Explicit computation of p-adic variation of homology (distribution modules).

compute.

(I) Congruence between Hecke eigenspaces in $H_g (\Gamma, V_{\lambda})$ and $H_g (\Gamma, V_{\lambda'})$

in the rep's with highest at λ

mod p-power if $\lambda \equiv \lambda' \pmod{(p-1) \cdot p^\alpha}$.

Today's Focus

$\Gamma \subset \text{SL}_3(\mathbb{Z})$

$\lambda = (a, b, c) \in \mathbb{Z}^3$.

$a \geq b \geq c$.

To interpolate the coefficients, replace V_{λ} (f.d. sp.)

by D_{λ} (∞-dim sp)

up modules of p-adic distributions.
\(D_{\lambda} \)

- They are Verma modules so can be defined like
- for any \(p \)-adic \(\lambda \).

- They are \(p \)-adic Banach spaces
- They vary \(p \)-adically and trivially in \(\lambda \).

- Have a comparison between

\[
H^\lambda (\Gamma, D_{\lambda}) \stackrel{\leq}{\to} H^\lambda (\Gamma, V_{\lambda}) \]

(Induced by a homomorphism \(D_{\lambda} \to V_{\lambda} \).)

if \(\lambda \) is the dominant integral weight.

If \(\lambda \) is a positive number

\(m(\lambda) \)
\[\frac{GL_3}{U_1} \]

\[B, \text{ upper triangular.} \quad \varepsilon B = B^{opp}. \]

\[N \cdot T \]

\[I, \text{ Iwahori subgroup} \subseteq GL_3(\mathbb{Z}_p). \]

\[\Gamma' = \Gamma_0(M) \cap I. \]

\[X = "\text{big cell}" \]

\[= \text{image of } I \text{ in } T \]

\[\Upsilon = N^{opp} \cdot GL_3(\mathbb{Q}_p) \backslash GL_3(\mathbb{Q}_p) \]

\[\lambda : T(\mathbb{Z}_p) \rightarrow \mathbb{C}_p^\times \text{ conti. char.} \]

Torus action → \[A_\lambda = \exists f : X \rightarrow \mathbb{C}_p : f(\pm x) = \lambda(\pm). \text{ Ax: } f \text{ is rigid analytic.} \]
\[
A \begin{pmatrix}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix} = \sum C_{ijk} \cdot x^i \cdot y^j \cdot z^k
\]

\[C_{ijk} \rightarrow 0.\]

(assuming \(x\) is analytic)

\[D_\lambda = \text{Hom}_{\text{cts}}(\mathbb{A}_\lambda, \mathbb{C}_p) \otimes \mathbb{Q}_p \mathcal{G}_\lambda \Gamma^u\]

\[\sum b_{rst} \cdot \delta_r^2\]

We need

1) A way to compute \(H_3(\Gamma, A)\) for any module \(A\).

2) A way to compute Hecke operators.
Joint with Daniel Pollack. \(h < m(\lambda) \) critical slope.

3) A way to lift \(H_3(\Gamma, V_{\lambda_0}) \leq h \)
 to \(H_3(\Gamma, D_{\lambda_0}) \leq h \).

4) Deform from \(H_3(\Gamma, D_{\lambda_0}) \) to nearby \(H_3(\Gamma, D_{\lambda_1}) \), e.g.,
 eigenvalues projection \(\Rightarrow \) \\
 can get the tangent vector \(\Rightarrow \) e.g.,
 (hopefully e.g.,)

 idea. \(\frac{F|U^n}{\alpha^n} \rightarrow \text{eigenclass.} \)