◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Variation of anticyclotomic lwasawa invariants in Hida families

Francesc Castella

UCLA

Glenn Stevens' 60th Birthday

Francesc Castella, UCLA

Outline

Big Heegner points in the definite setting

Higher weight theta elements

Two-variable anticyclotomic *p*-adic *L*-functions

・ロ・・聞・・用・・日・ うへの

Francesc Castella, UCLA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

The definite setting

- ► K/Q imaginary quadratic field.
- $N \geq 1$ integer, $(N, D_K) = 1$.
- Factor $N = N^+ N^-$ with:

$$\begin{array}{ll} \ell | N^+ & \Longrightarrow & \ell \text{ splits in } K; \\ \ell | N^- & \Longrightarrow & \ell \text{ is inert in } K. \end{array}$$

Assume N^- is the square-free product of an *odd* number of primes.

- B/\mathbb{Q} quaternion algebra ramified at ∞N^- .
- Fix \mathbb{Q}_{ℓ} -algebra isomorphisms

$$i_{\ell}: B_{\ell}:=B\otimes \mathbb{Q}_{\ell} \xrightarrow{\sim} M_2(\mathbb{Q}_{\ell})$$

for all $\ell \nmid \infty N^-$.

• Fix a prime $p \ge 5$, $p \nmid ND_{K}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

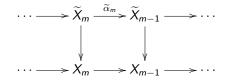
"Hida varieties"

- ▶ $R_m \subset B$ Eichler order of level N^+p^m .
- ▶ $U_m \subset \hat{R}_m^{\times}$ compact open subgroup $(\hat{R}_m := R_m \otimes \hat{\mathbb{Z}})$:

$$U_m := \{ (x_\ell)_\ell \in \widehat{R}_m^{\times} : \imath_p(x_p) \equiv \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \pmod{p^m} \}.$$

Definite Shimura curves:

$$\begin{split} X_m(\mathbb{C}) &= B^{\times} \setminus (\hat{B}^{\times} \times \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, B_{\infty})) / \hat{R}_m^{\times}; \\ \widetilde{X}_m(\mathbb{C}) &= B^{\times} \setminus (\hat{B}^{\times} \times \operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, B_{\infty})) / U_m. \end{split}$$



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Heegner points in the definite setting

For
$$c \ge 1$$
, $(c, N) = 1$, let $\mathcal{O}_c = \mathbb{Z} + c\mathcal{O}_K$.
Definition

•
$$P = [(b, \psi)] \in \widetilde{X}_m(K)$$
 is a Heegner point of conductor c if
 $\psi(\mathcal{O}_c) = (b^{-1}\hat{R}_m^{\times}b \cap B) \cap \psi(K)$

and

$$\psi_{\rho}((\mathcal{O}_{c}\otimes\mathbb{Z}_{p})^{\times}\cap(1+p^{m}\mathcal{O}_{K}\otimes\mathbb{Z}_{p})^{\times})=b_{p}^{-1}U_{m,p}b_{p}.$$

▶ Galois action: For $\sigma \in G_K$ and $P = [(b, \psi)] \in \widetilde{X}_m(K)$, define

$$P^{\sigma} := [(b\hat{\psi}(a_{\sigma}), \psi)],$$

where $a_{\sigma} \in \widehat{K}^{\times}$ is such that $\operatorname{rec}_{K}(a_{\sigma}) = \sigma|_{K^{\operatorname{ab}}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A careful construction

Theorem (Longo–Vigni, *d'après* Howard)

There exists a system of Heegner points $P_{c,m} \in \widetilde{X}_m(K)$ such that:

- 1. $P_{c,m} \in H^0(H_{cp^m}(\mu_{p^m}), \widetilde{X}_m(K)).$
- 2. (Galois equivariance) For all $\sigma \in G_{H_{cp^m}}$,

$$P_{c,m}^{\sigma} = \langle \vartheta(\sigma) \rangle P_{c,m}$$

where $\vartheta : G_{H_{cp^m}} \longrightarrow \mathbb{Z}_p^{\times} / \{\pm 1\}$ is such that $\vartheta^2 = \varepsilon_{cyc}$.

3. (Vertical compatibility) If $m \ge 2$,

$$\widetilde{\alpha}_m(\operatorname{tr}_{H_{cp^m}(\boldsymbol{\mu}_{p^m})/H_{cp^{m-1}}(\boldsymbol{\mu}_{p^m})}(P_{c,m})) = U_p \cdot P_{c,m-1}.$$

4. (Horizontal compatibility) If p|c,

$$\operatorname{tr}_{H_{cp^m}(\boldsymbol{\mu}_{p^m})/H_{cp^{m-1}}(\boldsymbol{\mu}_{p^m})}(P_{c,m}) = U_p \cdot P_{c/p,m}$$

Hida-Hecke algebras

Let $f_o \in S_{k_o}(\Gamma_0(N))$ *p*-ordinary newform defined over F/\mathbb{Q}_p .

▶ \mathfrak{h}_m : full Hecke algebra over \mathcal{O}_F acting on $S_2(\Gamma_0(N) \cap \Gamma_1(p^m), \overline{\mathbb{Q}}_p)$.

• \mathbb{T}_m : quotient of \mathfrak{h}_m acting faithfully on the N^- -new part.

$$\bullet \ \mathbb{T}_{\infty}^{\mathrm{ord}} := \varprojlim_{m} e^{\mathrm{ord}} \mathbb{T}_{m}$$

 f_o defines an \mathcal{O}_F -algebra homomorphism

$$\lambda_{f_o}:\mathfrak{h}^{\mathrm{ord}}_{\infty}\longrightarrow \mathcal{O}_F$$

factoring through $\mathbb{T}_{\infty}^{\mathrm{ord}}$.

- I: the unique irreducible component of $(\mathfrak{h}^{\mathrm{ord}}_{\infty})_{\mathfrak{m}_o}$ containing $\ker(\lambda_{f_o})$.
- $\mathbf{f} = \sum_{n=1}^{\infty} \mathbf{a}_n q^n \in \mathbb{I}[[q]]$ (branch of) the Hida family passing of f_o .

Big Heegner points in the definite setting

• Let
$$\mathbb{D}_m := e^{\operatorname{ord}} \operatorname{Div}(\widetilde{X}_m) \otimes_{\mathfrak{h}_{\infty}^{\operatorname{ord}}} \mathbb{I}.$$

- ▶ By Galois equiv., the image $\mathbb{P}_{c,m}$ of $P_{c,m}$ in \mathbb{D}_m^{\dagger} is fixed by $G_{H_{com}}$.
- By vertical compatibility,

$$\widetilde{\alpha}_m(\mathrm{Cor}_{H_{cp^m}/H_c}(\mathbb{P}_{c,m})) = U_p \cdot \mathrm{Cor}_{H_{cp^{m-1}}/H_c}(\mathbb{P}_{c,m-1})$$

in $H^0(H_c, \mathbb{D}_m^{\dagger})$.

Definition

The big Heegner point of conductor c is

$$\mathcal{P}_{c} := \varprojlim_{m} U_{p}^{-m} \cdot \operatorname{Cor}_{H_{cp^{m}}/H_{c}}(\mathbb{P}_{c,m})$$

in
$$H^0(H_c, \mathbb{D}^{\dagger}) = \varprojlim_m H^0(H_c, \mathbb{D}_m^{\dagger}).$$

Big theta elements

- K_{∞}/K anticyclotomic \mathbb{Z}_p -extension of K.
- $G_{\infty} = \operatorname{Gal}(K_{\infty}/K).$
- ► Let $\mathbb{J} := \varprojlim_m \mathbb{J}_m$, where $\mathbb{J}_m := e^{\operatorname{ord}} \operatorname{Pic}(\widetilde{X}_m) \otimes_{\mathfrak{h}_{\infty}^{\operatorname{ord}}} \mathbb{I}$.

Assumption

 $\dim_{\kappa_{\mathbb{I}}}(\mathbb{J}/\mathfrak{m}_{\mathbb{I}}\mathbb{J}) = 1.$

▶ Then J is free of rank 1 over I and for each L/K can define

$$\eta_L: H^0(L, \mathbb{D}^{\dagger}) \longrightarrow \mathbb{D} \twoheadrightarrow \mathbb{J} \xrightarrow{\eta} \mathbb{I}.$$

Definition

Let $G_n := \operatorname{Gal}(K_n/K)$ and $Q_n := \operatorname{Cor}_{H_{p^{n+1}}/K_n}(\mathcal{P}_{p^{n+1}}) \in H^0(K_n, \mathbb{D}^{\dagger})$. The *n*-th big theta element is

$$\Theta_n := \sum_{\sigma \in G_n} \eta_{K_n}(\mathcal{Q}_n^{\sigma}) \otimes \sigma^{-1} \in \mathbb{I}[G_n].$$

A conjecture

▶ By horizontal compatibility, the maps $\mathbb{I}[G_{n+1}] \longrightarrow \mathbb{I}[G_n]$ send

$$\Theta_{n+1} \longmapsto \mathbf{a}_p \cdot \Theta_n.$$

Define

$$\mathcal{L}_{p}(\mathbf{f}/K) := \Theta_{\infty} \cdot \Theta_{\infty}^{*},$$

where $\Theta_{\infty} := \varprojlim_{n} \mathbf{a}_{p}^{-n} \cdot \Theta_{n} \in \mathbb{I}[[G_{\infty}]].$

Let $w = \pm 1$ be the generic root number of f_{ν} over \mathbb{Q} , for $\nu \in \mathcal{X}_{arith}(\mathbb{I})$ of even weight and trivial nebentypus.

Conjecture (Longo–Vigni)

(A) Let ν be a non-exceptional arithmetic prime of even weight $k_{\nu} \geq 2$. Then for all nontrivial $\chi : G_{\infty} \longrightarrow \mathbb{C}_{p}^{\times}$ of finite order

$$(\chi \circ \nu)(\mathcal{L}_{p}(\mathbf{f}/K)) \neq 0 \quad \Longleftrightarrow \quad L(f_{\nu}, \chi, k_{\nu}/2) \neq 0.$$

(B) Assume w = 1. Then the element $\mathbb{1}_{\mathcal{K}}(\mathcal{L}_{\rho}(\mathbf{f}/\mathcal{K})) \in \mathbb{I}$ is nonzero.

◆□→ ◆□→ ◆臣→ ◆臣→ □臣

Outline

Big Heegner points in the definite setting

Higher weight theta elements

Two-variable anticyclotomic *p*-adic *L*-functions

Francesc Castella, UCLA

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Automorphic forms on definite quaternion algebras

• A: \mathbb{Z}_p -module with right linear action of $M_2(\mathbb{Z}_p) \cap \mathbf{GL}_2(\mathbb{Q}_p)$.

Definition

An A-valued automorphic form on B of level $U \subset \hat{B}^{\times}$ is a function

$$\phi: \hat{B}^{\times} \longrightarrow A$$

such that $\phi(gbu) = \phi(b)\imath_p(u_p)$ for all $g \in B^{\times}$, $b \in \hat{B}^{\times}$, and $u \in U$.

For R a Z_p-algebra, let L_k(R) be the module of homogeneous polynomials P(X, Y) ∈ R[X, Y] of degree k − 2 with right action

$$P|\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)=P(dX-cY,-bX+aY).$$

• Notation:
$$S_k(U; R) := S(U; L_k(R))$$
.

Higher weight theta elements

Theorem (Jacquet-Langlands)

There exist Hecke-equivariant isomorphisms JL:

$$S_k(\hat{R}_0) \xrightarrow{\sim} S_k(\Gamma_0(N))^{N^--\mathrm{new}};$$

 $S_k(U_m) \xrightarrow{\sim} S_k(\Gamma_0(N) \cap \Gamma_1(p^m))^{N^--\mathrm{new}}$

- *f* ∈ *S_k*(Γ₀(*N*)) *p*-ordinary newform.
 φ_f = JL(*f*) ∈ *S_k*(*R̂*₀) *p*-adically normalised:
 φ_f ≠ 0 (mod *p*).
- Let α_p ∈ Q
 [×]_p be the *p*-adic unit root of X² − a_p(f)X + p^{k-1} = 0, and consider the *p*-stabilization:

$$\tilde{\phi}_f := \phi_f - \frac{p^{k/2-1}}{\alpha_p} \phi_f | \begin{pmatrix} 1 \\ p \end{pmatrix}.$$

Higher weight theta elements

▶ Define
$$\tilde{\phi}_{f}^{[r]}$$
 by

$$\tilde{\phi}_f = \sum_{r=0}^{k-2} \binom{k-2}{r} (-1)^r \tilde{\phi}_f^{[r]} \otimes \mathbf{v}_r : B^{\times} \backslash \widehat{B}^{\times} \longrightarrow L_k(\mathcal{O}_F),$$

where $\mathbf{v}_r \longleftrightarrow X^r Y^{k-2-r}$.

Definition (Chida–Hsieh)

Let $\mathcal{G}_{n+1} := \operatorname{Gal}(H_{p^{n+1}}/K)$ and $P_{p^{n+1}} = [1] \in K^{\times} \setminus \hat{K}^{\times} / \hat{\mathcal{O}}_{p^{n+1}} \cong \mathcal{G}_{n+1}$. The *n*-th theta element $\theta_n(f)$ associated to f is the image of

$$\sum_{\sigma\in\mathcal{G}_{n+1}}\tilde{\phi}_f^{[k/2-1]}(P_{p^{n+1}}^{\sigma})\otimes\sigma^{-1}$$

under $\mathcal{O}_F[\mathcal{G}_{n+1}] \longrightarrow \mathcal{O}_F[\mathcal{G}_n].$

Gross' special value formula in higher weights

▶ The natural maps $\mathcal{O}_F[G_{n+1}] \longrightarrow \mathcal{O}_F[G_n]$ send

$$\theta_{n+1}(f) \longmapsto \alpha_p \cdot \theta_n(f).$$

Define

$$L_p(f/K) := \theta_\infty(f) \cdot \theta_\infty(f)^*,$$

where $\theta_{\infty}(f) := \varprojlim_{n} \alpha_{p}^{-n} \cdot \theta_{n}(f) \in \mathcal{O}_{F}[[G_{\infty}]].$

Theorem (Chida–Hsieh) For all $\chi : G_{\infty} \longrightarrow \mathbb{C}_{p}^{\times}$ of finite order,

 $\chi(L_p(f/K)) = (*) \cdot L^{\mathrm{alg}}(f, \chi, k/2),$

where $L^{\mathrm{alg}}(f, \chi, k/2) := \frac{L(f, \chi, k/2)}{\Omega_{f, N^{-}}}$, with $\Omega_{f, N^{-}} \in \mathbb{C}^{\times}$ Gross' period.

Outline

Big Heegner points in the definite setting

Higher weight theta elements

Two-variable anticyclotomic *p*-adic *L*-functions

Francesc Castella, UCLA

Higher weight specializations

If v is an arithmetic prime of I of weight k_v ≥ 2 and level m_v ≥ 0, then f_v := v(f) is the p-stabilization of a newform f[#]_v of weight k_v.

Theorem (C.-Longo, in progress)

Let $f \in S_{k_o}(\Gamma_0(N))$ be a p-ordinary newform. Then there exists a constant C > 0 such that for all ν of weight $k_{\nu} \equiv k_o \pmod{2(p-1)p^C}$ and trivial nebentypus,

$$u(\Theta_\infty) = heta_\infty(f_
u^\sharp)$$

as elements in $\mathcal{O}_{\nu}[[G_{\infty}]]$.

Corollary

- For all ν as in the Theorem, Conjecture A holds.
- Conjecture B holds if and only if L(f_ν, 1_K, k_ν/2) ≠ 0 for all but finitely many ν as in the Theorem.

Sketch of the proof

Rough Idea:

- Relate Θ_{∞} to **f** using JL in *p*-adic families.
- More precisely, in view of the identification

$$\operatorname{Pic}(\widetilde{X}_m) \otimes_{\mathbb{Z}} \mathcal{O}_F = \mathcal{O}_F[B^{\times} \setminus \hat{B}^{\times} / U_m],$$

one might hope to "evaluate $JL(\mathbf{f})$ at the big Heegner points \mathcal{P}_c ".

p-adic JL in *p*-adic families (pre-Buzzard–Chenevier)

D: O_F-valued measures on (Z²_p)' with natural right GL₂(Z_p)-action.
 W := S(R̂₀; D).

Specialization maps: If ν has weight $k_{\nu} \geq 2$ and level $m_{\nu} \geq 0$,

$$egin{aligned} &
ho_
u:\mathbb{D}\longrightarrow L_{k_
u}(\mathcal{O}_
u)\ &\mu\longmapsto \int_{\mathbb{Z}_p^ imes imes\mathbb{Z}_p}arepsilon_
u(x)(xY-yX)^{k_
u-2}d\mu(x,y). \end{aligned}$$

Theorem (Greenberg–Stevens $+\varepsilon$)

There exists $\Phi \in e^{\operatorname{ord}} \mathbb{W}$ and C > 0 such that:

• For all ν of weight $k_{\nu} \equiv k_o \pmod{(p-1)p^C}$,

$$\rho_{\nu,*}(\Phi) = \lambda_{\nu} \cdot \tilde{\phi}_{f_{\nu}}$$

for some
$$\lambda_{\nu} \in \mathbb{C}_{p}$$

• $\rho_{\nu_{o},*}(\Phi) = \tilde{\phi}_{f}.$

 $ho_{
u_o},$ Francesc Castella, UCLA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

Partial *p*-adic *L*-functions

 \blacktriangleright Decompose $\varepsilon_{\rm cyc} = \omega \cdot \epsilon_{\it w},$ and define

$$\Theta: G_{\mathbb{Q}} \longrightarrow \Lambda^{\times} := (\mathbb{Z}_{p}[[1 + p\mathbb{Z}_{p}]])^{\times}$$

by $\Theta(\sigma) = \omega^{k_{o}/2-1}(\sigma) \cdot [\epsilon_{w}(\sigma)^{1/2}].$
• Define $\theta: \mathbb{Z}_{p}^{\times} \longrightarrow \Lambda^{\times}$ by
 $\Theta = \theta \circ \varepsilon_{\text{cyc}}.$

• If
$$\nu \in \mathcal{X}_{arith}(\mathbb{I})$$
 has weight 2, then $\theta_{\nu}^2 = \varepsilon_{\nu}$ is the nebentypus of f_{ν} .

Definition

The partial p-adic L-function associated to **f** and $P_c = [1] \in \operatorname{Pic}(\mathcal{O}_c)$ is

$$\mathcal{L}_{p}(\mathbf{f}^{\dagger}/K, P_{c}; \nu) := \int_{\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}} \nu(x) \theta_{\nu}(y/x) d\Phi(P_{c})(x, y),$$

seen as a continuous function of $\nu \in \mathcal{X}_{\mathrm{arith}}(\mathbb{I}).$

Weight 2 specializations

Lemma For all $\nu \in \mathcal{X}_{arith}(\mathbb{I})$ of weight 2 and wild level $m \geq 2$,

$$\mathcal{L}_{\rho}(\mathbf{f}^{\dagger}/\mathcal{K}, \mathcal{P}_{c}; \nu) = \lambda_{\nu} \cdot \nu(\mathbf{a}_{\rho})^{-m} \cdot (\phi_{\nu} \otimes \theta_{\nu}^{-1})(\mathcal{P}_{c}).$$

• Idea: specialize Φ at ν , using the Control Theorem.

Lemma

For all $\nu \in \mathcal{X}_{\mathrm{arith}}(\mathbb{I})$ of weight 2 and wild level $m \geq 2$,

$$\nu(\eta_{H_c}^{\Phi}(\mathcal{P}_c)) = \lambda_{\nu} \cdot \nu(\mathbf{a}_{\rho})^{-m} \cdot (\phi_{\nu} \otimes \theta_{\nu}^{-1})(\mathcal{P}_c).$$

where $\eta_{H_c}^{\Phi}: H^0(H_c, \mathbb{D}^{\dagger}) \longrightarrow \mathbb{D} \longrightarrow \mathbb{J} \xrightarrow{\eta} \mathbb{I}$ "corresponds" to Φ .

► Idea: specialize \mathcal{P}_c at ν , tracing through the construction of \mathcal{P}_c . Corollary $\mathcal{L}_p(\mathbf{f}^{\dagger}/K, P_c; \nu) = \eta_{H_c}^{\Phi}(\mathcal{P}_c)$ as continuous functions on $\mathcal{X}_{arith}(\mathbb{I})$.

End of proof

By the construction of theta elements, it suffices to show

$$\nu(\eta_{H_c}^{\Phi}(\mathcal{P}_c)) = \lambda_{\nu} \cdot \tilde{\phi}_{f_{\nu}^{\sharp}}^{[k/2-1]}(\mathcal{P}_c).$$

► Consider the continuous function on X_{arith}(I) × X_{arith}(Z_p[[Z[×]_p]]) given by

$$\mathcal{L}_{p}(\mathbf{f}/\mathcal{K}, P_{c}; \nu, \sigma) := \int_{\mathbb{Z}_{p}^{\times} \times \mathbb{Z}_{p}} \nu(x) \sigma(y/x) d\Phi(P_{c})(x, y).$$

• For each ν as in the statement of the Theorem,

$$\theta_{\nu}(z) = \sigma_{k/2-1}(z) = z^{k/2-1}.$$
 (*)

Hence, on the one hand

$$\nu(\eta_{H_c}^{\Phi}(\mathcal{P}_c)) \stackrel{Corollary}{=} \mathcal{L}_p(\mathbf{f}^{\dagger}/K, P_c; \nu) \stackrel{(*)}{=} \mathcal{L}_p(\mathbf{f}/K, P_c; \nu, \sigma_{k/2-1}).$$

Francesc Castella, UCLA

A calculation from Greenberg–Stevens

On the other hand, following Greenberg–Stevens:

$$\begin{split} \sum_{r=0}^{k-2} \binom{k-2}{r} (-1)^r \mathcal{L}_p(\mathbf{f}/\mathcal{K}, P_c; \nu, \sigma_r) \cdot X^r Y^{k-2-r} \\ &= \int_{\mathbb{Z}_p^{\times} \times \mathbb{Z}_p} \sum_{r=0}^{k-2} \binom{k-2}{r} (-1)^r x^{k-2-r} y^r d\Phi(P_c)(x, y) \cdot X^r Y^{k-2-r} \\ &= \int_{\mathbb{Z}_p^{\times} \times \mathbb{Z}_p} (xY - yX)^{k-2} d\Phi(P_c)(x, y) = \lambda_{\nu} \cdot \tilde{\phi}_{f_{\nu}^{\sharp}}(P_c). \end{split}$$

Looking at the coefficient of X^{k/2-1}Y^{k/2-1}:

$$\mathcal{L}_{\rho}(\mathbf{f}/\mathcal{K}, P_{c}; \nu, \sigma_{k/2-1}) = \lambda_{\nu} \cdot \tilde{\phi}_{f_{\nu}^{\sharp}}^{[k/2-1]}(P_{c}).$$

Final Comments

- ► The construction of 2-variable *p*-adic *L*-functions via big Heegner points can be lifted to localized Hida–Hecke algebras (rather than just a single branch I).
- Application: anticyclotomic analogues of the results of Emerton–Pollack–Weston (ongoing joint work with C.-H. Kim and M. Longo).
- Our Theorem yields an interpolation of Gross' special value formula for finite order anticyclotomic twists of the forms f_ν in a Hida family.
- ► Hope: Building on this interpolation (for the twist by 1_K), one can make progress on Howard's "horizontal nonvanishing conjecture" under some assumptions on N⁻ extending Wei Zhang's arguments to certain (non-arithmetic) height one primes of I.

Happy Birthday, Prof. Stevens!

Francesc Castella, UCLA