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A World of Networks

® Individual nodes of a network (e.g., social media users) may share similarities in
the latent space.

® Common to provide binary answers (i.e. Y/N) based on community labeling
given by clustering.



P-Values for Networks

It is also desirable to provide a p-value table for network applications.

A simple, natural question is how to test whether a pair of social media users
belong to the same community.

The recent work of SIMPLE (statistical inference on membership profiles in large
networks; Fan, Fan, Han and Lv, 2022b) provided a first attempt toward such a practical
need.

The approach can accommodate both overlapping communities and degree
heterogeneity.



Beyond SIMPLE

In practice, we are often interested in investigating a group of individuals as
opposed to a pair of nodes.

The group of individuals might share similar (but not necessarily identical)
community membership profiles.

Real network applications may exhibit much more network sparsity and much
lower signal strength, while SIMPLE requires relatively strong assumptions on
both network sparsity and signal strength.

Thus, it is important to enable network inference with flexibility and theoretical
guarantees beyond SIMPLE.



A Motivating Example

® Construct an adjacency matrix for the stocks in S&P 500 using the time series of
the daily log returns. Performing network inference gives the following p-value
table.

Technology  Healthcare Financial Energy Communication

Technology 0.1246 0.0247 0.0000 0.0001  0.0000
Healthcare 0.0247 0.0658 0.0279 0.0337  0.0000
Financial 0.0000 0.0279 0.7726 0.0004  0.0000
Energy 0.0001 0.0337 0.0004 0.8033  0.0000
Communication  0.0000 0.0000 0.0000 0.0000  0.7220

® Stocks in S&P 500 can have non-identical community membership profiles even
within the same sector of the stock market.

® Desired to test whether a group of individuals (network nodes) might share
similar (not necessarily identical) community membership profiles.



An Interesting Phenomenon
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® Empirical null distributions of SIMPLE-RC test (to be introduced) may deviate
from limiting distributions under weak signals.

® Choice of parameter K (# of signals) is crucial (the true # of communities = 5).

® Any theoretical justifications under the lens of random matrix theory?



Questions of Interest

® How to design a tool for flexible group network inference with precise p-values on
testing whether a group of nodes (instead of a pair) might share similar (not
necessarily identical) community membership profiles?

® How to deal with the challenging case of sparse networks and weak signals?
® How to develop a more general framework of asymptotic theory on spiked

eigenvectors and eigenvalues for large structured random matrices empowering
group network inference with non-sharp nulls and weak signals?
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Model Setting

A general network model

Consider a network with n nodes {1, --- ,n} and its adjacency matrix
X = (x;5) € R, X can be written as a signal-plus-noise matrix:

X=H+W.
® Links x;;'s independent Bernoulli random variables with means £;;.
® H=EX = (h;j) € R is deterministic mean matrix (signal).

® W= (w;;) € R is symmetric random noise matrix with independent (up to
symmetry) entries satisfying Ew;; = 0. Known as a Wigner-type matrix.
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Consider a network with n nodes {1, --- ,n} and its adjacency matrix
X = (x;5) € R, X can be written as a signal-plus-noise matrix:
X=H+W.

® Links x;;'s independent Bernoulli random variables with means £;;.
® H=EX = (h;j) € R is deterministic mean matrix (signal).

® W= (w;;) € R is symmetric random noise matrix with independent (up to
symmetry) entries satisfying Ew;; = 0. Known as a Wigner-type matrix.

Assume the network can be decomposed into K communities Cy, --- ,Cg
(rank H = K). Each node i has community membership probability vector
i = (mi(1), -7 (K)T with 7 (k) € [0, 1], T 7 (k) = 1, and

P{node i belongs to community Cy } = m; (k).

Let K = O(1) be an unknown parameter. We can allow K to be slowly diverging (~ (logn)).



Group Network Inference with Non-Sharp Nulls

® For any given group of nodes /# c {1,---,n}, our goal is to infer whether they
share similar (but not necessarily identical) membership profiles (i.e., probability
vectors) with quantified uncertainty level from observed X.

® We are interested in testing non-sharp null hypothesis

Hj : if?g)/(%”m —7r_,~|| < Cln

versus alternative hypothesis

H, : l’r}lgi(%”ni — 7rj|| > Cop

with ¢, > ¢, two positive sequences slowly converging to zero.



Mixed Membership Model

To make the problem more explicit, we first focus on mixed membership model without
degree heterogeneity by assuming EX = H = OIIPII” (aioldi, Biei, Fienberg and Xing, 2008):

K
hij=0 Y mi(k)m; (1) prr-
k,I=1

I = (xy, - ,mn)T € R™K is matrix of membership probability vectors, P = (py;) is a
nonsingular matrix with pg; € [0,1], n~! < 0 < 1 is the network sparsity parameter.

(SBM is a special case with non-overlapping communities when each 7; has only one nonzero component.)
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I = (xy, - ,mn)T € R™K is matrix of membership probability vectors, P = (py;) is a
nonsingular matrix with pg; € [0,1], n~! < 0 < 1 is the network sparsity parameter.

(SBM is a special case with non-overlapping communities when each 7; has only one nonzero component.)

® H=VDVT is the eigendecomposition. D = diag{d,, - - - , dx } with
|di| = -+ = |dk| > 0 is matrix of nonzero eigenvalues in descending order and
V= (v}, ,Vk) is orthonormal matrix of corresponding eigenvectors.

® Denote by 671 L, J,, eigenvalues of X and vy, - - - ,V, corresponding
eigenvectors.

® Let|dj| > - > |dk| and denote by V = (v, -+ ,Vk) € R™*K (consisting of top

K empirical spiked eigenvectors).



SIMPLE-RC for a Pair of Nodes

To motivate SIMPLE-RC, begin with the simple case m = |.#| = 2 (testing a pair of
given network nodes {i, j}). Let K be an integer with 1 < K¢ < K, Vg, an n x Ko
matrix formed by first Ko columns of V, and Dk, a Ko X Kq principal minor of D
containing its first Ky diagonal entries.

® First observation: under mixed membership model, Hj entails
||DK0 [Vl\"() (1) - VK“ (1)] ” < C1nVd1 Omax
with Omax = A1 (P) 6 (ith and jth rows viewed as column vectors).
® Second observation: under mixed membership model, H, entails
Dk, [V (i) = Vo (D]l 2 €20 VK Omin
with Onin = Ak (P) 6.



SIMPLE-RC for a Pair of Nodes

These observations suggest the following ideal SIMPLE-RC test statistic to assess
membership profile information for the node pair {i, j}:

Ty (Ko) = [Viey (1) = Vo ()] (225 Ko™ [Vo () = Vg ()]

where 1 < Ky < K is a pre-determined number, \7K0 is the n X Ky matrix formed by
first Ko columns of V, and X; ; (Ky) = cov[(e; — ej)TWVKODI’(l)] is the asymptotic
covariance matrix (e; standard unit vector in the ith direction).

® It reduces to original SIMPLE test statistic (Fan, Fan, Han and Lv, 2022b) for the case of
sharp null (¢1, =0) and with choice of Ko = K (for strong signals).

® Choice of K( for SIMPLE-RC is crucial in network inference under weak signals
(one main difference from SIMPLE).

® We can provide an estimate of X; ; and specify the choice of K with theoretical
justifications (more details later).



SIMPLE-RC for a Group of Nodes

Consider group testing for the case of diverging m = |./| — oo and assume m € 2N
(for simplicity). A natural idea would be to investigate test statistic maxy; jyc.z Tij,
but doing so is rather challenging because of potentially high correlations among all
individual 7;;'s.



SIMPLE-RC for a Group of Nodes

Consider group testing for the case of diverging m = |./| — oo and assume m € 2N
(for simplicity). A natural idea would be to investigate test statistic maxy; jyc.z Tij,
but doing so is rather challenging because of potentially high correlations among all
individual 7;;'s.

To deal with such a challenging issue, we suggest a random coupling strategy for
group network inference, i.e., the SIMPLE-RC method:

¢ Randomly pick pairs of nodes in group .# without replacement until all nodes are
coupled. Denote by & the set of pairs of such random coupling.

® Given random coupling set &, formally define our SIMPLE-RC test statistic 7" as

T= max T;j
{i.jte2

® We show formally that under suitable centering and rescaling, T converges to a
Gumbel distribution under Hy (more details later including power analysis).

The finite m case is simpler due to the fact that individual test statistics 7;; based on
random coupling are asymptotically independent.



SIMPLE-RC with Degree Heterogeneity

We also consider the more general case with degree heterogeneity.

® Degree-corrected mixed membership model for degree heterogeneity assuming
EX = H = OIIPIIT O (zhang, Levina and Zhu, 2014; Jin, Ke and Luo, 2017)

® @ =diag{?, -+, P, } with J; > 0 being degree heterogeneity.

® Suggest another form of SIMPLE-RC test statistics 7;; and I (similar flavor but
different form) and established parallel asymptotic distributions as well as power
analysis by exploiting eigenvector ratio statistics:

Vi (i)

i (i)

® More details and comprehensive theory can be found in Fan, Fan, Lv, and Y., 2022.

Vi (i) —
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Technical Conditions

Suppose for some 1 < Ky < K (Ko can be random), the following conditions hold.
(i) (Network sparsity) 6 > (logn)®/n

(ii) (Spiked eigenvalues) |di| > qlogn for 1 < k < Ky, where g = Vn6 .

(iii) (Eigengap) The spiked eigenvalues are non-degenerate:

min |d d > 1+ &.
lsksKol |/l dr+1] 0

No eigengaps required for smaller eigenvalues |dy| with k > Kj.
(iv) (Mean matrix) 0 < Ag (P) < -+ < ;1 (P) < C for some large constant C > 0.

(v) (Covariance matrix) D Ei,j(Ko)Dk, ~ 6 in the sense of eigenvalues.

® g is a key parameter: CLT fluctuation of the node degrees and typical size of
eigenvalues of noise matrix W.

® Relax 6 > n™1*% to @ > (logn)®/n (i.e., much sparser networks).

® Relax |dk|/q > n® to > logn (i.e., much weaker signals).



SIMPLE-RC for A Pair of Nodes

Theorem (SIMPLE-RC for a pair)

Under the above technical conditions, the test statistic T;j(Ko) satisfies;
(i) If cin < [d1 g (P)]_%, it holds that under null hypothesis Hy,
g [P {T:j (Ko) < x} = Fry (x)] = 0,
where conditional on Ky, Fk, is )(%(0 distribution.

1
(it) If a5 > [drx Ak (P)]™ 2, it holds that under alternative hypothesis H,,
J%P{E_f(KO) >C}=1

for each large constant C > 0.



SIMPLE-RC for A Pair of Nodes

Theorem (SIMPLE-RC for a pair)
Under the above technical conditions, the test statistic T;j(Ko) satisfies;
1
(i) If c1n < [d1A1(P)]™ 2, it holds that under null hypothesis Hy,
sup |IP {T”(K()) < X} - FKO (x)| — 0,
x€eR
where conditional on Ky, Fk, is )(%(0 distribution.
1
(it) If a5 > [drx Ak (P)]™ 2, it holds that under alternative hypothesis H,,
r}gp{n_f(Ko) >C}=1
for each large constant C > 0.

Establishes important extensions of SIMPLE (Fan, Fan, Han and Lv, 2022a and 2022b):
® non-sharp nulls;

® allow for slowly diverging number K.



SIMPLE-RC for a Group of Nodes: Null

Theorem (SIMPLE-RC for a group: Null)

1 1
Suppose m — . If ¢y, < [diA1(P)] 2 (logn) 2, then the SIMPLE-RC test statistic
T = maxy; jyeo Tij satisfies that under null hypothesis H,

T(Kp) — K
sup]?{ (Ko) = b (Ko) _
x€R 2

— 0,

} -9(x)

where G (x) = exp(—e™™) denotes the Gumbel distribution and
K
by (Ko) = 2log % + (Ko - 2) loglog % ~2logT (70)

with T'(-) representing the gamma function.
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Theorem (SIMPLE-RC for a group: Null)

1 1
Suppose m — . If ¢y, < [diA1(P)] 2 (logn) 2, then the SIMPLE-RC test statistic
T = maxy; jyeo Tij satisfies that under null hypothesis H,

P{Mg

— 0,

}— g(x)

sup
x€R

where G (x) = exp(—e™™) denotes the Gumbel distribution and
K
by (Ko) = 2log % + (Ko - 2) loglog % ~2logT (70)
with T'(-) representing the gamma function.

¢ Individual test statistics 7;; based on random coupling are asymptotically
independent. (So when m is bounded, asymptotic distribution of T becomes

maximum of m/2 independent )(%(0 under Hp.)

® When m — oo, the maximum of m/2 “almost independent” random variables
with exponential tail leads to the Gumbel distribution.



SIMPLE-RC for a Group of Nodes: Power

Theorem (SIMPLE-RC for a group: power)

If ¢o,, > [dK/IK(P)]‘]/Z\/logn , then the SIMPLE-RC test statistic T satisfies that
under alternative hypothesis H,, for each large constant C > 0,

lim p{w > C} =1.
n—oo 2
The key observation is that with high probability (as m — ),

. 1 . .
{l{r}%‘? ”DKO [V, (i) - Vk, (J)]” z 3 {ig.‘}agﬂ”DKo [Vk, (i) -V, (1)]”'



SIMPLE-RC for a Group of Nodes: Power

Theorem (SIMPLE-RC for a group: power)

If ¢o,, > [dK/IK(P)]‘]/Z\/logn , then the SIMPLE-RC test statistic T satisfies that
under alternative hypothesis H,, for each large constant C > 0,

T p{w >c}:1.

n—eo 2

The key observation is that with high probability (as m — ),
. . 1 . .
{l{r}?zg, Dk, [Vio (1) = Viey (D] 2 3 {lr;l}aé(/” Dk, [Vio (1) = Viey (D[] -

Given a set of points {x; : 1 <i < m} with metric d. Let { = d(x;,, xj,) be the
maximum distance between pairs of points.

A={x; :d(xi,xiy) <€/3}, B={x;i:d(xj,xj,) </3}.

Consider the two cases: (1) A=o(m) or B=0o(m); (2) A >cm, B > cm.



Empirical Versions of SIMPLE-RC

Need to provide an estimate of covariance matrix X; ; and specify the choice of K.
® Suggest consistent estimator pop .j (Kp) of covariance matrix X; j(Kp) based on

residual matrix W=X- Zk ldeka (Such estimator disregards completely
weak signals dk with Ko < k < K.)

® For Ky, suggest a simple thresholding estimator
I?O = max{k € [n]: |(j/<| > (an(logn)Bﬁ}
with g2 := maxje(n] Loy Xij maximum node degree (¢ ~ g), C, —  a
deterministic parameter (e.g., C,, = loglogn).

® Consistency of covariance matrix and corresponding asymptotic null distributions
and power analysis for SIMPLE-RC test with estimates Ko and X; ; (Ky) are
rigorously established (Fan, Fan, Lv, and Y., 2022).
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Need to provide an estimate of covariance matrix X; ; and specify the choice of K.
® Suggest consistent estimator pop .j (Kp) of covariance matrix X; j(Kp) based on
residual matrix W=X- Zk ldeka (Such estimator disregards completely
weak signals dk with Ko < k < K.)

® For Ky, suggest a simple thresholding estimator
I?O = max{k € [n]: |(jk| > (an(logn)Bﬁ}
with g2 := maxje(n] Loy Xij maximum node degree (¢ ~ g), C, —  a
deterministic parameter (e.g., C,, = loglogn).

® Consistency of covariance matrix and corresponding asymptotic null distributions
and power analysis for SIMPLE-RC test with estimates Ko and X; ; (Ky) are
rigorously established (Fan, Fan, Lv, and Y., 2022).

Asymptotic null distributions and power analysis for SIMPLE-RC test statistics J;
and T with degree heterogeneity are formally justified (Fan, Fan, Lv and Yang, 2022).

We lose one degree of freedom in asymptotic null distributions due to the use of
eigenvector ratio statistics
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e Reduce to the study of the Green's function G(z) = (W — z)~! of the noise matrix
W. Need to characterize asymptotic behavior of x! G(z)y for any deterministic vectors
X,y € R (convergence to a deterministic limit named anisotropic local law).

Key challenge is to derive a sharper anisotropic local law for G(z) under weaker
conditions on sparsity level and signal strength.
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e Reduce to the study of the Green's function G(z) = (W — z)~! of the noise matrix
W. Need to characterize asymptotic behavior of x! G(z)y for any deterministic vectors
X,y € R (convergence to a deterministic limit named anisotropic local law).

Key challenge is to derive a sharper anisotropic local law for G(z) under weaker
conditions on sparsity level and signal strength.

e Anisotropic local laws enable us to derive precise asymptotic expansions of spiked
eigenvectors that hold uniformly for all entries with high probability.

The uniform results on asymptotic distributions of empirical spiked eigenvectors are
key to random coupling for group network inference.

o More comprehensive theory (Fan, Fan, Lv and Y., 2022).



Conclusions

Reference: Fan, J., Fan, Y., Lv, J. and Yang, F. (2022+). SIMPLE-RC: group network
inference with non-sharp nulls and weak signals. arXiv:2211.00128.

® Suggested a tool for group network inference with precise p-values on testing
whether two groups of nodes share similar membership profiles.

® Generally applicable to networks with or without overlapping communities and
degree heterogeneity.

® Established simple-to-use asymptotic null distributions and power analysis
empowered by our new theory for random matrices with weaker spikes.

® Revealed an interesting phenomenon of eigen-selection for valid network
inference.
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Thank you!



	Background and motivation
	Group network inference with SIMPLE-RC
	Theoretical Justifications

