Euler systems: new constructions, results, and conjectures.

§1. Intro.

V, \(p \)-adic rep'n of \(\text{Gal} \).
unram. outside \(\mathcal{P} \subset \mathfrak{p} \subset \Sigma \)

ES for \(V = \text{classes} \)

\[Z_m \in H^i(\mathbb{Q}(\mu_m), V^*(1)) \quad \forall m \]

satisfying a compatibility relation involving L-factors of \(V \).

Note. \(H^i(\mathbb{Q}(\mu_m), V^*(1)) \)
is a module over

\[R_m = \mathbb{Q}_p \left(\mathbb{F}_m \right)^{x} \mathbb{Z} \] .

\[\text{Observation (Gross):} \]

Why rank 2 BSD is difficult... If you want to construct a canonical element of a global Galois cohom. gp. that gp. had better to be of rank 1 (cover the relevant base ring.)
Suppose V is odd (dim $V^c = 1 = \dim V^{c=-1}$)

(where $c = \text{complex conj.}$)

Then

$H^1(\mathbb{Q}(\mu_m), V^c(1))$ is "generically"

of rank d/R_m. (Euler-Poincaré)

+ Leopoldt issue

So if $d = 1$, we're in good shape

(e.g. Katz's ES).

What if $d > 1$?

Perrin-Riou: for $r \geq 1$, define

rank r ES

= classes in $\Lambda^r H^1(\mathbb{Q}(\mu_m), V^c(1)) / R_m$

"Higher rank ES" Conjecture: \equiv rank d ES for V odd of dim $2d$.

ES Hard to construct!
§2. Local conditions

Idea: Pick out a canonical rank 1 submodule
for classes to land in.

Do this with local conditions at p. Better to understand:

$$H^1(\mathfrak{a}, V^*(11)) \xrightarrow{loc_p} H^1(\mathfrak{a}_p, V^*(11))$$

U_1

$H^1_f(\mathfrak{a}_p, V^*(11))$ Block-Kato.

"Crystalline" classes

Fact. $\exists \pi \in H^1(\mathfrak{a}(\mathbb{C}m), V^*(11)) : \text{loc}_p \pi \text{ crystalline}$ at $\mathfrak{a}(\mathbb{C}m)$.

Has generic rank

$$d = \dim \left(\frac{D_{DR}(V)}{\text{Fil}^0} \right) = : r(V).$$

Conjecture. For V coming from geometry (s.t. $r(V) \geq 0$)

\exists ES for V of rank $r(V)$,

for which all classes are crystalline at p.

related to $L^{(r(V))}(V, 0)$

(Note $L(V, s)$ vanishes to order $\geq r(V)$ at 0.)
Rank 0 ES. = elts of R_m related to L-values = a p-adic lift.

Can often choose j s.t. $r(V_{cj})$ is 0 or 1.

(slide) $V = V_f(p) \otimes V_{c9}$

$r(V_{cj})$

\[\begin{array}{cccccc}
2 & 4 & 6 & 7 & \cdots & j \\
\end{array} \]

\[\begin{array}{c}
\text{construct ES} \\
\text{critical values}
\end{array} \]

§3. Refinements.

Want to use these ES's to bound Selmer groups

Defn. An r-refinement of V is a subspace $V^c V$ of dim $d - r$ (where $V = 2d$-dim 'odd').

stable by Gal

(not nec. by Gal).
Say V^+ satisfies the Panchishkin condition if V^+ has all $HT \neq 2I$.

and all $HT \neq \frac{V}{V^+} \leq 0$.

(normalization: $HT \neq 0 \implies HT = 1$)

(This forces $r = r(V)$

and V^+ is unique if exists.)

Thm (Rubin + E. LLZ)

If V has a 1-refinement satisfying Panchishkin condition,

and

exists ES for V that is crystalline at p

and $c_l \neq 0$

+ technical conditions,

then $Sel(\mathcal{O}, V) = 0$.

Refinements make sense in families (over rigid spaces/formal schemes)
Conjecture. If \(V \), a families over \(X \),

\[V^+, \text{ 1-refinement over } X, \quad (r-) \]

and

\[\exists \text{ Zariski-dense set in } X \]

where \(V^+ \) is Panchishkin,

then \(\exists \) family of rank 1 ES for \(V \)

with

local condition given by \(V^+ \).