From Evans’ textbook, please do the following problems:

1. Write down an explicit formula for a solution of

\[\begin{align*}
 u_t - \Delta u + cu &= f, \quad \text{in } \mathbb{R}^n \times (0, \infty) \\
 u &= g, \quad \text{on } \mathbb{R}^n \times \{t = 0\},
\end{align*} \tag{1} \]

where \(c \in \mathbb{R} \).

2. (Equipartition of energy). Let \(u \in C^2(\mathbb{R} \times [0, \infty)) \) solve the initial-value problem for the wave equation in one-dimension. Suppose that the initial position of the solution, \(g(x) \), and the initial velocity, \(h(x) \), have compact support. The kinetic energy is

\[k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) \, dx \]

and the potential energy is

\[p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) \, dx. \]

Prove that \(k(t) = p(t) \) for all \(t \) sufficiently large. (Can you interpret the meaning of the smallest value \(T \) such that \(k(t) = p(t) \) for all \(t \geq T \)?)

3. Use the method of characteristics to solve the following first order partial differential equations:

(a) \(x_1 u_{x_1} + x_2 u_{x_2} = 2u, \quad u(x_1, 1) = g(x_1). \)

(b) \(uu_{x_1} + u_{x_2} = 1, \quad u(x_1, x_1) = x_1/2. \)

(c) \(x_1 u_{x_1} + 2x_2 u_{x_2} + u_{x_3} = 3u, \quad u(x_1, x_2, 0) = g(x_1, x_2). \)

Then solve:

4. Consider the one-dimensional heat-equation on the half-line \(x > 0 \), with a perfectly insulating boundary condition at the origin - i.e. we assume that \(u_x(0, t) = 0 \) for all \(t \geq 0 \). If \(u(x, 0) = g(x) \), for \(x > 0 \), show that one can write the solution of the initial value problem as

\[u(x, t) = \frac{1}{\sqrt{4\pi t}} \int_0^\infty \left[e^{-(x-y)^2/(4t)} + e^{-(x+y)^2/(4t)} \right] g(y) \, dy. \]

5. Let \(\Omega \) by a bounded region in \(\mathbb{R}^2 \) with smooth boundary. The motion of a thin, vibrating plate with shape \(\Omega \) and clamped edges is approximated by the equation

\[\begin{align*}
 \frac{\partial^2 u}{\partial t^2} &= -\Delta^2 u \\
 u(x, t) &= 0 \quad \text{for } x \in \partial \Omega \\
 Du(x, t) \cdot \hat{n} &= 0 \quad \text{for } x \in \partial \Omega
\end{align*} \]

where \(\hat{n} \) is the outward pointing unit normal vector on the boundary of \(\Omega \). Show that if we specify initial conditions \(u(x, 0) = g(x), \frac{\partial u}{\partial t}(x, 0) = h(x) \), this problem has at most one
solution. (Hint: Try to find a conserved “energy” for this problem.) Note the “bi-Laplacian” operator \(\Delta^2 u = \Delta(\Delta u) = \partial^4_x u + 2\partial^2_x \partial^2_y u + \partial^4_y u \) in dimension two.

6. Suppose that \(f \in L^1(\mathbb{R}) \) and \(g \in C_c^\infty(\mathbb{R}) \). Show that the convolution of \(f \) and \(g \)

\[
 f \ast g(x) = \int_{-\infty}^{\infty} f(x - y)g(y)dy = \int_{-\infty}^{\infty} f(z)g(x - z)dz ,
\]

is in \(C^\infty(\mathbb{R}) \).

Hint: Use the dominated convergence theorem to establish that \(f \ast g \in C^1(\mathbb{R}) \) and then use an induction argument.