

Physics marries economics.
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Professor Ginestra Bianconi
Queen Mary University of London, UK

Inferring causal relationships 

of complex systems has 

become one of the hottest and 

most promising topics of 

research in biology, medicine, 

engineering, economics, and 

physics.



• Complex systems are 

“complex” in terms of the 

number of components and 

interactions

• Automatic high-throughput 

measurement techniques make 

it possible to monitor any 

systems.

• How can we extract causal 

relationships underlying 

complex systems using these 

big data sets?

Single-cell analysis (Komarova 2016: Nature)

Tumor

Cell

Study Complex Systems: 

Challenges and Opportunities



• All components affect system 

behavior through direct 

and/or indirect pathways.

• Network models of complex 

systems capture direct and 

indirect effects.

• Networks chart a roadmap of 

how each element flows its 

signal of influence within the 

whole system. Reanalysis of Davenport et al.’s (PLoS ONE, 2015) data

The Gut Microbiota

Network Modeling of Complex Systems

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516210/
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⚫ Consider n objects (e.g., cells, 

individuals)

⚫ Measure p (i.e., 5) different 

attributes (elements) of each 

object

⚫ Form an (n x p) data matrix

Current approaches can only 

infer an overall, less 

informative network. 

We want to infer sophisticated 

networks from this data:

⚫ Networks are object-specific 

(individualized networks)

⚫ Networks are context-

specific (e.g., diseased vs. 

control)

⚫ Bidirectional, signed, and 

weighted interactions (fully 

informative)



How to infer such sophisticated networks?

We introduce evolutionary game theory
by viewing inter-element interactions as a game



For an evolving system, this game will occur 

repeatedly, expressed as

Left Cat CCCCCCCCCDCCCCCCCCCD

Right Cat CCCCCCCCCDCCCCCCCCCR

Cooperative strategy (C)

Dangerous strategy (D)

Retreats (R)

Game Theory                  The Nash equilibrium and a tit-for-tat strategy 

The Nash 

equilibrium (Nash 

1950, PNAS）

Evolutionarily 

stable strategy 

(ESS) (Smith and 

Price 1973, Nature)

Quantitative decision theory (Wu et al. 2021)

(1) The bigger cat chooses to cooperate with the smaller cat, when their strength ratio 

is beyond 0.61 (golden dissection ratio) 

(2) The smaller cat would cheat the bigger cat, when their strength ratio is 0.38 to 

0.61 (Fibonacci Retracement)



Payoff of one cat (player) is determined by its

own strategy and the strategy of the other cat

dP1/dt = Q1(P1) + Q1←2(P2)

dP2/dt = Q2(P2) + Q2←1(P1)

Lotka-Volterra (LV) predator-prey representation of ESS

Mutualism        +        +

Antagonism      - -

Aggression      +         -

Altruism     - +

Bidirectional, signed, and weighted 

interactions, outperforming traditional 

models

Q1←2(P2)   Q2←1(P1)
Independent    Dependent

Johnson, C.A., Smith, G.P., Yule, K. et al. Coevolutionary 

transitions from antagonism to mutualism explained by the Co-

Opted Antagonist Hypothesis. Nat Commun 12, 2867 (2021).
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Dynamic Systems and Dynamic Models

• Differential equations:

➢ Ordinary differential equations (ODE)–simplest

➢ Delay differential equations (DDE)

➢ Hybrid differential equations (HDE)

➢ Partial differential equations (PDE)

➢ Stochastic differential equations (SDE)

• Difference equations and state-space models

• Stochastic processes models: branching process etc. 

• Agent-based models and cellular automata

Dynamic Measurements

Dynamic Modeling



• Graph theory: pairwise interactions

• Hypergraph theory: high-order interactions

Taking high-order interactions into account

• Enhance our modeling capacities

• Help to more precisely characterize complex systems

Networks beyond Dyadic Interactions



Paradigm Shift:

from Networks to Hypernetworks

• A node affects the interaction between two other nodes

• Interactions between two nodes is affected by a third 

node



A Hypernetwork Theory: Modeling High-order Interaction 

Networks

Consider an m-dimensional biosystem:

𝑑𝑔𝑗(𝑡)

𝑑𝑡
= 𝑄𝑗 𝑔𝑗 𝑡 : Θ𝑗 Independent

+ σ𝑗′=1
𝑚 𝑄𝑗←𝑗′ 𝑔𝑗′ 𝑡 : Θ𝑗𝑗′ First-order                 

+ σ𝑗1=1
𝑚 σ𝑗2=1

𝑚 𝑄𝑗←𝑗1𝑗2 𝑧𝑗1𝑗2 𝑡 : Θ𝑗𝑗1𝑗2 Second-order

+ σ𝑗1=1
𝑚 σ𝑗2=1

𝑚 σ𝑗3=1
𝑚 𝑄𝑗←𝑗1𝑗2𝑗3 𝑧𝑗1𝑗2𝑗3 𝑡 : Θ𝑗𝑗1𝑗2𝑗3 Third-order

+
…  𝑗′ ≠ 𝑗 = 1,… ,𝑚; 𝑗1 < 𝑗2 < 𝑗3 = 1,… ,𝑚

• It may include more terms that describe four and higher-way interactions if 

needed.

• Different from pairwise network modeling, it treats predictors as interacting 

networks at different orders.



𝑑𝑔𝑗(𝑡)

𝑑𝑡
= 𝑄𝑗 𝑔𝑗 𝑡 : Θ𝑗 Independent

+ σ𝑗′=1
𝑚 𝑄𝑗←𝑗′ 𝑔𝑗′ 𝑡 : Θ𝑗𝑗′ First-order                 

+ σ𝑗1=1
𝑚 σ𝑗2=1

𝑚 𝑄𝑗←𝑗1𝑗2 𝑧𝑗1𝑗2 𝑡 : Θ𝑗𝑗1𝑗2 Second-order

𝑗′ ≠ 𝑗 = 1,… ,𝑚; 𝑗1 < 𝑗2 = 1,… ,𝑚

𝑧𝑗1𝑗2

𝑧𝑗1𝑗2

Mutualism 1 2

Antagonism     1  2

Aggression      1 → 2

Altruism     1 → 2     

What is the interaction zj1j2?



How to define and quantify player-player interactions?

We introduce behavioral ecology theory

goose flying and fish schooling



Mutualism-based hypernetworks, zmu

Altruism-based hypernetworks, zal

Aggression-based hypernetworks, zag

Antagonism-based hypernetworks, zan

Experiemntal validation by Jiang et al. 2019, 

2020; Wang et al. 2019, He et al. 2021

A quantitative decision theory of animal conflict
(Wu and Jiang et al. 2021, Heliyon 7(7): e07621)

Mathemathical descriptors of interactions



Experimental Validation of the Hypernetwork Theory

By Shawn Rice, Penn State College of Medicine

Randomly choose different lung cancer cell types and cultivate 

them in monoculture, co-culture, and tri-culture



Fundamental Core of the Hypernetwork Theory: 

Evolutionary Game Dissection

𝑑𝑔𝑗(𝑡)

𝑑𝑡
= 𝑄𝑗 𝑔𝑗 𝑡 : Θ𝑗 Independent

+ σ𝑗′=1
𝑚 𝑄𝑗←𝑗′ 𝑔𝑗′ 𝑡 : Θ𝑗𝑗′ First-order                 

+ σ𝑗1=1
𝑚 σ𝑗2=1

𝑚 𝑄𝑗←𝑗1𝑗2 𝑧𝑗1𝑗2 𝑡 : Θ𝑗𝑗1𝑗2 Second-order

𝑗′ ≠ 𝑗 = 1,… ,𝑚; 𝑗1 < 𝑗2 = 1,… ,𝑚

• The independent component occurs when this player to be in 

isolation.

• If the estimated independent component value is consistent with that value 

obtained from its monoculture, then this suggests that the dissection theory 

works.  

In a socialized environment, the payoff of any player is decomposed in a way like this 



dP1/dt = Q1(P1) + Q1←2(P2)                                    

dP2/dt = Q2(P2) + Q2←1(P1)                                                          Analyzed by Li Feng

Experimental Validation from in vitro Cultural Experiment  

Four lung cancer cell types 

Amensalism (偏害)                   Altrusim/Aggression  (利他/侵害)

The model works!



Tri-culture: Experiment 1 – LN229, SF763, LN18

LN229 = Independent

- SF763

- LN18

+ Cooperation

Uncouple their 

cooperation, making cell 

growth inhibited



Tri-culture: Experiment 2 – LN229, SF763, 3T3

LN229 = Independent

- SF763

- 3T3

+ Cooperation

Uncouple their 

cooperation, making cell 

growth inhibited



Unavailability of high-density 

time-series measurements

• Impossible to collect

• Ethically impermissible

Limitations to curve fitting

• Time stable

• Resilient to perturbations

Cohesive coordination of multiple 

tissues → Human health

Disadvantages of Dynamic Models

The GTEx (Genotype-Tissue 

Expression) Project: transcriptome 

measured only once for one donor 

https://commonfund.nih.gov/gtex

https://commonfund.nih.gov/gtex


How to convert static data into their quasi-dynamic representation?

We implement allometric scaling law



Allometric 

scaling 

law is a

Physical

Law:

Part-whole

relationship



Allometric Scaling Law is a Biological Law

Individual elements vs. their whole system is the part-whole relationship.

Ontogenetic Allometry (across ages)U
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Static Allometry (across individuals) 

West et al. (1997, Science) 

proposed a fractal model to 

interpret the power law.

(Shingleton 2010)

Wet                                             Dry

West, Brown, 

Enquist



GTEx Data Structure
Individual                  1                      …                   n          

Tissue        1          2     …    R1 1         2       …   Rn

Gene expression

1               y11(1)   y11(2)  ...   y11(R1)    …   y1n(1)   y1n(2)  ... y1n(Rn)

2               y21(1)   y21(2)  ...   y21(R1)   ...    y2n(1)   y2n(2)  ... y2n(Rn)

…

m ym1(1)  ym1(2) ...  ym1(R1)    ...    ymn(1)   ymn(2) ...ymn(Rn)

T11 T12 …    T1R1 …       Tn1 Tn2 …  TnRn

Histological and clinical

1               z11(1)   z11(2)  ...   z11(R1)    …   z1n(1)   z1n(2)  ...  z1n(Rn)

2               z21(1)   z21(2)  ...   z21(R1)    ...   z2n(1)   z2n(2)  ...  z2n(Rn)

…

p zm1(1)   zm1(2)  ...  zm1(R1)   ...   zmn(1)   zmn(2) ... zmn(Rn)

SNP

1                           AA                          …                   aa

2                           AA                          …                   Aa

… 
q aa                           …                  AA

SNP network

Gene                    

Phenotypic

network                   

network

• Expression index (EI) is defined 

as the sum of expression of all 

genes

• Scaling individual genes vs. EI



Data Modeling of Hypernetworks: A Preliminary Result

The Gut Microbiota Davenport et al.’s (2015) data

• Include 184 Amish samples from a

founder, the Hutterites

• Measured at phylum, class, order, 

family, genus, and species levels in 

the winter and the coming summer.



High-order networks include 

(1)how a pairwise interaction actively

affects a node (phylum)

(2)how a dyadic interaction is passively 

affected by a node

Pairwise interaction is defined by zj1j2

Eight phyla: Hypergraph-based qdODEs

active

passive



active active

active active

Active Hypernetworks (mutualism)

by Libo Jiang



passive passive

Passive Hypernetworks (mutualism)



Four categories of hypernetworks:

• Mutualism-based hypernetworks

• Antagonism-based hypernetworks

• Altruism-based hypernetworks

• Aggression-based hypernetworks

Cancer control as an example

• If a cell promotes the cooperation of two cancer cells, then a drug is 

developed to dismiss the function of this cell.

• If the cooperation of two cells activates the growth of a cancer cell, then 

a drug is designed to decouple their cooperation.

Hypernetwork Implications



How to reconstruct networks from big data?

We integrate developmental modularity 

theory



A human brain has distinct regions 

that think and function differently

• Divide all elements into distinct 

modules based on their similarity of 

dynamic change pattern by functional 

clustering (Kim et al. 2008, Genetics; 

Wang et al. 2012, Briefings in 

Bioinformatics).

• Divide each module into submodule

• Divide each submodule into sub-

submodule.

• This process stops until the number 

of elements reaches Dunbar’s 

number.

Modularity of Mind



A multilayer, multiplex, and multifunctional network
from any number of elements

Informative

- Causal

- Stable

- Sparse

Dynamic

Omnidirectional

Personalized
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