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A World of Networks

• Individual nodes of a network (e.g., social media users) may share similarities in
the latent space.

• Common to provide binary answers (i.e. Y/N) based on community labeling
given by clustering.
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P-Values for Networks

• It is also desirable to provide a p-value table for network applications.

• A simple, natural question is how to test whether a pair of social media users
belong to the same community.

• The recent work of SIMPLE (statistical inference on membership profiles in large
networks; Fan, Fan, Han and Lv, 2022b) provided a first attempt toward such a practical
need.

• The approach can accommodate both overlapping communities and degree
heterogeneity.
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Beyond SIMPLE

• In practice, we are often interested in investigating a group of individuals as
opposed to a pair of nodes.

• The group of individuals might share similar (but not necessarily identical)
community membership profiles.

• Real network applications may exhibit much more network sparsity and much
lower signal strength, while SIMPLE requires relatively strong assumptions on
both network sparsity and signal strength.

• Thus, it is important to enable network inference with flexibility and theoretical
guarantees beyond SIMPLE.
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A Motivating Example

• Construct an adjacency matrix for the stocks in S&P 500 using the time series of
the daily log returns. Performing network inference gives the following p-value
table.

SIMPLE-RC 23

Technology Healthcare Financial Energy Communication

Technology 5.420 8.760 25.036 19.225 39.324
Healthcare 8.760 6.762 8.514 8.132 39.324
Financial 25.036 8.514 0.601 17.050 39.324
Energy 19.225 8.132 17.050 0.414 39.324
Communication 39.324 39.324 39.324 39.324 0.892

TABLE 5
The values of the SIMPLE-RC test statistic T for different groups of selected stocks within and across the five

sectors for the stock data example in Section 6.

Technology Healthcare Financial Energy Communication

Technology 0.1246 0.0247 0.0000 0.0001 0.0000
Healthcare 0.0247 0.0658 0.0279 0.0337 0.0000
Financial 0.0000 0.0279 0.7726 0.0004 0.0000
Energy 0.0001 0.0337 0.0004 0.8033 0.0000
Communication 0.0000 0.0000 0.0000 0.0000 0.7220

TABLE 6
The corresponding p-values of the SIMPLE-RC test with test statistic T for different groups of selected stocks

within and across the five sectors for the stock data example in Section 6.

list, the daily closing prices over the specified time period are converted into a time series of
the daily log returns. We further remove any stocks with missing values, which yields a total
of n= 495 stocks. It is well-known from finance that all the individual stock excess returns
(i.e., returns minus the risk-free interest rate) are correlated globally through some common
factors such as the Fama–French factors. To better understand the intrinsic network structure,
we regress the time series of excess returns for each stock on the Fama–French three factors
and treat the resulting residual vector as a new time series for the stock, which corresponds
to the idiosyncratic components of the factor model.

We are now ready to construct the n × n adjacency matrix X for the group network in-
ference. To this end, let us first calculate the correlation matrix based on the new time series
above and then apply a simple hard-thresholding with threshold 0.5 to each entry of the
absolute correlation matrix, which gives rise to an n × n binary data matrix X. Since the
stock network is known to be of node degree heterogeneity, we will apply the SIMPLE-
RC test introduced in Section 3.4 with test statistic T given in (55). We choose parameter
K0 as 3 following the analysis in [17]. It remains to specify the groups out of the above
list of n stocks. Specifically, we consider a total of five groups labelled as Technology,
Healthcare, Financial Services, Energy, and Communication Services,
which correspond to five sectors of the stock market. For the technology sector, we select a
list of four stocks: Apple (AAPL), IBM (IBM), Intel (INTC), and NVIDIA (NVDA). For the
healthcare sector, we select a list of four stocks: Abbott Laboratories (ABT), Amgen (AMGN),
Eli Lilly (LLY), and UnitedHealth Group (UNH). For the financial services sector, we select a
list of four stocks: Bank of America (BAC), Citigroup (C), Goldman Sachs (GS), and JPMor-
gan Chase (JPM). For the energy sector, we select a list of four stocks: Chevron (CVX), Devon
Energy (DVN), EOG Resources (EOG), and Exxon Mobil (XOM). Finally, for the communi-
cation services sector, we select a list of four stocks: Activision Blizzard (ATVI), Comcast
(CMCSA), DISH Network (DISH), and Netflix (NFLX).

For each group and each pair of groups, we calculate the values of the SIMPLE-RC test
statistic T and the associated p-values as in simulation examples 2 and 4 from Section 5,
with the choice of group size m = |M| = 4 (when conducting the between-group tests, we
randomly sample two stocks from the pool of four in each group). Table 5 presents the values

• Stocks in S&P 500 can have non-identical community membership profiles even
within the same sector of the stock market.

• Desired to test whether a group of individuals (network nodes) might share
similar (not necessarily identical) community membership profiles.
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An Interesting Phenomenon

6

APPENDIX B: ADDITIONAL SIMULATION RESULTS CORRESPONDING TO
SECTIONS 5.1 AND 5.2

Figures 1 and 2 depict some representative empirical null distributions of both forms of the
SIMPLE-RC test with test statistics T and T for simulation examples 1 and 2, respectively.
We see that even under weak signals (i.e., small values of θ), the empirical null distributions
of the SIMPLE-RC test closely match the theoretical asymptotic null distributions established
in Theorems 2, 5, 7, and 8 under the choice of K0 = 3. In contrast, when the parameter
K0 increases from 3 to the true value of K = 5, the discrepancy between the empirical and
theoretical null distributions becomes more pronounced. Such a phenomenon is indeed in line
with our theoretical findings presented in Section 3, reflecting the impact of weak signals on
group network inference with SIMPLE-RC through the choice of parameter K0.
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FIG 1. The representative empirical null distributions (the black curves with kernel smoothing) of the SIMPLE-RC
test statistic T under different values of (θ,K0) and with m= 10 for simulation example 1 in Section 5.1. The
red curves represent the asymptotic null distributions specified in Theorems 2 and 5.

Figures 3 and 4 depict some representative empirical distributions of both forms of the
SIMPLE-RC test with test statistics T and T for simulation examples 3 and 4, respectively.
In particular, the signal strengths are rather weak in view of the small values of parameter θ in
Figure 3 and parameter r2 in Figure 4. As mentioned above, the value of δ = 0 corresponds to
the scenario when the data is generated according to the sharp null hypothesis, while that of
δ = 0.1 corresponds to the scenario when the data is generated according to the non-sharp null
hypothesis. We see from Figures 3 and 4 that the empirical distributions of the SIMPLE-RC
test for δ = 0 and 0.1 closely match the asymptotic null distributions revealed in Theorems
2, 5, 7, and 8 under non-sharp nulls and weak signals. Similarly as in simulation examples 1
and 2, when the signal strength becomes too weak (e.g., the value of 0.1 for network sparsity
parameters θ or r2), a lower value of parameter K0 may improve the distributional fits in
Figures 3 and 4, which can in turn lead to more reasonable (i.e., non-inflated) empirical sizes
as parameter δ→ 0+ (see the cases of θ = 0.1 in Figure 3 and r2 = 0.1 in Figure 4).

• Empirical null distributions of SIMPLE-RC test (to be introduced) may deviate
from limiting distributions under weak signals.

• Choice of parameter 𝐾0 (# of signals) is crucial (the true # of communities = 5).

• Any theoretical justifications under the lens of random matrix theory?
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Questions of Interest

• How to design a tool for flexible group network inference with precise p-values on
testing whether a group of nodes (instead of a pair) might share similar (not
necessarily identical) community membership profiles?

• How to deal with the challenging case of sparse networks and weak signals?

• How to develop a more general framework of asymptotic theory on spiked
eigenvectors and eigenvalues for large structured random matrices empowering
group network inference with non-sharp nulls and weak signals?
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Model Setting

A general network model

Consider a network with 𝑛 nodes {1, · · · , 𝑛} and its adjacency matrix
X = (𝑥𝑖 𝑗 ) ∈ R𝑛×𝑛. X can be written as a signal-plus-noise matrix:

X = H + W.

• Links 𝑥𝑖 𝑗 ’s independent Bernoulli random variables with means ℎ𝑖 𝑗 .
• H = EX = (ℎ𝑖 𝑗 ) ∈ R𝑛×𝑛 is deterministic mean matrix (signal).
• W = (𝑤𝑖 𝑗 ) ∈ R𝑛×𝑛 is symmetric random noise matrix with independent (up to

symmetry) entries satisfying E𝑤𝑖 𝑗 = 0. Known as a Wigner-type matrix.

Assume the network can be decomposed into 𝐾 communities 𝐶1, · · · , 𝐶𝐾
(rank H = 𝐾). Each node 𝑖 has community membership probability vector
𝝅𝑖 = (𝝅𝑖 (1) , · · · , 𝝅𝑖 (𝐾 ) )𝑇 with 𝝅𝑖 (𝑘 ) ∈ [0, 1], ∑𝐾𝑘=1 𝝅𝑖 (𝑘 ) = 1, and

P{node 𝑖 belongs to community 𝐶𝑘 } = 𝝅𝑖 (𝑘 ) .
Let 𝐾 = 𝑂 (1) be an unknown parameter. We can allow 𝐾 to be slowly diverging (∼ (log 𝑛)𝑐).
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Group Network Inference with Non-Sharp Nulls

• For any given group of nodes ℳ ⊂ {1, · · · , 𝑛}, our goal is to infer whether they
share similar (but not necessarily identical) membership profiles (i.e., probability
vectors) with quantified uncertainty level from observed X.

• We are interested in testing non-sharp null hypothesis
𝐻0 : max

𝑖, 𝑗∈ℳ

𝝅𝑖 − 𝝅 𝑗
 ≤ 𝑐1𝑛

versus alternative hypothesis
𝐻𝑎 : max

𝑖, 𝑗∈ℳ

𝝅𝑖 − 𝝅 𝑗
 > 𝑐2𝑛

with 𝑐2𝑛 > 𝑐1𝑛 two positive sequences slowly converging to zero.
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Mixed Membership Model

To make the problem more explicit, we first focus on mixed membership model without
degree heterogeneity by assuming EX = H = 𝜃𝚷P𝚷𝑇 (Airoldi, Blei, Fienberg and Xing, 2008):

ℎ𝑖 𝑗 = 𝜃
𝐾∑
𝑘,𝑙=1

𝜋𝑖 (𝑘 ) 𝜋 𝑗 (𝑙) 𝑝𝑘𝑙 .

𝚷 = (𝝅1, · · · , 𝝅𝑛 )𝑇 ∈ R𝑛×𝐾 is matrix of membership probability vectors, P = (𝑝𝑘𝑙 ) is a
nonsingular matrix with 𝑝𝑘𝑙 ∈ [0, 1], 𝑛−1 ≪ 𝜃 ≤ 1 is the network sparsity parameter.

(SBM is a special case with non-overlapping communities when each 𝝅𝑖 has only one nonzero component.)

• H = VDV𝑇 is the eigendecomposition. D = diag{𝑑1, · · · , 𝑑𝐾 } with
|𝑑1 | ≥ · · · ≥ |𝑑𝐾 | > 0 is matrix of nonzero eigenvalues in descending order and
V = (v1, · · · , v𝐾 ) is orthonormal matrix of corresponding eigenvectors.

• Denote by 𝑑1, · · · , 𝑑𝑛 eigenvalues of X and v̂1, · · · , v̂𝑛 corresponding
eigenvectors.

• Let |𝑑1 | ≥ · · · ≥ |𝑑𝐾 | and denote by V̂ = (v̂1, · · · , v̂𝐾 ) ∈ R𝑛×𝐾 (consisting of top
𝐾 empirical spiked eigenvectors).
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SIMPLE-RC for a Pair of Nodes

To motivate SIMPLE-RC, begin with the simple case 𝑚 = |ℳ | = 2 (testing a pair of
given network nodes {𝑖, 𝑗 }). Let 𝐾0 be an integer with 1 ≤ 𝐾0 ≤ 𝐾 , V𝐾0 an 𝑛 × 𝐾0
matrix formed by first 𝐾0 columns of V, and D𝐾0 a 𝐾0 × 𝐾0 principal minor of D
containing its first 𝐾0 diagonal entries.

• First observation: under mixed membership model, 𝐻0 entailsD𝐾0

[
V𝐾0 (𝑖) − V𝐾0 ( 𝑗 )

] ≤ 𝑐1𝑛
√
𝑑1 𝜃max

with 𝜃max = 𝜆1 (P) 𝜃 (𝑖th and 𝑗th rows viewed as column vectors).
• Second observation: under mixed membership model, 𝐻𝑎 entailsD𝐾0

[
V𝐾0 (𝑖) − V𝐾0 ( 𝑗 )

] ≥ 𝑐2𝑛
√
𝑑𝐾 𝜃min

with 𝜃min = 𝜆𝐾 (P) 𝜃.
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SIMPLE-RC for a Pair of Nodes

These observations suggest the following ideal SIMPLE-RC test statistic to assess
membership profile information for the node pair {𝑖, 𝑗 }:

𝑇𝑖 𝑗 (𝐾0 ) :=
[
V̂𝐾0 (𝑖) − V̂𝐾0 ( 𝑗 )

]𝑇 [
𝚺𝑖, 𝑗 (𝐾0 )

]−1
[
V̂𝐾0 (𝑖) − V̂𝐾0 ( 𝑗 )

]
,

where 1 ≤ 𝐾0 ≤ 𝐾 is a pre-determined number, V̂𝐾0 is the 𝑛 × 𝐾0 matrix formed by
first 𝐾0 columns of V̂, and 𝚺𝑖, 𝑗 (𝐾0 ) = cov[ (e𝑖 − e 𝑗 )𝑇WV𝐾0 D−1

𝐾0
] is the asymptotic

covariance matrix (e𝑖 standard unit vector in the 𝑖th direction).

• It reduces to original SIMPLE test statistic (Fan, Fan, Han and Lv, 2022b) for the case of
sharp null (𝑐1𝑛 = 0) and with choice of 𝐾0 = 𝐾 (for strong signals).

• Choice of 𝐾0 for SIMPLE-RC is crucial in network inference under weak signals
(one main difference from SIMPLE).

• We can provide an estimate of 𝚺𝑖, 𝑗 and specify the choice of 𝐾0 with theoretical
justifications (more details later).
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SIMPLE-RC for a Group of Nodes

Consider group testing for the case of diverging 𝑚 = |ℳ | → ∞ and assume 𝑚 ∈ 2N
(for simplicity). A natural idea would be to investigate test statistic max{𝑖, 𝑗}⊂ℳ 𝑇𝑖 𝑗 ,
but doing so is rather challenging because of potentially high correlations among all
individual 𝑇𝑖 𝑗 ’s.

To deal with such a challenging issue, we suggest a random coupling strategy for
group network inference, i.e., the SIMPLE-RC method:

• Randomly pick pairs of nodes in group ℳ without replacement until all nodes are
coupled. Denote by 𝒫 the set of pairs of such random coupling.

• Given random coupling set 𝒫, formally define our SIMPLE-RC test statistic 𝑇 as
𝑇 = max

{𝑖, 𝑗}∈𝒫
𝑇𝑖 𝑗

• We show formally that under suitable centering and rescaling, 𝑇 converges to a
Gumbel distribution under 𝐻0 (more details later including power analysis).

The finite 𝑚 case is simpler due to the fact that individual test statistics 𝑇𝑖 𝑗 based on
random coupling are asymptotically independent.
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SIMPLE-RC with Degree Heterogeneity

We also consider the more general case with degree heterogeneity.
• Degree-corrected mixed membership model for degree heterogeneity assuming
EX = H = 𝚯𝚷P𝚷𝑇𝚯 (Zhang, Levina and Zhu, 2014; Jin, Ke and Luo, 2017)

• 𝚯 = diag{𝜗1, · · · , 𝜗𝑛 } with 𝜗𝑖 > 0 being degree heterogeneity.

• Suggest another form of SIMPLE-RC test statistics 𝒯𝑖 𝑗 and 𝒯 (similar flavor but
different form) and established parallel asymptotic distributions as well as power
analysis by exploiting eigenvector ratio statistics:

�̂�𝑘 (𝑖) →
�̂�𝑘 (𝑖)
�̂�1 (𝑖)

.

• More details and comprehensive theory can be found in Fan, Fan, Lv, and Y., 2022.
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Technical Conditions

Suppose for some 1 ≤ 𝐾0 ≤ 𝐾 (𝐾0 can be random), the following conditions hold.
(i) (Network sparsity) 𝜃 ≫ (log 𝑛)8/𝑛

(ii) (Spiked eigenvalues) |𝑑𝑘 | ≫ 𝑞 log 𝑛 for 1 ≤ 𝑘 ≤ 𝐾0, where 𝑞 =
√
𝑛𝜃 .

(iii) (Eigengap) The spiked eigenvalues are non-degenerate:
min

1≤𝑘≤𝐾0
|𝑑𝑘 |/|𝑑𝑘+1 | > 1 + 𝜀0.

No eigengaps required for smaller eigenvalues |𝑑𝑘 | with 𝑘 > 𝐾0.
(iv) (Mean matrix) 0 < 𝜆𝐾 (P) ≤ · · · ≤ 𝜆1 (P) ≤ 𝐶 for some large constant 𝐶 > 0.
(v) (Covariance matrix) D𝐾0𝚺𝑖, 𝑗 (𝐾0 )D𝐾0 ∼ 𝜃 in the sense of eigenvalues.

• 𝑞 is a key parameter: CLT fluctuation of the node degrees and typical size of
eigenvalues of noise matrix W.

• Relax 𝜃 ≥ 𝑛−1+𝜀 to 𝜃 ≫ (log 𝑛)8/𝑛 (i.e., much sparser networks).
• Relax |𝑑𝑘 |/𝑞 ≥ 𝑛𝜀 to ≫ log 𝑛 (i.e., much weaker signals).
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SIMPLE-RC for A Pair of Nodes

Theorem (SIMPLE-RC for a pair)

Under the above technical conditions, the test statistic 𝑇𝑖 𝑗 (𝐾0 ) satisfies;

(i) If 𝑐1𝑛 ≪ [𝑑1𝜆1 (P) ]−
1
2 , it holds that under null hypothesis 𝐻0,

sup
𝑥∈R

��P {𝑇𝑖 𝑗 (𝐾0 ) ≤ 𝑥
}
− 𝐹𝐾0 (𝑥 )

�� → 0,

where conditional on 𝐾0, 𝐹𝐾0 is 𝜒2
𝐾0

distribution.

(ii) If 𝑐2𝑛 ≫ [𝑑𝐾𝜆𝐾 (P) ]−
1
2 , it holds that under alternative hypothesis 𝐻𝑎,

lim
𝑛→∞

P
{
𝑇𝑖 𝑗 (𝐾0 ) > 𝐶

}
= 1

for each large constant 𝐶 > 0.

Establishes important extensions of SIMPLE (Fan, Fan, Han and Lv, 2022a and 2022b):
• non-sharp nulls;
• allow for slowly diverging number 𝐾 .
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SIMPLE-RC for a Group of Nodes: Null

Theorem (SIMPLE-RC for a group: Null)

Suppose 𝑚→ ∞. If 𝑐1𝑛 ≪ [𝑑1𝜆1 (P) ]−
1
2 (log 𝑛)−

1
2 , then the SIMPLE-RC test statistic

𝑇 = max{𝑖, 𝑗}∈𝒫 𝑇𝑖 𝑗 satisfies that under null hypothesis 𝐻0,

sup
𝑥∈R

����P {𝑇 (𝐾0 ) − 𝑏𝑚 (𝐾0 )
2

≤ 𝑥
}
−𝒢 (𝑥 )

���� → 0,

where 𝒢 (𝑥 ) = exp(−𝑒−𝑥 ) denotes the Gumbel distribution and

𝑏𝑚 (𝐾0 ) = 2 log
𝑚

2
+ (𝐾0 − 2) log log

𝑚

2
− 2 log Γ

(
𝐾0
2

)
with Γ ( ·) representing the gamma function.

• Individual test statistics 𝑇𝑖 𝑗 based on random coupling are asymptotically
independent. (So when 𝑚 is bounded, asymptotic distribution of 𝑇 becomes
maximum of 𝑚/2 independent 𝜒2

𝐾0
under 𝐻0.)

• When 𝑚→ ∞, the maximum of 𝑚/2 “almost independent” random variables
with exponential tail leads to the Gumbel distribution.
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SIMPLE-RC for a Group of Nodes: Power

Theorem (SIMPLE-RC for a group: power)

If 𝑐2𝑛 ≫ [𝑑𝐾𝜆𝐾 (P) ]−1/2√log 𝑛 , then the SIMPLE-RC test statistic 𝑇 satisfies that
under alternative hypothesis 𝐻𝑎, for each large constant 𝐶 > 0,

lim
𝑛→∞

P

{
𝑇 (𝐾0 ) − 𝑏𝑚 (𝐾0 )

2
> 𝐶

}
= 1.

The key observation is that with high probability (as 𝑚→ ∞),

max
{𝑖, 𝑗}∈𝒫

D𝐾0

[
V𝐾0 (𝑖) − V𝐾0 ( 𝑗 )

] ≥ 1
3

max
{𝑖, 𝑗}⊂ℳ

D𝐾0

[
V𝐾0 (𝑖) − V𝐾0 ( 𝑗 )

] .

Given a set of points {𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑚} with metric 𝑑. Let ℓ = 𝑑 (𝑥𝑖0 , 𝑥 𝑗0 ) be the
maximum distance between pairs of points.

𝐴 = {𝑥𝑖 : 𝑑 (𝑥𝑖 , 𝑥𝑖0 ) ≤ ℓ/3}, 𝐵 = {𝑥𝑖 : 𝑑 (𝑥 𝑗 , 𝑥 𝑗0 ) ≤ ℓ/3}.
Consider the two cases: (1) 𝐴 = 𝑜 (𝑚) or 𝐵 = 𝑜 (𝑚); (2) 𝐴 ≥ 𝑐𝑚, 𝐵 ≥ 𝑐𝑚.
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Empirical Versions of SIMPLE-RC

Need to provide an estimate of covariance matrix 𝚺𝑖, 𝑗 and specify the choice of 𝐾0.
• Suggest consistent estimator 𝚺𝑖, 𝑗 (𝐾0 ) of covariance matrix 𝚺𝑖, 𝑗 (𝐾0 ) based on

residual matrix Ŵ = X − ∑𝐾0
𝑘=1 𝑑𝑘 v̂𝑘 v̂⊤𝑘 . (Such estimator disregards completely

weak signals 𝑑𝑘 with 𝐾0 < 𝑘 ≤ 𝐾 .)
• For 𝐾0, suggest a simple thresholding estimator

𝐾0 := max
{
𝑘 ∈ [𝑛] : |𝑑𝑘 | ≥ �̌�𝐶𝑛 (log 𝑛)3/2

}
with �̌�2 := max 𝑗∈ [𝑛]

∑𝑛
𝑙=1 𝑋𝑙 𝑗 maximum node degree (�̌� ∼ 𝑞), 𝐶𝑛 → ∞ a

deterministic parameter (e.g., 𝐶𝑛 = log log 𝑛).
• Consistency of covariance matrix and corresponding asymptotic null distributions

and power analysis for SIMPLE-RC test with estimates 𝐾0 and 𝚺𝑖, 𝑗 (𝐾0 ) are
rigorously established (Fan, Fan, Lv, and Y., 2022).

Asymptotic null distributions and power analysis for SIMPLE-RC test statistics 𝒯𝑖 𝑗
and 𝒯 with degree heterogeneity are formally justified (Fan, Fan, Lv and Yang, 2022).

We lose one degree of freedom in asymptotic null distributions due to the use of
eigenvector ratio statistics
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A RMT Framework

• Our technical analyses empowered by novel asymptotic expansions of spiked
eigenvector entries for large random matrices with weak spikes:

�̂�𝑘 (𝑖) = 𝑣𝑘 (𝑖) +
1
𝑑𝑘

(Wv𝑘 )𝑖 + error.

• Exploit the Cauchy integral formula to extract the information of eigenvectors:

x𝑇 v̂𝑘 v̂∗𝑘y =
1

2𝜋i

∮
𝒞𝑘

x𝑇 (X − 𝑧)−1y𝑑𝑧, 𝒞𝑘 encloses 𝑑𝑘 only.

• Reduce to the study of the Green’s function G(𝑧) = (W − 𝑧)−1 of the noise matrix
W. Need to characterize asymptotic behavior of x𝑇G(𝑧)y for any deterministic vectors
x, y ∈ R𝑛 (convergence to a deterministic limit named anisotropic local law).

Key challenge is to derive a sharper anisotropic local law for G(𝑧) under weaker
conditions on sparsity level and signal strength.

• Anisotropic local laws enable us to derive precise asymptotic expansions of spiked
eigenvectors that hold uniformly for all entries with high probability.

The uniform results on asymptotic distributions of empirical spiked eigenvectors are
key to random coupling for group network inference.

• More comprehensive theory (Fan, Fan, Lv and Y., 2022).
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Conclusions

Reference: Fan, J., Fan, Y., Lv, J. and Yang, F. (2022+). SIMPLE-RC: group network
inference with non-sharp nulls and weak signals. arXiv:2211.00128.

• Suggested a tool for group network inference with precise p-values on testing
whether two groups of nodes share similar membership profiles.

• Generally applicable to networks with or without overlapping communities and
degree heterogeneity.

• Established simple-to-use asymptotic null distributions and power analysis
empowered by our new theory for random matrices with weaker spikes.

• Revealed an interesting phenomenon of eigen-selection for valid network
inference.

Thank you!
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