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Abstract

Motivated by a PDE existence problem, we study the inverse problem for

a weighted Sturm-Liouville operator Ls associated with the eigenvalue prob-

lem y′′ + λ s(x) y = 0 , where s is a real-valued, periodic, even function that

is bounded from below by a positive constant and belongs to the L2-based

Sobolev space Hr[0, 1], r ≥ 1. Choosing gap lengths and gap midpoints as

coordinates, we define a spectral map G, that assigns to a coefficient s the

structure of the spectrum of Ls. We find that G is a real-analytic isomorphism

locally around s = 1, which, in particular, implies the existence of coefficients

s ∈ Hr[0, 1], r < 3/2, whose spectrum features band structure with all gaps

uniformly open around the gap midpoints. This result paves the way for the

construction of so-called breathers in nonlinear wave equations with such coef-

ficients s. Apart from the novelty of treating the inverse spectral problem for

the full Banach scale Hr[0, 1], r ≥ 1, the local nature of our result allows more

concise and transparent proofs. In particular, instead of using any preliminary

transformations, we treat the weighted problem directly by adapting techniques

used for Schrödinger operators with distribution potentials.
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1. Introduction

Consider a function s ∈ L2[0, 1] (the Hilbert space of square integrable func-

tions on the unit interval) that is real-valued, periodic, even and bounded from

below by a positive constant. Extend s to a 1-periodic function on the real

line R by s(x + 1) = s(x), x ∈ R, and define the Sturm-Liouville operator

Ls = − 1
s(x)

d2

dx2 acting on L2(R, s(x)dx). Its spectrum σ(Ls) is the set of values

λ such that the equation for y = y(x) given by

y′′ + λ s(x) y = 0 , (1)

has only (nontrivial) solutions that are bounded on R. The set σ(Ls) is con-

tained in R and is the union of a sequence of closed intervals

Bn = [λ2n, λ2n+1] , n ≥ 0 , (2)

often referred to as bands, satisfying

0 = λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < · · · .

In other words, the spectrum σ(Ls) is the union of bands. The intervening,

possibly void, open intervals (λ2n−1, λ2n), n ≥ 1, are called gaps. The subject of

the present work is the discussion of the dependence of the length and position

of the gaps on the coefficient s. To be more precise, our work is motivated by a

PDE existence problem which involves the characterization of coefficients s that

give rise to spectrum with all gaps uniformly open around ω2
∗n

2, n ≥ 1, for some

ω∗ ∈ R (as illustrated in Figure 1, see Corollary 3 for the precise statement).

λ0 λ1 λ2 λ3 λ4 λ5 λ6

ω2
∗ 4ω2

∗ 9ω2
∗

Figure 1: Structure of σ (Ls) with s as given in Corollary 3.
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The length of gaps is related to the location of eigenvalues of special boundary

value problems. In particular, for even coefficients s it holds true (see, for

instance, [21]) that

{λ2n−1(s), λ2n(s)} = {µn(s), νn(s)} , n ≥ 1 ,

where µn(s), n ≥ 1, is the Dirichlet spectrum associated with (1), that is, values

of λ for which y′′+λs(x)y = 0, y(0) = 0, y(1) = 0, has a nontrivial solution, and

νn(s), n ≥ 0, is the Neumann spectrum associated with (1), that is, values of λ

for which y′′ + λs(x)y = 0, y′(0) = 0, y′(1) = 0, has a nontrivial solution. The

signed gap lengths Gn can therefore be computed as

Gn(s) = µn(s)− νn(s) .

It is well known that the asymptotics of Dirichlet and Neumann eigenvalues

(and, hence, also of the gap lengths Gn) is decided by the smoothness of s

(see, for instance, [10] or [11] and [12]). Therefore, we introduce the following

function spaces. Denote by l2 the space of square summable sequences and let

hr =
{

(an)n∈N

∣∣∣ ((n2 + 1)r/2an)n∈Z ∈ l2
}

(r ∈ R)

be weighted spaces of sequences, to which the Sobolev spaces

Hr[0, 1] =

{
s

∣∣∣∣ ((n2 + 1)r/2 ŝ(n)
)
n∈Z
∈ l2

}
(r ∈ R)

are naturally linked through the Fourier transform

f̂(n) =

∫ 1

0

f(x) e−2πinx dx .

Hence, h0 = l2, H0[0, 1] = L2[0, 1], s ∈ H1[0, 1]⇔ s′ ∈ L2[0, 1], etc. and we have

the compact Sobolev embedding Hj+m[0, 1] ⊂ Cj [0, 1] ,m > 1/2 , where Cj [0, 1]

consists of functions whose j−th derivative is continuous (see, for instance, [1]).

If s = 1, then µn(s) = νn(s) = n2π2, n ∈ N, and, hence, Gn(s) = 0, that is,

there are no gaps in the spectrum of Ls and σ (Ls) = [0,∞). Our main result

sheds light on the structure of the spectrum for varying coefficients s = s(x)
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that are Hr-close to s = 1. In particular, we find that (cf. Proposition 11),

locally around s = 1, if s ∈ Hr[0, 1], r ≥ 1, we have

µn =
n2π2(∫ 1

0

√
s(ξ) dξ

)2 + γDir
n , νn =

n2π2(∫ 1

0

√
s(ξ) dξ

)2 + γNeu
n , (3)

with (γDir
n )n∈N, (γ

Neu
n )n∈N ∈ hr−2. Motivated by this, we construct a map that

encodes the dependence of the band structure on the coefficient s by using

the signed gap lengths Gn = µn − νn and the scaling of the gap midpoints

(
∫ 1

0

√
s(ξ) dξ)−2 as coordinates. The following result is local in nature, i.e. it

sheds light on how the quantities(∫ 1

0

√
s(ξ) dξ

)−2
∣∣∣∣∣
s=1

= 1 , (Gn(s)|s=1)n∈N = (0)n∈N , (4)

are perturbed for s = 1 + s̃ with “small” s̃.

Theorem 1 (Inverse problem). Fix r ≥ 1 and set

E =
{
s ∈ L2[0, 1] | even, periodic and s(x) ≥ s0 > 0 for some s0 ∈ R

}
.

The gap structure mapping

G : E ∩Hr[0, 1] −→ R× hr−2 (5)

s 7−→

 1(∫ 1

0

√
s(ξ) dξ

)2 , (Gn(s))n∈N


is a real-analytic isomorphism locally around s = 1, that is, there is a neighbor-

hood U ⊂ E ∩Hr[0, 1] of s = 1 and a neighborhood V ∈ R× hr−2 of [1, (0)n∈N]

such that G : U −→ V is bijective and both, G and G−1 are real-analytic.

Remark 2. Since we will be working with functions s in a neighborhood of the

constant function 1, it will be convenient to write s(x) = 1 + s̃(x), and we will

assume without (further) loss of generality that ‖s̃‖Hr ≤ 1/2. Note that since

we will always assume that r ≥ 1, this implies that s(x) ≥ 1/2 for all x.
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The proof of Theorem 1 is executed in Section 2. Its methodology is inspired by

[22], where the inverse problem for Dirichlet eigenvalues of a Schrödinger type

equation

v̈(t) + (q(t)− λ) v(t) = 0 , (6)

for v = v(t) is treated. If the coefficient s in the weighted equation (1) is smooth

enough, one can immediately transfer results for (6) to (1) via the Liouville

transformation

t =

∫ x

0

√
s(ξ) dξ , v(t) = s(x(t))

1
4 y(x(t)) , (7)

posed on the interval t ∈ [0, I], I = I(s) =
∫ 1

0

√
s(ξ) dξ, and with the potential

q(t) = s(x(t))−
3
4
d2

dx2

(
s(x(t))−

1
4

)
. (8)

The importance of the Liouville transformation lies in the fact that the eigenval-

ues associated with (1) and (6) coincide. Unfortunately, it will turn out that the

inverse problem for uniformly open gaps naturally requires non-smooth coeffi-

cients s ∈ Hr[0, 1], r < 3/2 (which (3) already foreshadows). Hence, we execute

the proof without the Liouville transformation, but would like to stress that the

formal correspondence of s ∈ Hr[0, 1] and q ∈ Hr−2[0, I], which is implied by

the transformation, motivated us to adapt techniques for Schrödinger equations

with distribution potentials as described in [14] (see also Remark 7).

Corollary 3 (Uniformly open gaps). Fix r ∈ [1, 3/2). There exists δ0 > 0

so that for any δ ∈ (0, δ0) there exists an even function sδ ∈ Hr[0, 1] such that

the spectrum of the operator Ls with s = 1 + sδ (extended periodically to the

entire line) has a gap structure satisfying

ω2
∗n

2 − λ2n−1 ≥ δ , λ2n − ω2
∗n

2 ≥ δ , n ≥ 1 , (9)

with ω∗ = π/I(s), I(s) =
∫ 1

0

√
s(ξ) dξ.

A detailed discussion of Corollary 3 is given in Section 3 where we explain why

our findings imply the existence of s ∈ Hr[0, 1] with r < 3/2 giving rise to uni-

formly open gaps and how this result can be used to construct special solutions
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for nonlinear wave equations. In fact, our interest in the structure of the essen-

tial spectrum of Ls stems from an effort to extend the results from [4] where

breathers – time-periodic, spatially localized solutions – in nonlinear wave equa-

tions with spatially periodic coefficients were constructed via center manifold

reduction in infinite dimensions. The novelty of [4] was to tailor the spectrum

of Ls via s to fulfill (9). However, in [4] the setup (9) was obtained through

direct, elementary calculations of the so-called discriminant (see Section 3) for

(1) resulting in the special choice

s(x) = 1 + 15χ[6/13,7/13) (x mod 1 ) , ω∗ =
13

16
π .

It is the purpose of this article to explore the existence of a class of coefficients s

that give rise to a band structure with the features described in Corollary 3 be-

yond this special choice, which in turn would pave the way to construct breathers

for more general nonlinear wave equations. In particular, we were interested in

whether or not there were continuous, (or even Hölder) coefficient functions

which gave rise to operators with uniformly open gaps.

Remark 4. Note that, although Corollary 3 seems like an abstract existence re-

sult, our proof technique actually delivers an approximation procedure for such

coefficients as a byproduct. To be more precise, we find that the leading order

approximation in s of the gap lengths Gn = Gn(s) is given by the Fourier cosine

coefficients of s (see Lemma 14): the n-th Fourier cosine coefficient controls the

n-th gap. This might lead to an approximatin algorithm that manipulates each

gap successively. Another option would be to follow the explicit construction pro-

cedure from [4] which relies on explicit formulas for the fundamental system of

(1). This, however, leads inevitably to the use of the theory of special functions,

which is both, technically cumbersome and less likely to allow the specification

of a large class of coefficients.

1.1. Related work

The body of literature on direct and inverse Sturm-Liouville problems is

enormous. The particular problem we treat in the present work has, however,
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not been addressed yet. Most literature deals with Schrödinger equations (6)

which we refrain to survey here. We would like to point out, however, that there

is a significant difference between inverse problems for Schrödinger equations

(with regular potential) (6) and the weighted type treated here. The core parts

of the proof of Theorem 1 and Corollary 3 rely on rather detailed estimates

of eigenvalue asymptotics as given in (3). These are usually obtained from

corresponding estimates on a fundamental system for the ODE. These two steps

turn out to be much more intricate for our setting than for Schrödinger equations

(see Remark 7). More relevant for our work are results that were achieved for

the so-called impedance type Sturm-Liouville problem

d

dt

(
p2(t)

d

dt
w

)
+ λ p2(t)w = 0 , (10)

for w = w(t) ,that can be transformed into (1) by a Liouville change of variables

s(x) = p(x(t)), t =
∫ x

0

√
s(ξ)dξ. Closest to our setting is a series of articles [3],

[2] by Andersson where the direct and inverse eigenvalue problem for (10)

with discontinuous coefficients (ln p)′ ∈ Lm(0, l), 1 ≤ m ≤ ∞, (such that a

transformation to (6) is not possible) is treated. Similar to our approach, he

focuses on coefficients that are not too far away from p(x) ≡ 1, i.e. his results

are local in nature. However, in contrast to the present work, he uses Dirichlet

and Dirichet-Neumann eigenvalues as spectral data to recover the coefficient for

the inverse problem. In [5], [6] Coleman and McLaughlin generalized the

findings of Andersson and solved the inverse problem globally, that is, not

only for p in a neighborhood of p(x) ≡ 1, although they restricted to functions

(ln p)′ ∈ L2(0, 1). More recently, Korotyaev examined the same problem in

a series of articles ([19], [18]) but with different tools: He chooses a different

spectral map and gives estimates on eigenvalue asymptotics in lm,m ≥ 1. Per-

haps closest to the inverse problem treated here is the work by Klein and

Korotyaev [17] where the spectral map resembles our choice very much, that

is, gap lengths and gap midpoints are chosen as coordinates. They solve the

global inverse problem, but restrict themselves to the function space H1. Most

recently, an impedance type problem was studied by Albeverio, Hryniv and
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Mykytyuk using very similar tools as in the present work, but, again, a dif-

ferent spectral map (Neumann and Neumann-Dirichlet eigenvalues) and the

Lm-based Sobolev spaces W 1,m(0, 1),m ∈ [1,∞). To summarize, the main dif-

ferences between our work and the existing literature are the choice of function

space Hr[0, 1], r ≥ 1, and the coordinates for the spectral map, both of which

are heavily motivated by [4].

1.2. Outline of the proof

In order to retrieve information about the spectral map (5) we need to

examine the asymptotics of Dirichlet and Neumann eigenvalues. It is standard

to use the fundamental system {ỹ1, ỹ2} that solves (1) subject to the initial

conditions

ỹ′′1 + λsỹ1 = 0, ỹ1(0) = 1, ỹ′1(0) = 0 , (11)

and, respectively,

ỹ′′2 + λsỹ2 = 0, ỹ2(0) = 0, ỹ′2(0) = 1 , (12)

as characteristic functions for Dirichlet and Neumann eigenvalues, since

ỹ1(1;λ) = 0 iff λ = νn, ỹ2(1;λ) = 0 iff λ = µn , (13)

where we use the notation ỹj = ỹj(x;λ) to stress the dependence of the fun-

damental system on the spectral parameter λ. In fact, the main challenge and

novelty of our work consists in deriving estimates for ỹ1,2(1;λ) (see Proposition

5) which we then translate into estimates for Dirichlet and Neumann eigenvalue

asymptotics (see Proposition 11) by employing the implicit function theorem

for (13). The analysis of eigenvalue asymptotics is carried out such that lo-

cal boundedness and the range of the spectral map (5) immediately follow (see

Proposition 11). Combining the analyticity of each coordinate function Gn (see

Lemma 13 and Appendix A for the proof) and the local boundedness of the full

map G, the analyticity of G follows (see Lemma 14). We conclude by computing
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the Gâteaux derivative of G at s = 1 in direction s̃ and find that it is given by

the Fourier cosine transform of s̃ which is an isomorphism from E ∩Hm[0, 1] to

hm (see Lemma 14). Hence, the statement of Theorem 1 follows by the inverse

function theorem as in [22].

Acknowledgments.. The work of Martina Chirilus-Bruckner was supported in

part by the Deutsche Forschungsgemeinschaft (DFG) under the grant CH 957/1-

1 and the US NSF under grant DMS-0908093. The work of C. E. Wayne was

supported in part by the US NSF under grants DMS-0908093 and DMS-1311553.

This work was completed in part while MCB was a member of the Department

of Mathematics and Statistics at Boston University. CEW thanks Prof. Thomas

Kappeler for a very helpful discussion of prior work in this area.

2. Proof of Theorem 1

Since Theorem 1 is stated for Hr[0, 1], r ≥ 1, which, in particular, contains

non-smooth coefficients, the main challenge of the proof is to find estimation

techniques to prove eigenvalue asymptotics without using classic techniques such

as the Prüfer or Liouville transformation (see, for instance, [25]). In fact, our

estimation technique is inspired by [14] where Schrödinger equations (6) with

singular potential q ∈ Hm,m ≥ −1, are treated, which, in the spirit of the

Liouville transformation (although not well-defined here), corresponds to s ∈

Hr[0, 1], r = m+ 2 ≥ 1.

Proposition 5 (Characteristic functions). Fix r ≥ 1. Let s ∈ Hr
C[0, 1]. For

the solutions ỹ1 and ỹ2 of (11) and (12) we have the representation

ỹ1(1;λ) =

(
s(0)

s(1)

)1/4
(

cos
(√

λI
)

+

∫ I

0

cos
(√

λ[I − 2t]
)
f+(t) dt

)
, (14)

ỹ2(1;λ) =

(
s(0)

s(1)

)1/4
 sin

(√
λI
)

√
λ

+

∫ I

0

sin
(√

λ[I − 2t]
)

√
λ

f−(t) dt

 , (15)

with some functions f± ∈ Hr−1(0, I) and I =
∫ 1

0

√
s(t) dt .
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Remark 6. We would like to emphasize that asymptotic estimates as implied by

Proposition 5 are usually obtained from arguments involving integration-by-parts

which extracts a decay factor 1√
λ

from the sine/cosine in the integral, whereas

in our case of non-smooth coefficients (to ensure open gaps) the estimation

technique is more subtle.

Remark 7. Let us remark on the difference between the Schrödinger equations

(6) and weighted equations (1). The basic estimates for the fundamental system

for (6) are of the form (see, for instance, [26])

v1(1, λ) = cos(
√
λ) +

sin
√
λ

2
√
λ

∫ 1

0

q(τ) dτ +O(λ−1)

v2(1, λ) =
sin(
√
λ)√
λ
− cos

√
λ

2λ

∫ 1

0

q(τ) dτ +O(λ−3/2) .

Loosely speaking, the extra 1/
√
λ factor in these representations allows a more

immediate derivation of asymptotics of eigenvalues, and, hence, of gap lengths.

In more detail, it is known that (see, for instance, [20], [11], [12], [13])

q ∈ Hm ⇐⇒ (Gn)n∈N ∈ hm (m ≥ 0) . (16)

Moreover, it is known that finite gap potentials q (that is, potentials that leave

all but a finite number of gaps closed) are norm dense in L2 (cf. [20]). In

particular, a band structure with the properties (9) from Corollary 3 cannot be

obtained for Hill operators with regular potentials. However, one anticipates

from (16) that distribution potentials q ∈ Hm,m < 0, do yield the possibility

that all gaps are uniformly open. Among the first who studied spectral problems

for Hill operators with singular potentials were Kappeler and Möhr ([16]),

Savchuk and Shkalikov ([23], [24]), Djakov and Mityagin ([8], [9]) and

Hryniv and Mykytyuk ([14], [15]). We refrain from attempting to give an

exhaustive list of contributions to the field, but rather highlight [14], which gave

the most relevant input for our work. They prove the following asymptotics

for the Dirichlet eigenvalues µn (Theorem 1.1 in [14], restated): Assume that

q ∈ Hα−1(0, 1) for some α ∈ [0, 1] and fix an arbitrary distributional primitive
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ρ ∈ Hα(0, 1) of q. Then there exists a function ρ̃ ∈ H2α(0, 1) such that
√
µn =

nπ−Fsin[ρ](2n)−Fsin[ρ̃](2n), where Fsin[f ](n) =
∫ 1

0
f(x) sin(πnx) is the Fourier

sine transform .

Proof. It is convenient to first write the differential equation in first order

form, setting z = y′ and Y = (y, z)T . Then

d

dx
Y =

 0 1

−λs(x) 0

Y .

Inspired by [14], we now diagonalize the “main” part of the equation by setting

Y = PU , where

P (x) =

 1 1

i
√
λs(x) −i

√
λs(x)

 ; P−1(x) =

 1/2 −i
2
√
λs(x)

1/2 i

2
√
λs(x)

 .

Then
d

dx
U = D(x)U +

1

4
σ(x)JU , (17)

where

D(x) =

 i
√
λs(x)− 1

4σ(x) 0

0 −i
√
λs(x)− 1

4σ(x)

 , J =

 0 1

1 0

 ,

and σ(x) = s′(x)
s(x) . The advantage of this representation of the solution is that

the principal part of the solution is diagonal and the off-diagonal part no longer

depends on λ. The (initial value problem for the) non-autonomous system of

equations

U ′ = D(x)U , U(y) = Uy

has solution

U(x) = Λ(x, y)S(x, y)Uy

with

Λ(x, y) :=

(
s(y)

s(x)

)1/4

, S(x, y) :=

 ei
√
λ∆(x,y) 0

0 e−i
√
λ∆(x,y)

 ,
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and ∆(x, y) =
∫ x
y

√
s(t)dt. We can then write the solution to the full problem

(17) as

U(x) = Λ(x, 0)S(x, 0)U0 +
1

4

∫ x

0

Λ(x, t)S(x, t)σ(t)JU(t)dt .

We employ successive approximations introducing the recursion

Σ0(x, 0) = Λ(x, 0)S(x, 0),

Σn+1(x, 0) =
1

4

∫ x

0

Λ(x, t)S(x, t)σ(t)JΣn(t, 0)dt .

In order to ensure regularity for the corresponding solution we develop a rela-

tively simple formula for Σn using

JS(x, y) = (S(x, y))−1J = S(y, x)J .

Combined with basic properties of the solution operators Λ and S, we see that

we can write

Σn+1(x, 0)

=
1

4

∫ x

0

Λ(x, xn)S(x, xn)σ(xn)JΣn(xn, 0)dxn

=
1

42

∫ x

0

∫ xn

0

Λ(x, xn−1)σ(xn)σ(xn−1)S(x, xn)JS(xn, xn−1)JΣn−1(xn−1, 0)dxn−1dxn

=
1

4n+1

∫ x

0

· · ·
∫ x1

0

Λ(x, 0)

(
n∏
k=0

σ(xk)

)
S(x, xn)JS(xn, xn−1) · · · JS(x1, x0)JS(x0, 0)dx

=
1

4n+1

∫ x

0

· · ·
∫ x1

0

Λ(x, 0)

(
n∏
k=0

σ(xk)

)
S(x, 0)S(x)Jn+1dx

with x = (x0, . . . , xn) (suppressing the n-dependence for readability) and

S(x) = S(xn, 0)−2S(xn−1, 0)2 · · ·S(x0, 0)2(−1)n+1

=

 exp
(

2i
√
λrn(x)

)
0

0 exp
(
−2i
√
λrn(x)

)


where

rn(x) =

n∑
k=0

(−1)k+1∆(xn−k, 0).
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Recall that we are interested in the special initial value problems (11) and (12).

The corresponding solutions are given by

U(x) =

∞∑
n=0

Un(x), U0(x) = Σ0(x, 0)U(0), Un+1(x) = Σn+1(x, 0)U(0).

with U(0) accordingly given by

UNeu(0) =
1

2

 1

1

 , UDir(0) =
1

2i
√
λs(0)

 1

−1

 .

To show convergence of the series and prove the claimed representation it is

convenient to introduce the following Lemma for the quantities u±n+1 which

directly allow a representation for the components of the diagonal matrix Σn+1.

Lemma 8. Define for n ≥ 1 the auxiliary terms

u±n+1(xn+1) =

∫ xn+1

0

. . .

∫ x1

0

exp
[
±i
√
λ (∆(xn+1, 0) + 2rn(x))

] ( n∏
k=0

σ(xk)

)
dx.

Then

• u±n+1 can be bounded point-wise, i.e.∣∣u±n+1(x)
∣∣ ≤ exp

(∣∣∣Im(
√
λ)
∣∣∣∆(x, 0)

) 1

n!

(∫ x

0

|σ(t)|dt
)n

,

• and we have the representation

u±n+1(1) =

∫ I

0

exp(±i
√
λ(I − 2t))hn+1(t) dt

with

hn+1(t) = (−1)n+1

∫
Γn(t)

σ̃ (t+Rn−1(ξ1, . . . , ξn)) σ̃(ξ1) . . . σ̃(ξn) ξ1 . . . dξn,

(18)

where

Rn(ξ0, . . . , ξn) =

n∑
k=0

(−1)k+1ξn−k, σ̃(·) =
s′

s3/2

(
∆−1(·)

)
(19)

and the domain is given by

Γn(t) = {(ξ1, . . . , ξn) | 0 ≤ ξ1 ≤ . . . ≤ ξn ≤ t+Rn−1(ξ1, . . . , ξn) ≤ I} .

(20)
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Proof. The pointwise bound can be essentially read off directly noting

that

|∆(xn+1, 0) + 2rn(x)| ≤ |∆(xn+1, 0)|

since

x1 ≤ x2 ≤ . . . ≤ xn+1.

The representation in terms of hn is obtained by the change of variables ξn =

∆(xn, 0) (which is invertible since
√
s(x) ≥ 0) for n ≥ 1 and t = rn(x0, . . . , xn).

�

Noting that

Jn+1UNeu(0) =
1

2

 1

1

 , Jn+1UDir(0) = (−1)n+1 1

2i
√
λs(0)

 1

−1

 ,

and transforming back to the original variables via Y = PU we get using Lemma

8 the Basic Estimate

|ỹj(x)|

≤ |Cs(x)| exp
(
|Im(
√
λ)∆(x, 0)|

)
+
|Cs(x)|

2

∞∑
n=0

(
1

4

)n+1

|u+
n+1(x)|+ |u−n+1(x)|

≤ |Cs(x)| exp
(
|Im(
√
λ)∆(x, 0)|

)
+
|Cs(x)|

2
exp

(
|Im(
√
λ)∆(x, 0)|+ 1

4
‖σ‖L2

√
x

)
(21)

where Cs(x) := s(0)1/4s(x)−1/4 = Λ(x, 0) and

|ỹ′j(x)| ≤ |ỹj(x)|
|
√
λs(x)|

.

This demonstrates convergence in H1[0, 1]. It remains to demonstrate the spe-

cific representation at x = 1. Again using the representation in Lemma 8 we

have

ỹ1(1) = Cs(1) cos
(√

λI
)

+ Cs(1)

∞∑
n=0

(
1

4

)n+1 (
u+
n+1(1) + u−n+1(1)

)
= Cs(1) cos

(√
λI
)

+ Cs(1)

∞∑
n=0

(
1

4

)n+1 ∫ I

0

cos(
√
λ(I − 2t))hn+1(t) dt

14



and

ỹ2(1) = Cs(1)
sin
(√

λI
)

√
λ

+ Cs(1)

∞∑
n=0

(
−1

4

)n+1 (
u+
n+1(1) + u−n+1(1)

)

= Cs(1)
sin
(√

λI
)

√
λ

+ Cs(1)

∞∑
n=0

(
−1

4

)n+1 ∫ I

0

sin(
√
λ(I − 2t))√
λ

hn+1(t) dt

Interlude.. We make use of a blend of results from [14]. Define

In(f0, . . . , fn)(t) =

∫
Γn(t)

f0(t+Rn−1(ξ1, . . . , ξn))f1(ξ1) · · · fn(ξn) dξ1 · · · dξn

with Rn as in (19) and the domain Γn as in (20). Furthermore, consider

α ∈ [0, 1], γ = min{3α, 1 + α}, τ ∈ Hα.

Then by [14], Lemma A.4, Theorem 4.3 and Corollary 4.5, it holds true that

‖In(τ, . . . , τ)‖Hγ ≤ C‖τ‖
n
Hα , n ∈ N ,

and, consequently,

‖σ‖Hr−1 ≤ 1⇒ ‖f±‖Hr−1 ≤ C‖σ‖Hr−1 . (22)

From this one can immediately conclude the following result.

Lemma 9 (from [14] ). Using the notation ∆(1, 0) = I, let σ̃ ∈ Hr−1(0, I), r ∈

[1, 2]. Define h1 = σ̃ and hn+1 as in (18) and define

f± =

∞∑
n=1

(
±1

4

)n
hn. (23)

Then f± ∈ Hr−1(0, I).

This gives the desired statement about the regularity of f± and concludes

the proof.

�

Note that from (22), the definition of σ̃, and the definition of the function s̃ in

Remark 2, we have

15



Corollary 10. There exists a constant C > 0 such that

‖f±‖Hr−1 ≤ C‖s̃‖Hr .

Proposition 11 (Dirichet and Neumann asymptotics, local bounded-

ness and range of G). Let s ∈ E ∩Hr
C(0, 1), r ≥ 1, be sufficiently close to 1.

Then the Dirichlet and Neumann eigenvalues are of the form

µn =
(nπ
I

)2

+ γDir, νn =
(nπ
I

)2

+ γNeu, (24)

with I = I(s) =
∫ 1

0

√
s(ξ) dξ, and the remainders

(γDir)n∈N, (γ
Neu)n∈N ∈ hr−2.

Furthermore, the mapping G as defined in Theorem 1 has range contained in

C× hr−2 and G is locally bounded.

Remark 12. Even though one could use Theorem 5.1 in [14] to conclude the

eigenvalue asymptotics, we prefer to give yet another proof which directly paves

the way for proving the local boundedness.

Proof. By the substitutions

ρ :=
√
λI, ρτ :=

√
λ(I − 2t), F (τ) :=

I

2
f−
(
I

2
(1− τ)

)
, (25)

the characteristic equation ỹ2(1, λ) = 0 (with ỹ2 as in Lemma 5) can be recast

as

0 = sin(ρ) +

∫ 1

−1

sin(ρτ)F (τ) dτ =: G(ρ). (26)

Using the Riemann-Lebesgue lemma one can readily conclude that the integral

approaches zero for large ρ. We would like to use Rouché’s theorem on regions

|ρ − nπ| = π
2 , n ∈ N, ρ ∈ C, for n large to gain a more precise insight into this

16



convergence. First consider the case r > 1

|G(ρ)− sin(ρ)| =
∣∣∣∣∫ 1

−1

sin(ρy)F (y) dy

∣∣∣∣ =

∣∣∣∣∣
∫ 1

−1

sin(ρy)

(∑
k∈Z

F̂ke
ikπy

)
dy

∣∣∣∣∣
≤ 2

∑
k∈N
|F̂k|| sin(ρ)|

∣∣∣∣ kπ

k2π2 − ρ2

∣∣∣∣
≤ 2 exp(|Im(ρ)|)

(∑
k∈N
|F̂k|kr−1k−(r−1)

∣∣∣∣ 1

kπ − ρ

∣∣∣∣
)

≤ 2C exp(|Im(ρ)|)
||F ||Hr−1[−1,1]

ρr−1
,

where we used the Cauchy-Schwarz inequality and the fact that(∑
k∈N

1

|k|2(r−1) |kπ − ρ|2

)1/2

≤ C

ρr−1
,

for C > 0 independent of F and ρ. Furthermore, since for |ρ − nπ| ≥ π/4 we

have exp(|Im(ρ)|) < 4| sin(ρ)| (which is proven in [22], Lemma 2.1), it follows

that

|G(ρ)− sin(ρ)| ≤ 4C| sin(ρ)|
||F ||Hr−1[−1,1]

ρr−1
.

Consequently, if ρr−1 > 4C||F ||Hr−1[−1,1] we can conclude that

|G(ρ)− sin(ρ)| < | sin(ρ)|,

and, hence, by Rouché’s theorem that G has exactly one root inside the region

|ρ− nπ| = π
2 . In other words, we can guarantee that

|√µnI − nπ| <
π

2
, n > N,

for some N ∈ N with

N >
(
4C||F ||Hr−1[−1,1]

)1/(r−1)
. (27)

17



For r = 1

|G(ρ)− sin(ρ)| =
∣∣∣∣∫ 1

−1

sin(ρy)F (y) dy

∣∣∣∣ =

∣∣∣∣∣
∫ 1

−1

sin(ρy)

(∑
k∈Z

F̂ke
ikπy

)
dy

∣∣∣∣∣
≤ 2

∑
k∈N
|F̂k|| sin(ρ)|

∣∣∣∣ kπ

k2π2 − ρ2

∣∣∣∣
≤ 2C̃ exp(|Im(ρ)|) ||F ||L2[−1,1],

for C̃ > 0 independent of F and ρ. As before, since for |ρ− nπ| ≥ π/4 we have

exp(|Im(ρ)|) < 4| sin(ρ)|, it follows that

|G(ρ)− sin(ρ)| ≤ 4C̃| sin(ρ)|||F ||L2[−1,1].

Consequently, choosing s̃ small enough to ensure 1 > 4C̃||F ||L2[−1,1] we can

conclude that

|G(ρ)− sin(ρ)| < | sin(ρ)| ,

and, hence, by Rouché’s theorem that G has exactly one root inside the region

|ρ− nπ| = π
2 . In other words, we can guarantee that

|√µnI − nπ| <
π

2
, n ∈ N .

In order to get more precise estimates on the eigenvalue asymptotics, we replace

ρ in (26) by the representation

√
µnI = nπ + ln , |ln| < π/2 ,

to get

sin (nπ + ln) = −
∫ 1

−1

sin ([nπ + ln]τ)F (τ)dτ

= −
∫ 1

−1

sin (nπτ) cos (lnτ)F (τ)dτ −
∫ 1

−1

cos (nπτ) sin (lnτ)F (τ)dτ . (28)

We will make use of a fixed point argument to derive the desired estimate on

18



ln. Define ηn = sin (ln) such that

ηn = (−1)n+1

[∫ 1

−1

sin (nπτ) cos
(
sin−1 (ηn) τ

)
F (τ)dτ

+

∫ 1

−1

cos (nπτ) sin
(
sin−1 (ηn) τ

)
F (τ)dτ

]
= Φn(η)

with η = (ηn)n∈N. Note that (Φn(η))n∈N = Φ(η) : hr−1 → hr−1, since, by

integration by parts,∣∣∣∣∫ 1

−1

sin (nπτ) cos
(
sin−1 (ηn) τ

)
F (τ)dτ

∣∣∣∣
≤
∣∣∣∣∫ 1

−1

sin (nπτ)F (τ)dτ

∣∣∣∣ ∣∣cos
(
sin−1 (ηn)

)∣∣+
∣∣sin−1 (ηn)

∣∣ ‖F‖L2[−1,1] ,

and the analogous estimate is true for the second term in Φn(η). Furthermore,

Φ is a contraction, since

|Φn(η)− Φn(η̃)|

≤
∣∣∣∣∫ 1

−1

{
cos
(
sin−1 (ηn) τ

)
− cos

(
sin−1 (η̃n) τ

)}
sin (nπτ)F (τ)dτ

∣∣∣∣
+

∣∣∣∣∫ 1

−1

{
sin
(
sin−1 (ηn) τ

)
− sin

(
sin−1 (η̃n) τ

)}
cos (nπτ)F (τ)dτ

∣∣∣∣
≤ C0‖F‖L2[−1,1] |η − η̃| ,

for C‖F‖L2[−1,1] < 1 which can be achieved by choosing s = 1 + s̃ with s̃

sufficiently small (recall that F depends on s). This guarantees that the iteration

η(k+1) = Φ(η(k)) has a unique fixed point η∗. Choosing, for instance, η(0) = 0

gives η(1) = Φ(η(0)) =
∫ 1

−1
sin (nπτ)F (τ)dτ and, by standard estimates we have

‖η∗‖hr−1 ≤
‖F‖Hr−1[−1,1]

1− C0‖F‖L2[−1,1]
,

which, expressed in our quantity of interest becomes

‖l∗‖hr−1 ≤ C̃0‖F‖Hr−1[−1,1] ≤ Č0‖s̃‖Hr[0,1] , sin(l∗) = η∗ ,
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where we made use of (22) and (25). Since the fixed point is unique, we know

that it must coincide with the Dirichlet remainders that solve (28). The analysis

for the Neumann eigenvalues is analogous. This concludes the proof, since local

boundedness and the range of G are given as a byproduct of our analysis of

asymptotics.

�

Lemma 13 (Analyticity of the coordinate functions of G). Let the con-

ditions in Proposition 11 be fulfilled. Then each coordinate function of G in (5)

is analytic.

Proof. The proof can be adapted essentially line-by-line from [22]. For

completeness, we execute it in Appendix Appendix A.

�

Lemma 14. Fix r ≥ 1. The mapping

G : E ∩Hr[0, 1] −→ R× hr−2 (29)

s 7−→

 1(∫ 1

0

√
s(ξ) dξ

)2 , (Gn(s))n∈N


is real-analytic in a neighborhood of s = 1. Moreover, its directional derivative

is given by

D1[G](s̃) =

[
−
∫ 1

0

s̃(x) dx ,

(
2n2π2

∫ 1

0

cos(2nπx)s̃(x)

)
n∈N

]
(30)

Proof. The gradient ∂µn
∂s : Let s ∈ C0([0, 1]) ⊂ L2([0, 1]) (noting that

C0([0, 1]) is dense in L2([0, 1])) and yn be the solution of the Dirichlet eigen-

value problem

y′′n + µnsyn = 0, yn(0) = 0, yn(1) = 0, (31)
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Note that yn = yn(x, s) and µn = µn(s). Taking a directional derivative at a

point s0 in direction s̃ (s0, s̃ ∈ C0([0, 1])) of equation (31) yields

Ds0 [yn](s̃)′′ + µn(s0)s0Ds0 [yn](s̃)︸ ︷︷ ︸
=:Qs0 [Ds0 [yn](s̃)]

= − (µn(s0)s̃+Ds0 [µn](s̃)s0)yn(s0) .

Projection on yn(s0) via the L2 scalar product gives

〈Qs0 [Ds0 [yn](s̃)], yn(s0)〉 = −〈(µn(s0)s̃+Ds0 [µn](s̃)s0)yn(s0), yn(s0)〉.

But since 〈Qs0 [Ds0 [yn](s̃)], yn(s0)〉 = 〈Ds0 [yn](s̃)], Qs0 [yn(s0)]〉 = 01, we imme-

diately get

Ds0 [µn](s̃) = 〈− µn(s0)

〈yn(s0)2, s0〉
yn(s0)2, s̃〉.

Hence, the gradient of µn is given by

∂µn(s)

∂s
= − µn(s)

〈yn(s)2, s〉
yn(s)2.

The gradient of the Dirichlet remainder ∂γDir

∂s at s(x) = 1: Taking the direc-

tional derivative of µn at s0 = 1 in direction s̃ ∈ L2([0, 1]) gives

D1[µn](s̃) = 〈−2n2π2 sin2(nπ·), s̃〉 = n2π2(〈cos(2nπ·), s̃〉 − 〈1, s̃〉).

Since

D1

[(nπ
I

)2
]

(s̃) = −〈1, s̃〉,

we get the directional derivative of the Dirichlet remainders to be simply

D1[γDir](s̃) = n2π2〈cos(2nπ·), s̃〉 = n2π2

∫ 1

0

s̃(t) cos(2πnt) dt =
n2π2

2
f̂n(s̃).

The analogous procedure for the Neumann eigenvalues gives

D1[νn](s̃) = 〈−2n2π2 cos2(nπ·), s̃〉 = n2π2(−〈cos(2nπ·), s̃〉 − 〈1, s̃〉),

so

D1[γNeu](s̃) = −n2π2〈cos(2nπ·), s̃〉 = −n2π2

∫ 1

0

s̃(t) cos(2πnt) dt = −n
2π2

2
f̂n(s̃).

1Note that we integrated by parts twice. The boundary terms vanish, since yn(0) = yn(1).
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�

By the analytic inverse function theorem we can readily conclude the statement

of Theorem 1 from Lemma 14.

3. Breathers and uniformly open gap potentials

Motivated by the construction of breather solutions for nonlinear wave equa-

tions via dynamical systems tools, we posed the particular inverse problem

of finding coefficients s such that the spectrum of the corresponding weighted

Sturm-Liouville operator Ls = − 1
s(x)

d2

dx2 has all gaps uniformly open around

ω2
∗n

2, n ≥ 1, for some ω∗ ∈ R. In order to solve this problem we formalized the

dependence of the (signed) gap lengths and gap midpoints (to first order) on the

coefficient s as the mapping G from (5). We find that, for s ∈ Hr[0, 1], r ≥ 1,

the gap lengths form a sequence in hr−2 and established that G is a bijection

locally around s = 1. Since constant sequences (C)n∈N (for some C > 0) are

in hr−2 if r < 3/2, we know (by Theorem 1) that there must be coefficients

s ∈ Hr[0, 1], r < 3/2, that give rise to uniformly open gaps. What remains

unclear is the exact location of the gaps. This is the subject of this section.

Let us consider (1) on the real line, that is,

y′′ + λ s(x) y = 0 , x ∈ R . (32)

We have that λ ∈ σ(Ls) if and only if (32) has all (nontrivial) solutions bounded.

The qualitative behavior of solutions of (32) is decided by the Floquet expo-

nents. The proof of Floquet’s theorem via consideration of the discriminant (the

trace of the monodromy matrix)

D(λ) = ỹ1(1;λ) + ỹ′2(1;λ), (33)

where {ỹ1, ỹ2} is the fundamental system solving (11) and (12), gives the well-

known relation

el±(λ) =
1

2

(
D(λ)±

√
D(λ)2 − 4

)
(34)
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for the Floquet exponents l±. This representation suggests that the derivation of

explicit formulas for the Floquet exponents is only possible if one can write down

explicit expressions for {ỹ1, ỹ2}. Since our equation is non-autonomous, this

case is rather exceptional and the computation of Floquet exponents is usually

carried out numerically. From a qualitative point of view, further elementary

considerations along (34) allow to conclude that bounded solutions are only

possible for |D(λ)| ≤ 2. By [10] we know that

{λ | |D(λ)| ≤ 2} = ∪n∈NBn = σ(Ls) (35)

where Bn are the intervals from (2), that is, the bands.

Let us now turn to the connection between the Dirichlet and Neumann eigen-

values and the structure of the spectrum of Ls. By Abel’s theorem,

det

 ỹ1(x) ỹ2(x)

ỹ′1(x) ỹ′2(x)

 = det

 ỹ1(1) ỹ2(1)

ỹ′1(1) ỹ′2(1)

 (36)

so, if µn is a Dirichlet eigenvalue, 1 = ỹ1(1)ỹ′2(1), and therefore |D(µn)| ≥ 2. The

same is true for Neumann eigenvalues. In other words, Dirichlet and Neumann

eigenvalues always lie in gaps. As a consequence,

|Gn| ≥ |µn − νn|,

so the distance between the these eigenvalues gives a lower bound for the gap

lengths. Further considerations (as, for instance, in [21]) show that, if s is even,

{λ2n−1(s), λ2n(s)} = {µn(s), νn(s)} , n ≥ 1 .

so, in fact, |Gn| = |µn − νn|. From this statement, it is not clear a priori which

of the eigenvalues µn and νn is the lower and upper gap edge. However, tak-

ing a closer look at the computation of the directional derivative of Dirichlet

and Neumann eigenvalues in the proof of Lemma 14, it becomes clear that in a

neighborhood of s = 1, the Dirichlet and Neumann eigenvalues are arranged on

opposite sides of n2ω2
∗, n ∈ N, for ω∗ = 1/I(s). In view of this, Corollary 3 is a

direct consequence of Theorem 1.
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4. Summary and future work

In [4], a novel construction procedure for breather solutions in nonlinear wave

equations with spatially periodic coefficients was demonstrated. The crucial step

for this construction was the tailoring of the spectrum of the linear part via the

periodic coefficients. While [4] only gave the specific example

s(x) = 1 + 15χ[6/13,7/13) (x mod 1 ) , (37)

which was achieved by elementary computations of the discriminant, the present

investigation lays the groundwork for an extension of the construction procedure

beyond this special coefficient by formulating the tailoring of the spectrum as

inverse problem. To be more precise, we studied the inverse problem for a

weighted Sturm-Liouville operator Ls associated with the eigenvalue problem

y′′ + λ s(x) y = 0 , where s is a real-valued, periodic, even function that is

bounded from below by a positive constant and belongs to the L2-based Sobolev

space Hr[0, 1], r ≥ 1. The spectrum of Ls is given by a countably infinite union

of real intervals, called bands, that are separated by possibly void open intervals,

called gaps. Hence, the spectrum of Ls is fully characterized by the length and

location of gaps. Furthermore, in our setting, the edges of the n-th gap are

given by the n-th Dirichlet eigenvalue, µn, and n-th Neumann eigenvalue, νn,

and we established here that

µn =
n2π2(∫ 1

0

√
s(ξ) dξ

)2 + γDir
n , νn =

n2π2(∫ 1

0

√
s(ξ) dξ

)2 + γNeu
n ,

with (γDir
n )n∈N, (γ

Neu
n )n∈N ∈ hr−2 for s ∈ E∩Hr[0, 1] (as in Theorem 1). Hence,

it is convenient to define a spectral map G, that assigns to a coefficient s the

structure of the spectrum of Ls in terms of gap lengths and gap midpoints. We

find that G is a real-analytic isomorphism locally around s = 1 (see Theorem

1). In particular, this implies the existence of coefficients s ∈ Hr[0, 1], r < 3/2,

giving rise to band structure with all gaps uniformly open around the gap mid-

points (see Corollary 3), which in turn paves the way for breather construction
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in nonlinear wave equations with such coefficients s.

We would like to stress that this inverse spectral problem for the weighted

Sturm-Liouville operator has not heretofore been treated for the full Banach

scale Hr[0, 1], r ≥ 1, which includes the more challenging range of non-smooth

potentials. Moreover, the local nature of our result allows more concise and

transparent proofs. In particular, instead of using any preliminary transforma-

tions, we treat the weighted problem directly by adapting techniques used for

Schrödinger operators with distribution potentials.

The contribution of the present work is, therefore, at least twofold: It addresses

a new inverse problem and simultaneously sets the course for further developing

a new tool for PDE existence problems. Apart from applying our results to

PDE problems, we plan to further extend it in at least two ways. The next

natural step would be to achieve a global result in Hr[0, 1], that is, away from

a neighborhood of s = 1. Moreover, motivated by the special coefficient in (37)

that is known to yield uniformly open gaps, we aim to extend our investigations

to s ∈ Hr[0, 1], r ≥ 0. Such a case of discontinuous s in a weight type Sturm-

Liouville problem will most likely need a completely new approach that could,

however, be inspired by the methodology presented here and also contribute to

a more general theory for Schrödinger operators with distribution potentials.

Appendix A. Proof of analyticity of the coordinate functions of G

It is standard to use the fundamental system {ỹ1, ỹ2} that solves (11) and

(12) subject to the initial conditions

ỹ′′1 + λsỹ1 = 0, ỹ1(0) = 1 , ỹ′1(0) = 0 , (A.1)

and, respectively,

ỹ′′2 + λsỹ2 = 0, ỹ2(0) = 0 , ỹ′2(0) = 1 , (A.2)
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as characteristic functions for Dirichlet and Neumann eigenvalues, since it holds

true that

ỹ1(1;λ) = 0 iff λ = νn, ỹ2(1;λ) = 0 iff λ = µn.

We used the notation ỹj = ỹj(x;λ) to stress the dependence of the fundamental

system on the spectral parameter λ.

Following [22] we carry out the proof of analyticity in several steps: First we

prove analyticity of ỹj in s and λ, that is, of the map (s, λ) 7→ ỹj(1, s, λ) on

L2
C[0, 1]×C. Via the implicit function theorem we can show that each coordinate

function µn and νn is analytic on L2
C[0, 1], and, hence, so are the corresponding

remainders γDir
n , γNeu

n . By the local boundedness of this map one can finally

conclude analyticity.

Lemma 15. Fix r ≥ 0. The solutions ỹj(x; s, λ) (of (11) and (12)) can be

represented by a power series in s̃ = s−1, which converges uniformly on bounded

subsets of [0, 1] × L2
C(0, 1) × C. Moreover, for fixed x ∈ [0, 1], λ ∈ R, ỹj(x; ·, λ)

is a locally analytic function around s = 1.

Proof. We will demonstrate the result for ỹ2. An analogous argument can

be employed for ỹ1. Expanding ỹ2 as a (formal) power series in s̃, i.e.

ỹ2(x, λ, s) = Y0(x, λ) + Y1(x, λ, s̃) +
∑
n≥2

Yn(x, λ, s̃),

where Y1 is a linear functional in s̃ while Yn(x, λ, s̃) is a short hand notation for

an n−linear form with s̃ in each argument, the equation hierarchy for Yn reads

Y ′′0 + λY0 = 0, Y0(0) = 0,Y ′0(0) = 1,

Y ′′n + λYn = −λs̃Yn−1, Yn(0) = 0,Y ′n(0) = 0, n ≥ 1.
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Hence, Y0(x, λ) = sin(
√
λx)√
λ

and by the variation of constant formula

Yn(xn, λ, s̃)

=
√
λ

∫ xn

0

sin(
√
λ(xn − t))s̃(t)Yn−1(t)dt

=
(√

λ
)n−1

∫ xn

0

· · ·
∫ x1

0

n∏
j=1

sin(
√
λ(xj − xj−1))s̃(xj−1) sin(

√
λx0) dx0 · · · dxn−1,

(A.3)

which gives

|Yn(x)| ≤ 1√
λ

(
1

n!

)(√
λ
√
x

∫ 1

0

|s̃(t)| dt
)n

exp(|Im
√
λ|x).

This estimate immediately implies absolute and uniform convergence of the

power series for ỹ2 = ỹ2(x, λ, s) on bounded subsets of [0, 1] × C × L2. Since

Yn(s̃) = An(s̃, . . . , s̃) where An is a bounded, n-linear, symmetric map, the

series

ỹ2(s̃) =
∑
n≥0

Yn(s̃)

defines an analytic function on L2
C (cf. [7]).

�

We are ready to prove Lemma 13. We will demonstrate the result for µn. An

analogous argument can be employed for νn. Following [22], our strategy is to

apply the implicit function theorem to the characteristic equation ỹ2(1, µn, s) =

0. To this end, we have to verify ∂ỹ2(1,µn,s)
∂λ 6= 0. Assume first that s ∈ C0[0, 1].

The estimate can then be extended to s ∈ L2[0, 1] by continuity. Let ỹ2 solve

the initial value problem (12). Taking the λ-derivative of ỹ′′2 + λsỹ2 = 0 gives

(ỹ′′2 )λ + sỹ2 + sλ(ỹ2)λ = 0.

Hence,

0 = (ỹ′′2 + λsỹ2) (ỹ2)λ − ((ỹ2)′′λ + sỹ2 + sλ(ỹ2)λ) ỹ2 = ((ỹ2)λỹ
′
2 − (ỹ2)′λỹ2)

′ − sỹ2
2 ,
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so ∫ 1

0

((ỹ2)λ(x)ỹ′2(x)− (ỹ2)′λ(x)ỹ2(x))
′
dx =

∫ 1

0

s(x)ỹ2(x)2 dx,

and

0 <

∫ 1

0

s(t)ỹ2(t, µn, s)
2 dt =

(
∂ỹ2(1, µn, s)

∂λ

)
ỹ′2(1, µn, s) ,

since ỹ2(0, λ) and (ỹ2)λ(0, λ) vanish for all λ and ỹ2(1, µk) = 0. We have that

ỹ2(1; k2π2, 1)|(λ,s)=(n2π2,1) = 0 ,
∂ỹ2(1;λ, s)

∂λ
|(λ,s)=(n2π2,1) 6= 0 .

ỹ2(1; k2π2, 1) = 0,
∂ỹ2(1, λ, s)

∂λ
|λ=k2π2 6= 0 .

So there is a unique analytic function µ̂n = µ̂n(s) defined in an Hr-neighborhood

U of s = 1, for which

ỹ2(1, µ̂n(s), s) = 0.

It remains to show that µn is continuous on Hr, such that, by uniqueness,

µ̂n(s) = µn(s). To this end one can follow the proof of compactness of µn from

[22], Theorem 2.5, line-by-line. We execute the details for completeness:

First, we show that ỹ1 and ỹ2 are uniformly compact on bounded subsets of

{(λ, x) ∈ C × [0, 1]}. Again, we will execute a detailed proof only for ỹ2 and

make use of the notation from the previous proof. Suppose the sequence sm

converges weakly to s. By the principle of uniform boundedness

‖s‖ ≤ sup
m
‖sm‖ ≤M <∞ .

If A is any bounded subset of {(λ, x) ∈ C× [0, 1]}, then for n ≥ 1 we have the

estimate

|Yn(x; p, λ)| ≤
(

1

n!

)(√
λ
)n−1

(√
x

∫ 1

0

|s(t)| dt
)n

exp(|Im
√
λ|x) ≤ c M

n

n!

uniformly on A where

Yn(xn, λ, s)

=
(√

λ
)n−1

∫ xn

0

· · ·
∫ x1

0

n∏
j=1

sin
(√

λ(xj − xj−1)
)
s(xj−1) sin

(√
λx0

)
dx0 · · · dxn−1 ,
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was already defined in (A.3) for real-valued s. Thus,

|ỹ1(x; sm, λ)− ỹ1(x; s, λ)|

≤
N∑
n=1

|Yn(x; sm, λ)− Yn(x; s, λ)|+
∞∑

n=N+1

(|Yn(x; sm, λ)|+ |Yn(x; s, λ)|)

≤
N∑
n=1

|Yn(x; sm, λ)− Yn(x; s, λ)|+ 2c

∞∑
n=N+1

Mn

n!

uniformly on A. The second sum converges to zero as N tends to infinity. There-

fore, it is enough to show that each term Yn(x; pm, λ) converges to Yn(x; p, λ)

uniformly on A for fixed n. Note that one can express the difference of these

quantities in terms of the L2-scalar product

Zm(λ, x) := Yn(x; sm, λ)− Yn(x; s, λ)

=
(√

λ
)n−1

∫ xn

0

· · ·
∫ x1

0

n∏
j=1

sin
(√

λ(xj − xj−1)
)

(sm − s)(xj−1) sin
(√

λx0

)
dx0 · · · dxn−1

=

〈
pλ,x,

n∏
j=1

(s̄m − s̄)(xj−1)

〉
L2

C([0,1]n)

with

pλ,x(x0, . . . , xn) =
(√

λ
)n−1 n∏

j=1

sin
(√

λ(xj − xj−1)
)

sin
(√

λx0

)
χ{0≤t1≤···≤tn≤x} .

With this notation, we can reformulate our problem as proving

sup
A
|Zm(λ, x)| −→ 0, m −→∞ ,

which, by continuity properties in λ and x is equivalent to

|Zm(λm∗ , x
m
∗ )| −→ 0, m −→∞ , (A.4)

where (λm∗ , x
m
∗ ) is a point (in the closure of A) at which the supremum of |Zm|

is attained. Passing to a subsequence, we can assume that (λm∗ , x
m
∗ ) converges

to (λ∗, x∗). We can now prove (A.4) by contradiction: So, assume that (A.4) is

not true, so

|Zm(λm∗ , x
m
∗ )| ≥ δ > 0 . (A.5)
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Then by the bounded convergence theorem, we have the strong convergence

pλm∗ ,xm∗ −→ pλ∗,x∗

in L2
C([0, 1]n). On the other hand, we have the weak convergence

n∏
j=1

(sm − s)(xj) −→ 0

in L2
C([0, 1]n). As a consequence, we have that

|Zm(λm∗ , x
m
∗ )|

=

∣∣∣∣∣∣
〈
pλm∗ ,xm∗ ,

n∏
j=1

(s̄m − s̄)(xj)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈
pλm∗ ,xm∗ − pλ∗,x∗ ,

n∏
j=1

(s̄m − s̄)(xj)

〉
+

〈
pλ∗,x∗ ,

n∏
j=1

(s̄m − s̄)(xj)

〉∣∣∣∣∣∣ −→ 0 ,

which is a contradiction to (A.5). The proof for ỹ1 is analogous. The compact-

ness of the Dirichlet eigenvalues follows from this result: Suppose the sequence

sm converges weakly to s. By the principle of uniform boundedness

‖s‖ ≤ sup
m
‖sm‖ ≤M <∞ .

Let N > 2 exp(M), ε > 0, and consider the intervals

In = {λ ∈ R : |λ− µn(s)| < ε}, 1 ≤ n ≤ N .

For sufficiently small ε these intervals are all disjoint and contained in the half

line (−∞, (N + 1)2π2) by the proof of Proposition 11. Moreover, ỹ2(1, s, λ)

changes sign on each of them, since µn(s) is a simple root.

As m tends to infinity, the functions ỹ2(1, sm, λ) converge to ỹ2(1, s, λ) uni-

formly on I1 ∪ . . .∪ IN . Hence, for sufficiently high m, they also change sign on

I1, . . . , IN , so they must all have at least one root in each of these intervals. But

there are only N roots on the whole half line (−∞, (N + 1)2π2) by the proof of

Proposition 11. Therefore, ỹ2(1, sm, λ) has exactly one root in each interval In,

which must be the n− th Dirichlet eigenvalue for s = sm. Consequently,

|µn(sm)− µn(s)| < ε, 1 ≤ n ≤ N ,
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for sufficiently large m. The proof for the Neumann eigenvalues νn is analogous

and, hence, the analyticity of the differences µn − νn follows.

The analyticity of 1
I(s)2 in a neighborhood of s = 1 is standard.
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