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Abstract: In this set of lectures I will describe how one can use ideas of dynamical sys-
tems theory to give a quite complete picture of the long time asymptotics of solutions of
the two-dimensional Navier-Stokes equation. I will discuss the existence and properties of
invariant manifolds for dynamical systems defined on Banach spaces and review the theory
of Lyapunov functions, again concentrating on the aspects of the theory most relevant to in-
finite dimensional dynamics. I will then explain how one can apply both of these techniques
to the two-dimensional Navier-Stokes equation to prove that any solution with integrable
initial vorticity will will be asymptotic to a single, explicitly computable solution known as
an Oseen vortex. equations.
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Lecture 1: Infinite dimensional dynamical systems

In this first lecture I recall some common techniques used in finite dimensional dynamical
systems and discuss their generalization to the infinite dimensional context needed for appli-
cations to partial differential equations. The two main tools we will use in these lectures will
by invariant manifolds and Lyapunov functions. We will use the former to analyze the be-
havior of systems near stationary solutions and the latter to obtain more global information
about solutions. Good general references for this material are [11] and [12].

We begin by recalling a very simple situation. Suppose that one has a system of n ordinary
differential equations

dx

dt
= f̃(x) , x ∈ Rn . (1)

Suppose further that the origin is a fixed point of this this system of equations. If we want to
analyze the behavior of solutions near zero an obvious approach is to linearize the equation
i.e. we write

f̃(x) = f̃(0) +
(
D0f̃

)
x +O(|x|2) ≡ Lx + f(x) . (2)

In this last equality we have used the fact that f̃(0) = 0 (since the origin is a fixed point)
and defined the n×n matrix L = D0f̃ - i.e. the Jacobian matrix of f̃ at the fixed point. The
function f(x) collects the nonlinear terms in the equation - in particular, f(x) = O(|x|2) for
x near zero. If x is very small then the terms O(|x|2) should be much smaller than the linear
terms in x suggesting that a good approximation to the solutions of (1) should be given by

dx

dt
= Lx . (3)

This equation is easily solved - if L has n linearly independent eigenvectors {vj}n
j=1, with

eigenvalues {λ}n
j=1, then any solution of (3) can be written as

x(t) = c1e
λ1tv1 + · · ·+ cne

λntvn , (4)

for some choice of constants cj.

Remark 1.1 The constants cj are determined by the initial conditions. If {wj}n
j=1 are the

adjoint-eigenvectors of L, normalized so that 〈wj,vk〉 = δj,k then we have

cj = 〈wj,x(0)〉 .

(Here 〈·, ·〉 is the inner product on Rn.) Hence for later use we note that we will want to know
not only eigenvectors for the linear part of equations we study but also adjoint eigenvectors.

From (4) we see that we can split Rn into a direct sum of three subspaces - the stable
subspace, Es, the center subspace Ec and the unstable subspace, Eu, which are respectively
the spectral subspaces associated with the eigenvalues whose real parts have negative, zero,
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or positive real parts. Note that any solution with initial condition in Es approaches the
origin as t → ∞ while any solution with initial condition in Eu approaches the origin as
t → −∞.

An obvious question is to what extent this structure survives when we include the nonlinear
terms that were omitted in (3). We certainly don’t have explicit solutions like those in (4)
any longer but geometrical structures analogous to the stable, center and unstable subspaces
do persist, at least in a neighborhood of the fixed point - this is the content of the invariant
manifold theorems. We state these informally for the moment, reserving a more formal
treatment until we discuss the corresponding results for infinite dimensional systems below.
Suppose f̃ ∈ C1(Rn). Then there exists a neighborhood of the origin Br ⊂ Rn and a function
hs defined on Br such that

hs : Br ∩ Es → Ec ⊕ Eu

The function hs is C1, and its graph, known as the local stable manifold Ws
loc is locally

invariant (i.e. for any initial condition in Ws
loc the corresponding solution of (1) remains in

Ws
loc for as long as it remains in the domain of definition of hs.). Furthermore, any solution

which remains in Ws for all t ≥ 0 approaches the origin as t → ∞. In addition the local
stable manifold is locally unique - no other manifold in a neighborhood of the origin shares
all these properties.

Analogous results hold for the local unstable manifold. However, things are slightly more
delicate for the center-manifold (the manifold tangent at the origin to Ec.) Although the
existence of the center manifold follows much as for the stable and unstable manifolds, in
general, the center manifold is not unique. There are simple examples of systems or ordinary
differential equations with infinitely many local center manifolds.

One property that makes center manifolds particularly important and interesting is that one
can show that there exists a neighborhood of the origin (which we can assume to be Br,
without loss of generality) such that any solution which remains in this neighborhood for
all t ∈ R must lie in the local center manifold. This implies that any periodic orbits or
additional fixed points in a neighborhood of the origin must lie in the center-manifold. If
one is looking specifically for periodic orbits, say, this can lead to a very big simplification
since it permits one to reduce the search from the original system of n equations to a system
whose dimension equals that of the center manifold which is often much less than n. Such
a reduction is even more important in the context of partial differential equations where it
frequently results in reduction from an infinite dimensional set of equations to one whose
dimension is small and finite.

We next turn to a discussion of the appropriate generalization of these invariant manifold
theorems to partial differential equations. Suppose that we consider a (system) of partial
differential equations

∂u

∂t
= Lu + f(u,∇u) , (5)

where u = u(x, t) ∈ Rn, x ∈ D ⊂ Rd and t ≥ 0. L is a linear, differential operator and f
is a nonlinear term depending on u and its (first order) partial derivatives. One could also
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consider quasilinear partial differential equations but in these lectures we restrict attention
to this semilinear case.

Following the intuition gained from the finite dimensional case above we would like to com-
pare solutions of this equation to those of the linear equation

∂u

∂t
= Lu (6)

There are many additional difficulties that are encountered in treating this infinite dimen-
sional case in comparison with the finite dimensional case discussed above. Some of these
difficulties are only technical and reflect the more complicated analysis necessary in an in-
finite dimensional setting. However, other problems represent qualitative differences in the
behavior of the partial differential equations vis-a-vis ordinary differential equations. Among
the problems that must be overcome are:

1. The spectrum of L may no longer consist only of eigenvalues as in (3) but may now
contain continuous spectrum.

2. Since the operator L will in general be unbounded it may not be possible to define
solutions for t < 0 for general initial conditions - in this case discussing the behavior
of solutions as t → −∞ is clearly problematic!

3. If the continuous spectrum approaches the imaginary axis there may be not clear
splitting between the center subspace and the stable and unstable subspaces. This
problem, often called the lack of a spectral gap, is particularly common when studying
problems defined on unbounded spatial domains.

4. One can’t in general hope that the nonlinearity f in (5) will be C1 - indeed due to the
presence of derivatives of u in the nonlinear term it often even fails to map the Banach
space in which solutions lie back into itself. This will be the case, for example in the
Navier-Stokes equations which are the subject of the third and fourth lectures in this
series.

Many authors have addressed the question of the existence and properties of invariant man-
ifolds for partial differential equations. In contrast to the case of ordinary differential equa-
tions where it is more or less clear what the “right” assumptions on the vectorfield are and
what the “correct” conclusion ought to be, this is by no means so clear in the case of partial
differential equations. In particular, depending on the context one may wish to make ei-
ther stronger or weaker assumptions about the linear part of the equation (which affect, for
instance, the smoothing properties of the semi-group associated with (6), or even whether
the linear part defines a semi-group). These assumptions then entail making either different
assumptions on the nonlinear term, or changing (typically, weakening) the results one hopes
to obtain. For examples of typical results in this context see [1], [13] or [16]. One general
principle which emerges from this collection of results is that if (5) and (6) define semi-flows

4



then it is often easier to work with the semi-flow than with the differential equation itself.
This is because the semi-flow already incorporates any smoothing properties that the equa-
tion may possess. By working with the semi-flow, Chen, Hale and Tan (CHT) [4] have given
a very general form of the invariant manifold theorem, applicable to many partial differential
equations. It is their result that I will use in subsequent lectures and which I now state.

From now on, we assume that the partial differential equation (5) defines a semi-flow Φt on
some Banach space X. Then (CHT) make the following assumptions:

(H.1) Φt(u) is continuous for (t, u) in R+ ×X and there exist positive constants q and D
such that

sup
0≤t≤q

Lip(Φt) = D < ∞

where

Lip(Φt) ≡ sup
u,v∈X

‖Φt(u)− Φt(v)‖
‖u− v‖ .

(H.2) For some τ ∈ (0, q], one can decompose Φτ as

Φτ = S + R

where S is a bounded linear operator from X to itself and R is globally Lipshitz.

(H.3) There exist subspaces X1 and X2 such that X = X1⊕X2, and continuous projections
Pi : Xi → Xi, i = 1, 2 which are invariant with respect to S. Also S commutes with
Pi. If Si = S|Xi , then S1 has bounded inverse and there exist constants Ci and αi such
that α1 > α2 ≥ 0 and

‖S−k
1 P1‖ ≤ C1α

−k
1

‖Sk
2P2‖ ≤ C2α

k

(H.4) The constant Ci and αi from (H.3) are related to the nonlinearity in such a way that

(
(
√

C1 +
√

C2)2

α1 − α2

)
Lip(R) < 1 .

Remark 1.2 For later use we fix two additional constants γ1 and γ2 with α2 < γ2 < γ1 < α1

such that

Lip(R)

(
C1

α1 − γ1
+

C2

γ2 − α2

)
= 1 .

Note that by making Lip(R) sufficiently small we can make γ1 arbitrarily close to α1 and γ2

arbitrarily close to α2.
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Remark 1.3 Before stating the conclusions of the (CHT) theorem we comment briefly on
the meaning of these hypotheses. The hypothesis (H.1) implies that (5) defines a well-behaved
semi-flow. This hypothesis typically rules out applying these results to elliptic equations, for
example. Hypothesis (H.2) is just an assumption that the semi-group splits nicely into its
linear and nonlinear parts. Hypothesis (H.3) implies a “spectral gap” for the linear part of
the semigroup. The spectrum of S2 must lie inside a circle of radius α2 and the spectrum
of S1 must lie outside a circle of radius α1. Note however, that there is no assumption that
S2 is invertible - we do not assume that the original partial differential equation is solvable
“backwards” in time for general initial data. Finally, hypothesis (H.4) requires that the
nonlinear term must be small, in the appropriate sense, with respect to the spectral gap.

We now state the theorem of (CHT) which we will use later:

Theorem 1.4 Suppose that (H.1)-(H.4) hold. Then there exists a globally Lipshitz map
g : X1 → X2 such that the graph of g

G = {u1 + g(u1) | u1 ∈ X1}

satisfies:

(i) (Invariant Manifold) The restriction of Φt to G can be extended to a Lipshitz flow on
G.

(ii) (Lyapunov exponents) Any negative semi-orbit ‖u(t)‖t≤0 ⊂ X that satisfies

lim
t→∞

1

|t| log ‖u(t)‖ < −1

τ
log γ1 (7)

must be contained in G. In particular, if γ1 < 1, any fixed point of Φt must lie in G.

(iii) (Invariant Foliation) There exists a continuous map h : X × X2 → X1 such that if
v ∈ G, then h(v, P2v) = P1v and the set

Mv = {h(v, w) + w | w ∈ X2}

passing through v satisfies Φt(Mv) ⊂ MΦt(v) and

Mv = {w ∈ X | lim sup
t→∞

1

t
log |Φt(w)− Φt(v)| ≤ 1

τ
log γ2} .

Remark 1.5 We didn’t discuss the finite dimensional analogue of point (iii) but roughly
speaking the fibers Mv of this foliation contain all points whose asymptotic behavior it the
same as that v - i.e. we can characterize the asymptotics of all points (sufficiently close
to the fixed point) by those of points on the invariant manifold. Note that the estimate on
the rate of convergence of points in the fiber toward the invariant manifold also implies as
a corollary that all solutions near the invariant manifold approach it (assuming that γ2 < 1,
as will be the case in the examples we consider.)
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Remark 1.6 Note that in Hypothesis (H.1) we assume that there is a global bound on the
Lipshitz constant of the semi-flow. (Here, I mean global in X, not in time.) This is rarely
true in practice but this hypothesis is why the manifold constructed here is not constrained
to a neighborhood of the fixed point but rather is defined for all u1 ∈ X1. In practice we “cut
off” the nonlinear terms in the equation outside a small neighborhood of the fixed point in
order to allow this hypothesis to be verified and this will make the applications of this theorem
“local” in character.

Remark 1.7 If the term R in the decomposition of the semiflow is nonlinear in the sense
that R(0) = 0 and DR(0) = 0 then the function g whose graph defines the invariant manifold
has the same property - namely g(0) = 0 and Dg(0) = 0.

This invariant manifold theorem will be our main tool to investigate the local behavior of
solutions of partial differential equations in the later lectures. However we will also want to
consider more global questions. For those, we will make use of Lyapunov functions. Here, the
transition from the finite dimensional to infinite dimensional setting involves fewer changes
than in the case of the invariant manifold theorems so we work directly with the infinite
dimensional case without first reviewing the finite dimensional results. The presentation
here largely follows that of D. Henry in [11] – see that work, or [12] for more details.

Let Φt be a semi-flow on a Banach space X. We want to characterize the long-time behavior
of solutions of the differential equation defining Φt and with that in mind make the following
two definitions:

Definition 1.8 Given u0 ∈ X, we define the forward orbit of u0 as:

O+(u0) = {Φt(u0) | t ≥ 0} .

Definition 1.9 The omega limit set of a point u0 is the set of all points which the forward
orbit of u0 approaches arbitrarily closely as t tends to infinity. More precisely,

ω(u0) = {u ∈ X | there exists {tn} ⊂ R such that lim
n→∞

tn = ∞ and lim
n→∞

‖Φtn(u0)−u‖ = 0} .

Exercise 1.10 Suppose that ũ ∈ O+(u0). Show that ω(u0) = ω(ũ). Thus we can refer
without ambiguity not just to ω(u0) but also ω(O+(u0))

Exercise 1.11 Show that if u∗ is an element of the ω-limit set of u0 then the orbit of u∗ is
defined for all t ∈ R and the entire orbit of u∗ is contained in ω(u0).

One might worry that the omega-limit set was empty, but this turns out not to be the case,
at least not if the forward orbit remains in a compact set:
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Proposition 1.12 If O+(u0) ⊂ K, a compact subset of X. then ω(u0) is non-empty and
invariant (i.e. if u∗ ∈ ω(u0), then Φt(u∗) ∈ ω(u0) for all t ∈ R.)

The proof of this proposition is not difficult - see [11] for details. The only slightly surprising
point is that the omega-limit set is invariant in both forward and backward time, even though
we don’t know (or expect) that the semi-group itself is defined for t ≤ 0 for general initial
conditions.

A key tool for investigating omega-limit sets are Lyapunov functions.

Definition 1.13 If X is a Banach space, a Lyapunov function for the semi-flow Φt is a
continuous, real-valued function Ψ such that

lim sup
t→0+

Ψ(Φt(u))−Ψ(u)

t
≤ 0 for all u ∈ X .

This means that Ψ is non-increasing along orbits of Φt.

Remark 1.14 Note that if the limit in Definition 1.13 exists it is just the derivative of
Ψ along the trajectory with initial condition u so a common way of verifying that a given
function is a Lyapunov function is to show that its derivative is non-positive along solutions.

A key tool we will use in Lecture 4 is the LaSalle Invariance Principle:

Proposition 1.15 Let Ψ be a Lyapunov function for the semi-flow Φt. Define E = {u ∈
X | d

dtΨ ◦ Φt(u)|t=0 = 0} If O+(u0) is contained in a compact subset of X then ω(u0) ⊂ E.

Because of the importance of this result for our applications we sketch its proof:

Proof: By the compactness of the forward orbit and continuity of Ψ we know that there
exists some finite M such that

V (Φt(u0)) ≥ M

for all t ≥ 0. Since Ψ is monotonic along the orbit of u0 we therefore conclude that

lim
t→∞

Ψ(Φt(u0)) = Ψ∞

for some Ψ∞. If w ∈ ω(u0) the definition of the omega-limit set, plus the continuity of Ψ im-
ply that there exists a sequence of times {tn} approaching infinity such that limn→∞ Ψ(Φtn(u0)) =
Φ(w), from which we conclude that Φ(w) = Ψ∞. But then, by the invariance of the omega-
limit set we have

Ψ(Φt(w)) = Ψ∞ for all t ∈ R ,

which implies that w ∈ E.
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Example 1.16 We finish this lecture with an example of a somewhat unusual Lyapunov
function which will play a role later in this series of talks. Consider the dynamical system
defined by the partial differential equation

∂w

∂τ
= Lw , w = w(ξ, τ) ; ξ ∈ Rd, τ ≥ 0 (8)

w(ξ, 0) = w0(ξ)

where Lw = ∆ξw + 1
2∇ · (ξw). The reason for considering this unusual equation will be

explained in Lecture 2 but for the moment assume two facts about the evolution:

(1.) The solutions of (8) obey the maximum principle. In particular, if w0(ξ) ≥ 0 then
w(ξ, τ) > 0 for all ξ for any τ > 0.

(2.) If w(ξ, 0) ∈ L1(Rd) the ω-limit set of the corresponding trajectory exists.

The reason that (8) obeys the maximum principle will be explained in Lecture 2.

We next show that the L1 norm is a Lyapunov function .

Lemma 1.17 Let w0 ∈ L1(Rd) and let w(ξ, τ) be the solution of (8) with this initial con-
dition. Then the function

Φ(w)(τ) =

∫

Rd

|w(ξ, τ)|dξ

is non-increasing along trajectories. More precisely, Φ(w)(τ) ≤ Φ(w0) for every τ > 0 and
equality holds if and only if w0 does not change sign.

Proof: Define w+
0 (ξ) = max(w0(ξ), 0), w−

0 (ξ) = −min(w0(ξ), 0) Let w±(ξ, τ) be the solu-
tions of (8) with initial conditions w±

0 respectively. Note that from the form of the equation
we see immediately that the equation conserves the integral of the solution. Thus

∫

Rd

w(ξ, τ)dξ =

∫

Rd

w0(ξ)dξ

and ∫

Rd

w±(ξ, τ)dξ =

∫

Rd

w±
0 (ξ)dξ .

Now note that if w0 does change sign, w±
0 are both non-trivial. Furthermore they have

disjoint support. However, by the maximum principle, w±(ξ, τ) will both be positive for all ξ
whenever τ > 0. Thus,

∫

Rd

|w(ξ, τ)|dξ =

∫

Rd

|w+(ξ, τ)− w−(ξ, τ)|dξ

<

∫

Rd

(
w+(ξ, τ) + w−(ξ, τ)

)
dξ =

∫

Rd

(
w+

0 (ξ) + w−
0 (ξ)

)
dξ =

∫

Rd

|w0(ξ)|dξ ,

which shows that Φ decreases along orbits if w0 changes sign. The fact that Φ is constant
when w0 is everywhere non-negative or non-positive is easier and left as an exercise.
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Note that if we combine this Lemma with the LaSalle Invariance Principle we immediately
have

Corollary 1.18 Any point in the ω-limit set of a solution of (8) must be either everywhere
positive, everywhere negative, or identically zero.

This Corollary may not seem very strong at first glance since one might think that all
solutions just tend toward zero. However, this can be ruled out by the fact that solutions
conserve the integral of the initial condition and conditions on the decay of solutions at
infinity - thus, if the integral of the initial data is non-zero, we can conclude that the ω-limit
set is either everywhere positive or everywhere negative, a fact which will be important in
the last lecture in this series.
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Lecture 2: Invariant manifolds for partial differential
equations on unbounded domains

In this lecture we examine the application of invariant manifold theorems to some partial
differential equations on unbounded spatial domains. For concreteness we focus primarily
on the family of semi-linear heat equations:

∂u

∂t
= ∆u− u|u|p−1 , p > 1 (9)

u = u(x, t), t ≥ 0, x ∈ Rd .

The long-time behavior of solutions of this equation have been intensively studied and not
surprisingly the value of the exponent p in the nonlinear term plays an essential role in this
behavior. The dynamical systems approach described below gives a very simple explanation
of this p-dependence.

Remark 2.19 There are a host of other applications of invariant manifold theorems to
partial differential equations - see the references [1], [13] or [16] for a small sampling. We
focus on this particular family of equations both because it will serve as a good “warm up” for
treating the Navier-Stokes equations later and also because it illustrates one way of dealing
with lack of a spectral gap which often arises in treating problems on unbounded spatial
domains.

If one uses the Duhamel formula to convert (9) to an integral equation it is not difficult to
show that this equation defines a smooth semigroup, at least for small initial data. However,
if one tries to apply the invariant manifold theorem of Chen, Hale and Tan (CHT) described
in the previous lecture one immediately runs into the problem that one cannot split the
Banach space in the way described in hypotheses (H.3) and (H.4). The reason for this is a
lack of a spectral gap and the origin of this problem is seen immediately even for the case of
the linear heat equation

∂u

∂t
= ∆u , u = u(x, t), t ≥ 0, x ∈ Rd . (10)

For this equation we can immediately write down a representation of the semi-group. It is
particularly easy to analyze in terms of the Fourier transform

û(k, t) =
1

(2π)d/2

∫

Rd

u(x, t)e−ix·kdx (11)

If we are given initial conditions u(x, 0) = u0 ∈ L2(Rd) then the solution of (10) can be
written as:

û(k, t) = e−|k|
2tû0(k) (12)

Since the semigroup in this case is just a multiplication operator we see that its spectrum
equals the closed interval [0, 1]. Since there is no gap in the spectrum there is no way to
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split the space of initial conditions in the way required by the (CHT) theorem. Thus, there
is no easy way to identify subspaces of our Banach space which correspond to solutions with
particular decay properties. A way to circumvent this problem emerges if one recalls the
form of the fundamental solution of the heat equations:

G(x, t) =
1

(4πt)d/2
e−|x|

2/(4t) . (13)

Examining this solution we see that x appears in a special way - namely as the combination
x/
√

t and this suggests that it might be more natural to study (10) not in terms of the
independent variables (x, t) but rather in terms of the new variable ξ = x/

√
t. With this in

mind we introduce new dependent and independent variables through the definition:

u(x, t) =
1

(1 + t)α/2
w(

x√
1 + t

, log(1 + t)) (14)

ξ =
x√

1 + t
, τ = log(1 + t)

Note that in defining the new variables (often called “scaling” or “similarity” variables) we
have defined ξ = x/

√
1 + t rather than x/

√
t simply to avoid the singularity at t = 0. This

can be thought of as simply changing the origin of the time axis and since our equation
is autonomous it has no effect on the problem. Also, the exponent α which occurs in the
definition of w will be chosen in a way convenient to each of the problems considered. For
the moment, in our discussion of the linear heat equation we will take α = d.

If we rewrite (10) in terms of these new variables we find that

∂w

∂τ
= Lw, w = w(ξ, τ), ξ ∈ Rd (15)

Lw = ∆ξw +
1

2
∇ · (ξw) .

At first sight, this may not seem like an improvement as we have traded the heat equation for
an apparently more complicated equation. However, as we will see this form of the equation
has the advantage that a gap in the spectrum appears which separates the slowly decaying
modes from the more rapidly decaying ones and allows us to apply the invariant manifold
theorem of the preceeding lecture.

Remark 2.20 Note that (15) is precisely the equation considered in Example 1.16 at the
end of the previous lecture. Since this equation is just the heat equation rewritten in new
variables it is clear that solutions of this equation will inherit a maximum principle from the
maximum principle satisfied by the heat equation.

To see why and how this spectral gap forms, consider the eigenvalue problem for L - for sim-
plicity, we consider the case of d = 1 though the following results are true in any dimension:

Lφ = λφ (16)
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If we take the Fourier transform of this equation we find

−|k|2φ̂(k)− 1

2
k
dφ̂

dk
(k) = λφ(k) (17)

This first order equation can be solved with the aid of integrating factors and we find that
for any λ one has a solution

φ̂λ(k) = A+|k|−2λe−|k|
2
Θ(k) + A−|k|−2λe−|k|

2
Θ(−k) , (18)

where Θ(k) is the Heaviside function. (Note that the singularity at the origin means we can
have different constants A+ and A− depending on whether k is positive or negative.) Thus,
we have a solution of the eigenvalue equation for any value of λ so one might at first think
that the spectrum of L is the whole complex plane. However, note that if λ is real and
positive, φ̂λ is singular at the origin and thus whether or not φ̂λ is an eigenfunction depends
on what function space we are working on. This observation reminds us that in general the
spectrum of an operator depends on its domain of definition and as we will see that is very
true of the operator L.

It has long been known that the time decay properties of parabolic equations are often
connected with the spatial decay properties of their solutions. With this in mind we define
the family of weighted Sobolev spaces:

L2(m) = {f ∈ L2(Rd) | ‖f‖m < ∞} (19)

‖f‖m =

(∫

Rd

(1 + |ξ|2)m|f(ξ)|2dξ

)1/2

(20)

Hs(m) = {∂αf ∈ L2(m) | for all α = (α1, . . . ,αd) with |α| ≤ s} (21)

One standard property of these spaces which is very convenient for our subsequent use is
that Fourier transformation is an isomorphism from Hs(m) to Hm(s). Thus, if we consider
the spectrum of the operator L on the space L2(m), the point λ will be in the spectrum if
the function φ̂λ ∈ Hm(0) - i.e. if the function φ̂λ is in the “ordinary” Sobolev space Hm.
Clearly φ̂λ is sufficiently smooth and rapidly decaying to be in Hm for any m, provided we
stay away from the origin. Thus, φλ will be in Hm provided it, and all of its derivatives of
order m or less, are square integrable in some small neighborhood of the origin.

From the form of φ̂λ we see that the cases with λ = −n/2 a non-positive half integer are
“special”. In this case, if we choose A+ = (−1)nA− we find that φλ(k) = cnkne−|k|

2
is a

solution of the eigenvalue equation. Since this function is entire and rapidly decaying φ̂λ is
any Sobolev space Hm and thus the points {−n

2 | n = 0, 1, 2 . . . } are in the spectrum of L
when considered on any of the spaces L2(m). Furthermore, the corresponding eigenfunctions
are given by the inverse Fourier transform of kne−|k|

2
which implies φn/2(ξ) = Cn

d
dξn e−ξ2/4.

Of particular importance in our subsequent discussions will be the Gaussian eigenfunction
of λ = 0, φ0(ξ) = 1√

4π
e−ξ2/4, with the prefactor chosen so that φ0 has integral one.
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For other values of λ, the most singular behavior of φ̂λ and its derivatives will occur for the
derivative of highest order and we see that near k = 0 one has

dmφ̂λ

dkm
(k) ∼ |k|−2λ−m . (22)

This expression will be square integrable provided 2(24(λ) + m) < 1, i.e. if

4(λ) <
1

4
− m

2
(23)

Thus we have shown

Proposition 2.21 Fix m > 1 and d = 1 and let L be the operator in (15) acting on its
maximal domain in L2(m). Then

σ(L) ⊃
{

λ ∈ C | Re(λ) ≤ 1

4
− m

2

}
∪

{
−n

2
| n = 0, 1, 2, . . .

}
.

In addition to the eigenvalues computed in Proposition 2.21 the operator L could have
continuous spectrum. However, it turns out that the spectrum in this case consists only of
the eigenvalues already computed. Furthermore a similar calculation also works in higher
dimensions and one finds:

Theorem 2.22 ([7], Theorem A.1) Fix m > 1 and let L be the operator in (15) acting on
its maximal domain in L2(m). Then

σ(L) =

{
λ ∈ C | Re(λ) <

d

4
− m

2

}
∪

{
−n

2
| n = 0, 1, 2, . . .

}
.

Although the spectral picture above gives valuable intuition about the behavior of the semi-
group eτL, for later applications we will need more precise estimates on its properties. In
particular, recall that the heat equation has strong smoothing properties (i.e. solutions of
the heat equation with “rough” initial data are infinitely differentiable for all t > 0) and
we will need to know to what extent these smoothing properties survive when we introduce
scaling variables.

Remark 2.23 Note that it is not automatic that the semigroup eτL will be smoothing. From
the spectral picture in Theorem 2.22 we see that the operator L is not sectorial in any of
the L2(m) spaces. Thus in contrast to the heat equation semigroup, eτL is not an analytic
semigroup.

In addition to the smoothing properties of the semigroup for our later applications we will
need to know what the spectral projection operators onto the various spectral subspaces of

14



L are. From the discussion in Lecture we expect these to be given by eigenfuctions of the
adjoint operator L†. Formally the adjoint operator has the form

L†ψ = ∆ξψ −
1

2
ξ ·∇ξψ (24)

If we specialize to one dimension again for simplicity the eigenvalue equation for L† is

L†ψ = ψ′′ − 1

2
ξψ′ = λψ . (25)

This is Hermite’s equation and thus, we find that the spectral projections are defined in
terms of the Hermite polynomials. If α = (α1, . . . ,αd) ∈ Nd we define

Hα(ξ) =
2|α|

α!
e|ξ|

2/4∂α
ξ

(
e−|ξ|

2/4
)

(26)

and then the projection Pn onto the eigenspace corresponding to the eigenvalues λk =
−k

2 , k = 0, 1, . . . , n is defined by

(Pnf)(ξ) =
∑

|α|≤n

(∫

Rd

Hα(ξ′)f(ξ′)dξ′
)1/2

φα(ξ) (27)

(Qnf)(ξ) = ((1− Pn)f)(ξ) (28)

We make two remarks about these projection operators that will be useful later.

Remark 2.24 The projection P0 onto the zero eigenspace is simply

(P0f)(ξ) =

(∫

Rd

f(z)dz

)
φ0(ξ) , (29)

i.e. the projection of a function f onto the zero eigenspace is just given by the product of
the Gaussian, φ0, with the integral of f . In particular, any function of mean zero lies in the
complementary subspace.

.

Remark 2.25 Following up on the preceding remark we see that a function f lies in the
range of Qn if and only if ∫

Rd

ξαf(ξ)dξ = 0 , (30)

for all α = (α1, . . . ,αd) ∈ Nd with |α| ≤ n.

We now state our main technical estimate on the semigroup eτL.
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Proposition 2.26 Fix n ∈ N ∪ {−1} and fix m > n + 1 + d
2 For all α ∈ Nd, there exists

C > 0 such that

‖∂α(eτLQnf)‖m ≤
C

(1− e−τ )|α|/2
e−(n+1

2 )τ‖f‖m , (31)

for all f ∈ L2(m) and all τ > 0.

Proof: For the details of the proof we refer to [7], Appendix A. However, we note that
the decay rate is exactly what we expect from the spectral picture in Theorem 2.22. The
more delicate smoothing properties (quantified by the estimates of the derivatives of the
semigroup) are obtained from the explicit integral representation of the semigroup which we
easily obtain by noting that eτLw0 is the solution of (15) with the initial condition w0 which
when combined with (14) gives

(eτLw0)(ξ) = w(ξ, τ) = e
d
2 τu(ξeτ/2, eτ − 1) (32)

and we then use the integral representation of u in terms of w0 which follows from the fact
that u solves the heat equation with initial condition w0.

We now consider the implications of this result for the invariant manifold theorem. Recall
that the problem with applying the invariant manifold theorem directly to the heat equation
was that the semi-group had no spectral gap. If we now consider the semigroup defined by
(15) then we see that the modes corresponding to the eigenvalues λ = −n

2 will decay like
e−

n
2 τ while modes lying in the half plane of essential spectra will all decay at least with a

rate e( d
4−

m
2 )τ and by choosing m appropriately we can separate the decay rate of these modes

from those associated with the first few eigenvalues. In particular, if we choose m > d/2 we
expect that as t tends toward infinity solutions of (15) will approach a point on the eigenspace
corresponding to the eigenvalue zero. Thus, we expect solutions of (15) to behave as

w(ξ, t) ∼ C0

(4π)d/2
e−|ξ|

2/4

as t tends toward infinity, which just reflects, in these new variables, the fact that solutions
of the heat equation tend toward a Gaussian profile as t tends toward infinity. (Note that
this is consistent with the conclusion of Example 1.16 where we showed that the ω-limit set
of non-zero solutions of (15) should be either everywhere positive or everywhere negative.)

We now turn to the nonlinear equation (9). We want to apply the results of (CHT) from
the first lecture and to do that we need to study the semi-flow defined by this equation. We
begin by rewriting the equation in terms of the scaling variables, (14). It is convenient if
the resulting equation is autonomous and in order to insure that this is the case we pick the
exponent α in the prefactor of w to be α = 2

p−1 . For what comes later it will be convenient
to consider the exponent p itself to be one of the dependent variables with a trivial time
evolution. With this choice of exponent, and introducing an equation for p, (9) is transformed
into

∂w

∂τ
= Lw +

(
1

p− 1
− d

2

)
w − |w|p−1w , (33)

dp

dτ
= 0 .
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Here, L is exactly the same operator studied in connection with the heat equation and the

change in the exponent α simply introduces the additional constant term
(

1
p−1 −

d
2

)
w which

just shifts the entire spectrum of L by that constant amount. Indeed, for simplicity in what
follows we will focus particularly on the behavior of p close to the value d+2

d - i.e. close to the
value for which this additional term vanishes. With this in mind, we exchange the variable

p for the variable η defined by p = 1 + 2
d+2η so that

(
1

p−1 −
d
2

)
w = ηw, and recalling that η

(as was p) is considered to be one of the dependent variables this term can be considered a
part of the nonlinearity! Thus, after these changes, we finally rewrite (9) in the form

∂w

∂τ
= Lw + ηw − |w|

2
d+2η w , (34)

dη

dτ
= 0 .

Now, to verify the hypotheses of the invariant manifold theorem of (CHT) we study the
semiflow defined by this system of equations. The evolution of η is trivial so we focus on the
first component of the semiflow which we can write with the aid of Duhamel’s formula as

Φτ (w0) = w(t) = eτLw0 +

∫ τ

0

e(τ−s)L
(
ηw(s)− |w(s)|

2
d+2η w(s)

)
ds , (35)

where we have suppressed the dependence of w on ξ to avoid overburdening the notation.

We now discuss the various hypotheses in the (CHT) theorem. The first is that Φτ should
be globally Lipshitz. This is not true of (35) due to the growth of the nonlinear term when
w becomes large. This is a standard problem with the application of invariant manifold
theorems even in the context of ordinary differential equations and we handle it here in the
same way it is usually handled in that setting, namely by “cutting off” the nonlinear term.
Let χ(x) be a smooth, positive function on R satisfying

χ(x) =

{
1, |x| < 1

0, |x| > 2 .
(36)

Then define

Φτ
r(w0) = w(t) = eτLw0 +

∫ τ

0

e(τ−s)L
(

χ

(
‖w(s)‖m

r

) (
ηw(s)− |w(s)|

2
d+2η w(s)

))
ds , (37)

With this definition the nonlinear term vanishes if ‖w(s)‖m is larger than 2r but Φτ
r(w0) is

equal to Φτ (w0) for all solutions that remain within a ball of radius r in L2(m).

Remark 2.27 Note that the cutoff function χ
(
‖w(x)‖m

r

)
is a smooth function on L2(m). It is

always possible to find such a smooth cutoff function on a Hilbert space, but there are natural
Banach spaces on which no such smooth cutoff function exists. This can cause problems for
certain applications of invariant manifold theorems in infinite dimensional settings.
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It is now a standard exercise to verify that:

(N.1) Φτ
r(w0) is well defined for w0 ∈ L2(m).

(N.2) The nonlinear term

Rτ
r(η, w0) =

∫ τ

0

e(τ−s)L
(

χ

(
‖w(x)‖m

r

) (
ηw(s)− |w(s)|

2
d+2η w(s)

))
ds

is globally Lipshitz with Lipshitz constant bounded by CR(η+r
2

d+2η ) for some constant
CR. Thus, the Lipshitz constant can be made arbitrarily small for η and r sufficiently
small.

These two observations are sufficient to verify hypotheses (H.1) and (H.2) of the of the
(CHT) theorem. (We can choose the constants q = τ = 1 and set Λ = eτL and R = R1

r.)

We next verify hypothesis (H.3). Here we must make a choice. Given any n = 0, 1, 2, . . . we
could, by choosing m appropriately, set X1 = PnL2(m) and X2 = QnL2(m). We would then
obtain an invariant manifold tangent at the origin to the eigenspace corresponding to the
eigenvalues {−k

2 | k = 0, 1, . . . , n}. The long-time behavior of solutions close to the origin
could then be determined up to corrections which go to zero at least as fast as e−γτ with
γ > n/2 just by studying the asymptotics of solutions of the finite dimensional system of
ordinary differential equations which results from restricting (34) to this invariant manifold.

For now we focus on the simplest possible case, namely we will assume that m > max(1, d/2)
and take X1 = P0L2(m). In this case X1 is the one dimensional subspace spanned by
φ0(ξ) = 1

(4π)d/2 e
−|ξ|2/4. Next we find

Λ1 = P0e
τLP0 = 1 , (38)

the identity operator and we can take the constants C1 = α1 = 1 in hypothesis (H.3). Then

Λ2 = Q0e
τLQ0 (39)

and from Proposition 2.26 we see that (H.3) holds for α2 = e−(m
2 −

d
2 ) < 1 and for some C2 > 0.

Finally, condition (H.4) is satisfied since by remark (N.2) the Lipshitz constant of R can be
made arbitrarily small for η and r sufficiently small.

Since we are considering η to be one of the dependent variables we should also consider the
evolution of η - however, this evolution is trivial and hence we can just apply the (CHT)
theorem to Φτ=1 for each value of η small, treating η as a parameter.

Applying the (CHT) theorem we conclude
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Proposition 2.28 Fix m > max(1, d/2). There exists r0 > 0 and η0 > 1 such that if
|η| < η0 and 0 < r < r0 there exists a globally Lipshitz map g : P0L2(m) → Q0L2(m) with
g(0) = Dg(0) = 0 such that the submanifold

Wc = {αφ0 + g(αφ0) | α ∈ R}

has the following properties:

(i) (Invariance) Φτ leaves Wc invariant.

(ii) (Fixed Points) If {w(t)}τ≤0 is a negative semi-orbit with ‖w(τ)‖m ≤ r0 for all τ ≤ 0,
then w(τ) ∈ Wc for all τ .

(iii) (Attractivity) Fix µ such that 0 < µ < min(1
2 ,

d
4 −

m
2 ). There exists C and r2, positive

constants, such that for w̃0 ∈ L2(m) with ‖w̃0‖m < r2, there exists a unique w0 ∈ Wc

such that
‖Φτ (w̃0)− Φτ (w0)‖m ≤ Ce−µτ .

Remark 2.29 The “Fixed Points” and “Attractivity” parts of the conclusions of this theo-
rem follow respectively from the “Lyapunov Exponents” and “Invariant Foliation” parts of the
(CHT) theorem if we use the fact that in this problem we can choose γ2 < 1. In particular,
µ = − log γ2.

Note that since, for ‖w(τ)‖m < r the semiflow Φτ
r coincides with Φτ , the semiflow for (34) the

rescaled heat equation will also have a local invariant manifold which attracts all solutions
in some sufficiently small neighborhood of the origin.

We conclude this lecture by considering the implications of this manifold for the long-time
behavior of solutions of (34). From the “Attractivity” part of Proposition 2.28, the long-time
behavior of small solutions of (34) will (up to higher order corrections) be the same as those
of solutions lying on the manifold Wc, and the long-time behavior of solutions lying on this
manifold can be determined by solving the single ordinary differential equation that results
from restricting the original partial differential equation to this manifold. If w(ξ, τ) lies on
Wc we can write

w(ξ, τ) = α(τ)φ0(ξ) + g(α(τ)φ0(ξ)) . (40)

Inserting this representation of w into (34) gives

α̇(τ)φ0(ξ) + α̇(τ)Dg(α(τ)φ0(ξ))φ0(ξ) = (41)

= α(τ)(Lφ0)(ξ) + ηφ0(ξ) + Lg(α(τ)φ0(ξ)) + ηg(α(τ)φ0(ξ))

−|α(τ)φ0(ξ) + g(α(τ)φ0(ξ))|
2

d+2η (α(τ)φ0(ξ) + g(α(τ)φ0(ξ))) (42)

We now reduce this to an ordinary differential equation for α(τ) by noting that Lφ0 = 0 and
then applying the projection operator P0 to both sides of the equation. This yields:

α̇(τ) = ηα(τ)−
∫

R
|α(τ)φ0(ξ) + g(α(τ)φ0(ξ))|

2
d+2η (α(τ)φ0(ξ) + g(α(τ)φ0(ξ)))dξ (43)

19



For the moment the only thing we need to know about the complicated nonlinear term is that
since g(0) = 0, and Dg(0) = O(η) (by explicit computation of the equation satisfied by the

invariant manifold), for α and η small it behaves like CL|α|
2

d+2η α, where CL =
∫

R(φ0(ξ))pdξ+
O(η).

From this equation is clear that varying η (or equivalently p) leads to a bifurcation at η = 0.
From now on, for simplicity we assume that d = 1, though the computations can be carried
through in a similar way for higher dimensions. Note that in d = 1, η = 0 corresponds to the
exponent p = 3. To better understand the bifurcation that results when we vary η we first
consider solutions of (43) when η < 0 which corresponds to p > 3. In this case the origin is
an attractive fixed point for (43) and for any solutions with α(0) sufficiently small we have

α(τ) ∼ C0e
−ητ ,

for some C0 > 0. From this we immediately conclude that solutions on the invariant manifold
Wc behave for large times like

w(ξ, τ) = C0e
−ητφ0(ξ) + g(C0e

−ητφ0(ξ)) (44)

= C0e
−ητφ0(ξ) +O(e−2ητ ) ,

where the last equality reflects the fact that since g(0) = Dg(0) = 0 (which follows from
a direct inspection of the equation satisfied by the function g.) Furthermore by the “At-
tractivity” part of Proposition 2.28 all small solutions will behave like (44) to leading order.
Thus we have:

Corollary 2.30 All sufficiently small solutions of (34), behave asymptotically like

w(ξ, τ) = C0e
−ητφ0(ξ) +O(e−2ητ ) .

for some constant C0.

Note that from this corollary it appears that the decay rate of these solutions depends on p
through the exponent η. However, if we revert to our original variables we see that solutions
of the original equation (9) behave as

u(x, t) =
1

(1 + t)α/2
w(

x√
1 + t

, log(1 + t)) =
1

(1 + t)
1

(p−1)

w(
x√

1 + t
, log(1 + t))

=
1

(1 + t)
1

(p−1)

(
C0(1 + t)−ηφ0(

x√
1 + t

) +O((1 + t)−2η

)
(45)

=
C0√
1 + t

φ0(
x√

1 + t
) + . . .

Thus, for p > 3, all small solutions of (9) behave to leading order as if the nonlinear term
was absent - such nonlinear terms are often referred to as “irrelevant”.
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Let’s now consider what happens if p < 3 (or η > 0). In this case the origin is unstable and
the fixed point at the origin undergoes a pitchfork bifurcation and a pair of new fixed points

appears at ±α∗ ≈ ±(η/CL)
1

p−1 . These fixed points are stable (at least for η sufficiently small)
and hence all non-zero solutions in Wc will approach one of them. Define

w∗(ξ; p) = α∗φ0(ξ) + g(α∗φ0(ξ)) .

Then, small solutions of (9) will behave like

w(ξ, τ) ≈ w∗(ξ) (46)

for τ large.

Remark 2.31 In fact, there are some solutions which will approach the origin even when
η < 0. Those are the solutions that lie in the stable manifold of the origin. However, these
solutions for a manifold of codimension-one and hence “most” solutions will behave as in
(46).

If we again revert to the original variables we find

Corollary 2.32 For p < 3, all sufficiently small solutions of (9) except for those lying in
the codimension one stable manifold of the origin, behave like

u(x, t) =
1

(1 + t)
1

p−1

w∗(
x√

1 + t
) + . . . .

Thus, we see that for p < 3 the situation is quite different from that for p > 3 since both the
rate of decay of the long-time asymptotics and the functional form of the limiting solution
depend on the nonlinear term.

Exercise 2.33 Determine the behavior of the long-time asymptotics of solutions when p = 3
- the “critical” value of the nonlinear term.

Remark 2.34 By considering the manifolds tangent to the spectral subspaces corresponding
to more than just the zero eigenvalue - say to the eigenvalues {0,−1

2} or {0,−1
2 ,−1}, etc.

one can derive more refined estimates of the long-time behavior of the solutions.

Summing up this lecture, we have found a way, at least in some parabolic partial differential
equations, to create a spectral gap which allows us to apply invariant manifold theorems to
problems on unbounded spatial domains. These theorems can then give detailed information
about the long-time asymptotics of solutions. The drawback is that these results are local
in nature - in the present examples they apply only to “small” solutions. As we’ll see in
the fourth lecture in this series that restriction can sometimes be lifted by combining these
results with Lyapunov functionals which give more global control over the solutions.
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Lecture 3: An introduction to the Navier-Stokes equa-
tions

In this section we will discuss the Navier-Stokes equations which describe the velocity of a
viscous, incompressible fluid. The focus of this lecture will be the origin of the equations,
their representation in terms of both the velocity and vorticity of the fluid and the existence
of solutions in the two dimensional case. In the final lecture in this series we will look in
greater detail at the long-time behavior of solutions of the two-dimensional Navier-Stokes
equations. A more detailed look at the Navier-Stokes equation, but with a similar point of
view can be found in the lecture notes of Gallagher and Gallay [6]. For more discussion of
the physical origin of these equations one can consult [5].

The Navier-Stokes equations arise from applying Newton’s law to determine the motion of
a small “blob” of fluid. Assume that the “blob” is a cube of side length ∆x, centered at the
point x ∈ Rd, where for physical relevance we restrict to the cases d = 2 or 3. Newton’s Law
implies

d

dt
(momentum) = applied forces .

If u(x, t) is the fluid’s velocity measured in the laboratory frame of reference, and if the
density of the fluid is ρ, then the momentum will be π(x, t) = ρ(x, t)u(x, t)∆V , where ∆V
is the volume of the little cube of fluid. To simplify the discussion we will assume that
the density ρ is constant and check a posteriori that this is consistent with the equations
of motion. We’ll also ignore the factor of ∆V since it will occur in each term and can be
cancelled out.

To compute the change in moment of our fluid blob we need to take account of the fact that
the fluid is being advected along by its own velocity. Thus,

dπ

dt
(x, t) = lim

∆t→0

π(x + u(x, t)∆t, t + ∆t)− π(x, t)

∆t

= u(x, t) ·∇π(x, t) +
∂π

∂t
(x, t) .

This expression is known as the convective derivative of the momentum. Thus, returning to
Newton’s law, we have

∂π

∂t
(x, t) + u(x, t) ·∇π(x, t) = applied forces .

What are the forces that act on the fluid element?

• forces due to pressure: fpressure = −∇p(x, t), where p is the pressure in the fluid.

• external forces: we’ll ignore these.

• viscous forces: These involve modeling internal properties of the fluid. We will take a
standard model which says fvisc = α∆u, for some constant α.
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Inserting these forces into Newton’s law we arrive at the system of partial differential equa-
tions:

∂π

∂t
(x, t) + u(x, t) ·∇π(x, t) = α∆u(x, t)−∇p(x, t) (47)

Assuming that the density is constant, this is a system of d equations, but it contains d + 1
unknowns - the d components of the velocity, plus the pressure. We need one further equation
linking the pressure and momentum in order to close the system. This remaining equation
is derived from the property of conservation of mass. If we look at the equation for the
change in the amount of mass in a region V , then we see that by conservation of mass, any
change in the mass in the region (given by

∫
V (∂tρ)dV ) must be counterbalanced by a flux

of mass through the boundary (given by −
∫

∂V ρu · n̂dS). Equating these two expressions,
applying the divergence theorem and using the fact that the region V was arbitrary leads to
the conservation equation

∂ρ

∂t
(x, t) +∇ · (u(x, t)ρ(x, t)) = 0

If we now impose the incompressibility condition ∇ · (u(x, t)ρ(x, t)) = 0 we see that ρ(x, t) =
ρ(x, 0). In particular, if the density is initially constant it will remain so for all time and the
incompressibility condition simplifies to ∇ · (u(x, t)) = 0. Then we have a system of d + 1
nonlinear partial differential equations:

ρ
∂u

∂t
(x, t) + ρu(x, t) ·∇u(x, t) = α∆u(x, t)−∇p(x, t) (48)

∇ · u(x, t) = 0 .

Remark 3.35 Note that given a solution u of (48) one can recover the pressure by taking the
divergence of the momentum equation and using the incompressibility equation from which
one finds:

∆p = −ρ∇ · (u ·∇u) ,

so the pressure is obtained as a solution of Poisson’s equation.

Remark 3.36 The coefficients in (48) can be simplified somewhat. Suppose that we intro-
duce some fixed length scale L, velocity scale V and reference density ρ. If we define new,
dimensionless variables via x̃ = x/L, ũ = u/V , t̃ = (tV )/L, and ρ̃ = ρ/ρ, then a simple
exercise shows that in terms of the new variables (48) is replaced by:

∂ũ

∂ t̃
+ ũ ·∇ũ = α̃∆ũ− 1

ρ̃
∇p̃

where α̃ = α
ρV 2L , p̃ = p/(ρL), and all derivatives are computed with respect to the new

variables. These changes of variables are particularly convenient if we study this equation on
the domain Rd since in this case the rescaling has no effect on the domain and if we choose
the length scale L = α/(ρV 2), all coefficients in the equation become equal to one. From now
on we will assume that we have made these changes of variables and drop the tildes to avoid
burdening the notation.
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Remark 3.37 A related quantity is the dimensionless ratio of the inertial forces to the
viscous forces given by

Re =
(ρV 2/L)

(αV/L2)
=

ρV L

α

known as the Reynolds number.

The remainder of this lecture will be devoted to studying the initial value problem for (48)
- namely given some initial velocity distribution u(x, 0) = u0(x), show that the equation
(48) has a unique solution and describe the properties of this solution. Proving that (48)
has a unique, smooth solution for all initial data is a very famous problem. Basically, two
alternatives have developed so far:

• give up smoothness and uniqueness and simply try to show that there is some (weak)
solution to the problem. This approach dates back to the work of Leray.

• attempt to show that the initial value problem is well posed, at the expense of special-
izing the problem somehow - perhaps considering “small” initial data, or restricting
the domain on which the problem is posed.

I’ll adopt the second approach in these lectures by focusing on the two-dimensional problem.
When studying the two-dimensional Navier-Stokes equation defined in the entire plane it
turns out to be simpler to work not directly with the velocity field but rather with the
vorticity of the fluid. The vorticity is defined by the curl of the velocity field - i.e. ω(x, t) =
∇×u(x, t) and in general it is a vector field, just like the velocity. However, in two dimensions

ω(x, t) = ∇× (u1(x1, x2, 0, t), u2(x1, x2, 0, t), 0) = (0, 0, ω(x1, x2, t))

so we see that only one component of the vorticity is non-zero and thus we may treat it as a
scalar. If we take the curl of the Navier-Stokes equation we find that (in general dimension
d)

∂ω

∂t
+ ω ·∇u + u ·∇ω = ∆ω . (49)

Note that another advantage of the vorticity formulation of the problem is that the pressure
term drops out entirely.

Remark 3.38 The term ω ·∇u is known as the “vorticity stretching term”. It allows for
a certain “self amplification” of the vorticity. Note that in two dimensions this term is
zero since ω · ∇u = ω∂x3u(x1, x2, 0) = 0. The absence of this term is another reason why
the two-dimensional Navier-Stokes (or vorticity) equation is easier to treat than the three
dimensional one.
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From now on we will restrict our attention to the two-dimensional vorticity equation and
consider the initial value problem

∂ω

∂t
+ u ·∇ω = ∆ω, t > 0, x ∈ R2 (50)

ω(x, 0) = ω0(x) .

The principal difficulty in studying (50) is the presence of the velocity, u, in this equation.
We must reconstruct the velocity from the vorticity - however, this leads to a somewhat
complicated, nonlocal nonlinearity. Recalling that the vorticity is the curl of the velocity
and that the velocity is incompressible, we can reconstruct the velocity using the Biot-Savart
law

u(x) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t)dy . (51)

Here, for any two dimensional vector x = (x1, x2) we define x⊥ = (−x2, x1).

Exercise 3.39 Verify that the Biot-Savart law does give an incompressible velocity field
whose curl is the vorticity.

In order to control the solutions of (50) (and to verify the hypotheses of the (CHT) theorem)
we need estimates which relate the norm of the velocity to the vorticity. A collection of such
estimates is derived in [7], Appendix B, but as an example of the sort of estimates one needs
we prove:

Lemma 3.40 Let u be the velocity field associated to the vorticity ω by the Biot-Savart law.
Fix 1 < q < 2. Then if

1

q
− 1

p
=

1

2

there exists C = C(p, q) such that

‖u‖Lp(R2) ≤ C‖ω‖Lq(R2)

Remark 3.41 Define the Lp norm of a vector valued function as the sum of the Lp norms
of the components.

Proof: Recall the Hardy-Littlewood-Sobolev Inequality
∫

Rd

f(x)

(∫

Rd

1

|x− y|λ g(y)dy

)
dx ≤ N(p, q, λ, d)‖f‖Ls(Rd)‖g‖Lq(Rd) ,

provided 1
s + 1

q + λ
d = 2. Note that

|uj(x, t)| ≤ 1

2π

∫

R2

1

|x− y| |ω(y, t)|dy ≡ h(x) ,
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so that ‖uj(x, t)‖Lp(R2) ≤ ‖h‖Lp(R2). Let f = hp−1. Then applying the HLS inequality we
find

‖h‖p
Lp(R2) ≤ N‖hp−1‖Ls(R2)‖ω‖Lq(R2) ,

Take s = p
p−1 . Then ‖hp−1‖Ls(R2) = ‖h‖p−1

Lp(R2) and hence

‖h‖Lp(R2) ≤ N‖ω‖Lq(R2) ,

with 1
q −

1
p = 1

2 .

Exercise 3.42 Use the Biot-Savart law to prove that

‖u‖L∞(R2) ≤ C(‖ω‖L1(R2) + ‖ω‖L∞(R2)) .

We now have the tools we need to prove the existence and uniqueness of solutions of the two-
dimensional vorticity equation. This is a story with a long history but the approach I describe
below was first developed by Ben-Artzi, [2]. My presentation of this approach is close to that
of [6]. The first question that arises it what space we should work in. Note that if ω(x, t)
solves (50), then so does ωλ(x, t) = λ2ω(λx,λ2t) for any λ. Since ‖ωλ(·)‖L1(R2) = ‖ω(·)‖L1(R2),
this suggests that the space L1(R2) is appropriate and it turns out that in this space all initial
conditions lead to unique global solutions. More precisely one has

Theorem 3.43 There exists C > 0 such that for any ω0 ∈ L1(R2), the initial value problem
(50) has a unique solution u ∈ C(R+; L1(R2)).

Proof: The proof basically consists of two steps:

(1.) One first shows that given ω0 ∈ L1(R2), the initial value problem has a unique solution
for some interval of time T0. Furthermore, for any positive time this solution is in
Lp(R2) for all 1 ≤ p ≤ ∞.

(2.) Show that if the initial condition ω0 ∈ L1(R2)∩L∞(R2) then one has a unique solution
for all time.

Note that these points taken together suffice to prove the theorem since given an initial
condition ω0 ∈ L1(R2) we first solve the initial value problem for some short time. We then
take this solution at some positive time t0 as our new initial condition and the resulting
solution exists for all time.

I’ll look in detail at the second part of the proof - details of the first part can be found in
[2] or [6]. As a first step we rewrite (50) as an integral equation, just as we did with the
semi-linear heat equation in Lecture 2.

ω(t) = Φt(ω0) = et∆ω0 +

∫ t

0

e(t−s)∆u(s) ·∇ω(s)ds , (52)
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where et∆ denotes the semigroup defined by the heat equation. The proof of the theorem
now follows by showing that (52) has a fixed point in an appropriate Banach space.

Remark 3.44 Before beginning the fixed point argument, however, we note that if (50) has
a solution, the solution has the following important property. In two dimensions, since the
vorticity is a scalar, it satisfies the maximum principle. As a consequence not only is the
L1(R2) norm a non-increasing function of time (remember Example 1.16) but in fact by a
similar argument one finds that ‖ω(t)‖Lp(R2) ≤ ‖ω0‖Lp(R2) for all 1 ≤ p ≤ ∞.

Returning to (52) we write this equation as

ω(t) = F(ω)(t) = et∆w0 +N (w,w)(t) (53)

where

N (ω̃,ω)(t) =

∫ t

0

e(t−s)∆ũ(s) ·∇ω(s)ds , (54)

and ũ is the velocity field associated to the vorticity ω̃ by the Biot-Savart law. Note that ũ
is a linear function of ω̃ so N is a bilinear operator. We’ll study the fixed point problem for
F on the Banach space

X∗
T = {f ∈ C([0, T ] : L1(R2) ∩ L∞(R2))}

with norm ‖f‖∗ = sup0≤t≤T (‖f(t)‖L1(R2) + ‖f(t)‖L∞(R2)).

We first note that if ω0 ∈ L1(R2)∩L∞(R2) then the linear term in (53) is an element of X∗
T .

This follows immediately from the estimates:

Lemma 3.45 For any α = (α1, α2) ∈ N2 and 1 ≤ p ≤ q ≤ ∞ there exists C = C(p, q, α)
such that

‖∂α(et∆f)‖Lp(R2) ≤
C

t
|α|
2 +( 1

q−
1
p)
‖f‖Lq(R2) .

Proof: The proof of this lemma follows easily by applying Young’s inequality to the explicit
integral representation for the heat semigroup.

The key estimate is the following bound on the nonlinear term:

Lemma 3.46 There exists C > 0 such that for any ω̃ and ω in X∗
T ,

‖N (ω̃,ω)‖∗ ≤ C
√

T‖ω̃‖∗‖ω‖∗ .
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Assuming for the moment that the lemma holds we proceed as follows. Given the estimates
of the two preceeding lemmas a standard application of the contraction mapping theorem
shows that (53) has a unique fixed point in X∗

T provided

4C
√

T‖ω‖∗ ≤ 1 . (55)

However, this estimate is problematic since it involves the fixed point itself and hence makes
it difficult to get a good estimate of the time of existence of the solution (which we want
ultimately to show is infinity.) We now make use of Remark 3.44. from which we conclude
that ‖ω‖∗ ≤ (‖ω0‖L1(R2) + ‖ω0‖L∞(R2)). But if we couple this observation with (55) we see
that we obtain a unique solution of (50) for all times 0 ≤ t ≤ T such that

T =

(
1

4C(‖ω0‖L1(R2) + ‖ω0‖L∞(R2))

)2

. (56)

In order to show that this solution actually exists for all time we now repeat this procedure,
taking as our new initial condition ω̃0 = ω(T ). This new solution (which is the continuation
of our original solution) exists for at least a time

T̃ =

(
1

4C(‖ω̃0‖L1(R2) + ‖ω̃0‖L∞(R2))

)2

. (57)

However, since

(‖ω̃0‖L1(R2) + ‖ω̃0‖L∞(R2)) = (‖ω(T )‖L1(R2) + ‖ω(T )‖L∞(R2)) ≤ (‖ω0‖L1(R2) + ‖ω0‖L∞(R2))

we see that T̃ ≥ T and hence we can repeat this argument indefinitely, extending our solution
for arbitrarily long times.

Thus, the only remaining step in the proof that we have unique global solutions for initial
conditions in X∗

T is to prove Lemma 3.46. We begin by showing that the L1(R2) norm of N
is uniformly bounded.

‖N (ω̃,ω)(t)‖L1(R2) = ‖
∫ t

0

e(t−s)∆∇ · (ũ(s)ω(s))ds‖L1(R2) (58)

≤ C

∫ t

0

1√
t− s

‖ũ(s)ω(s)‖L1(R2)ds ,

where the last inequality used Lemma 3.45 to bound the linear semigroup. By Hölder’s
inequality

‖(ũ(s)ω(s))‖L1(R2) ≤ ‖ũ(s)‖L4(R2)‖ω(s)‖L4/3(R2) ,

while Lemma 3.40 implies that ‖ũ(s)‖L4(R2) ≤ C‖ω̃(s))‖L4/3(R2). Combining these estimates
we find

‖N (ω̃,ω)(t)‖L1(R2) ≤ C

∫ t

0

1√
t− s

‖ω̃(s)‖L4/3(R2)‖ω(s)‖L4/3(R2)ds ≤ C
√

T‖ω̃‖∗‖ω‖∗ . (59)
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A similar bound on the L∞(R2) norm of N completes the proof. We again begin by using
the bound in Lemma 3.45:

‖N (ω̃,ω)(t)‖L∞(R2) = ‖
∫ t

0

e(t−s)∆∇ · (ũ(s)ω(s))ds‖L∞(R2) (60)

≤ C

∫ t

0

1√
t− s

‖ũ(s)ω(s)‖L2(R2)ds ,

But by Exercise 3.42 we have ‖ũ(s)‖L∞(R2) ≤ ‖ω̃‖∗ and by interpolation ω(s)‖L2(R2) ≤ ‖ω̃‖∗,
hence

‖N (ω̃,ω)(t)‖L∞(R2) ≤ C

∫ t

0

1√
t− s

ds‖ω̃‖∗‖ω‖∗ .

which completes the proof of Lemma 3.46 and concludes this section.
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Lecture 4: The long-time asymptotics of solutions of the
two-dimensional Navier-Stokes equation.

In this final lecture we combine the methods developed in the first two lectures to describe
the long-time behavior of solutions of the two-dimensional Navier-Stokes equation. We prove
that any solution whose initial vorticity distribution is integrable will tend, as time goes to
infinity, toward an Oseen vortex, a simple, explicitly computable solution of the Navier-
Stokes equations in two-dimensions. We also give a detailed discussion of the long-time
behavior of solutions whose total vorticity is small. The material in this lecture is largely
joint work of Th. Gallay and myself and for more details the reader can consult the original
papers [7] and [8].

Throughout this lecture we will consider the Navier-Stokes equation in the vorticity repre-
sentation

∂ω

∂t
= ∆xω − u ·∇ω, (61)

ω = ω(x, t) ∈ R, x ∈ R2, t ≥ 0.

where u is the velocity field associated with the vorticity ω via the Biot-Savart law. As
discussed in the preceding lecture the vorticity formulation is particularly convenient in two-
dimensions where the vorticity is a scalar function. Furthermore as in Lecture 2 we will study
solutions of (61) in the weighted Hilbert spaces L2(m) and the vorticity has the advantage
that if the initial vorticity distribution lies in one of these spaces the solution of (61) will
remain in this space for all time, whereas that is not in general true of the velocity field.
(This fact is not immediately apparent but is discussed and proven in [7].)

We begin, as we did in Lecture 2, by considering solutions of (61) in a neighborhood of
the origin. Given the similarity between the vorticity equation and (9) we introduce scaling
variables as we did in that case, namely we set:

ω(x, t) =
1

(1 + t)
w(

x√
1 + t

, log(1 + t)) (62)

ξ =
x√

1 + t
, τ = log(1 + t)

Note that this corresponds to taking the exponent α in (14) equal to α = d = 2. We still
need to decide how to rescale the velocity field. Since the vorticity is a derivative of the
velocity with respect to x, and since each x derivative results in an extra factor of 1√

1+t
, this

suggests that the velocity should scale as

u(x, t) =
1√

1 + t
v(

x√
1 + t

, log(1 + t)) . (63)

Strong evidence that this is the “correct” scaling can be seen from the fact that with the
rescaled velocity and vorticity fields defined by (62) and (63) v and w are still related via
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the Biot-Savart law - namely:

v(ξ, τ) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 w(η, τ)dη , (64)

which we leave as an exercise for the reader to check.

Inserting (62) and (63) into (61) we find that

∂w

∂τ
= Lw − v ·∇w . (65)

Here, L is the same operator that we studied in Lecture 2 - namely

Lw = ∆ξw +
1

2
∇ξ · (ξw) .

Recall that the spectrum of L when acting on functions in L2(m) consists of the non-positive
half integers, plus a half-plane of spectrum {λ ∈ C | 4(λ) ≤ 1

2 −
m
2 }. Thus, for m > 1 we

expect that there will be a one-dimensional invariant manifold Wc, tangent at the origin to
the eigenspace of the (simple) eigenvalue λ = 0.

Remark 4.47 Verifying the hypotheses (H.1) - (H.4) of the (CHT) invariant manifold the-
orem requires combining the ideas of Lectures 2 and 3. Since the linear part of (62) is is the
same as that of (34) verifying (H.1) and (H.2) is exactly the same as in Lecture 2. Verifying
the hypotheses (H.3) and (H.4) on the nonlinearity follows from estimates very similar to
those in Lecture 3 where we estimated the semi-group for (61) since the form of the nonlinear
terms in (61) are the same as those in (65). In this case one must cut-off the nonlinear term
outside a neighborhood of the origin in order to obtain the global estimates required in the
(CHT) theorem, but that is again done in a fashion very similar to that in Lecture 2.

Let’s next examine the motion on the manifold Wc. As in the case of the nonlinear heat
equation in Lecture 2 a point on Wc can be represented as

wc(ξ, τ) = α(τ)φ0(ξ) + g(α(τ)φ0(ξ)) (66)

for some function g : P0L2(m) → Q0L2(m), where P 0 is the projection onto the eigenspace
of λ = 0 and Q0 is the projection onto its complement. If we insert this form into (65) and
apply the projection operator P0 to both sides of the equation we find that

α̇(τ)φ0(ξ) = −P 0 (vc(ξ, τ) · w(ξ, τ)) , (67)

where vc is the velocity field associated to wc via the Biot-Savart Law. We now note two
things:

(1.) (P0f)(ξ) = (
∫

R2 f(ξ)dξ)φ0(ξ) .

31



(2.) The velocity field vc is compressible (i.e. ∇ · vc = 0) and thus we can write vc(ξ, τ) ·
w(ξ, τ) = ∇ · (vc(ξ, τ)w(ξ, τ)).

But these two facts imply that

P 0 (vc(ξ, τ) · w(ξ, τ)) =

(∫

R2

∇ · (vc(ξ, τ)w(ξ, τ))dξ

)
φ0(ξ) = 0 .

and hence that
α̇(τ) = 0 .

This implies that the center manifold consists entirely of fixed points! In fact, we can
identify these fixed points more precisely. If one checks the velocity field corresponding (via
the Biot-Savart) law to the vorticity field φ0 one finds that the velocity field is

v0(x) =
1

2π

x⊥

|x|2
(
1− e−|x|

2/4
)

. (68)

For the moment, the most important thing to note about this expression is that it is a purely
tangential velocity field. As a consequence, since the vorticity φ0 depends only on |x|, the
radial coordinate of x, we see that the nonlinear term in the vorticity equation:

v0(x) · (∇φ0)(x) = 0 .

Thus, since Lφ0 = 0 we see that the Gaussian vorticity distribution αφ0 is a stationary
solution of the rescaled vorticity equation (65). This family of solutions is known as the
family of Oseen vortices.

Remark 4.48 Note that in the original, unrescaled variables, the Oseen vortices are not
stationary solutions but rather spread and decay in the same way as does the fundamental
solution of the heat equation.

Returning now to our discussion of the center manifold we know first of all, from the general
theory of invariant manifolds discussed in Lecture 1 that all fixed points near the origin must
lie in the center-manifold. Thus, for small α the family of Oseen vortices must be contained
in the center-manifold. However, this is a one-dimensional family of solutions and the center-
manifold itself is one-dimensional so in fact, the center-manifold in this case consists exactly
of the family of Oseen vortices!

Again, appealing to the general theory of invariant manifolds we know that solutions near
the origin will be attracted to one of the solutions on the center-manifold. In fact, we can
determine which of the Oseen vortices is the limit by noting that the rescaled vorticity
equation preserves the total vorticity - i.e. if w(ξ, τ) is the solution with initial condition
w0(ξ) then ∫

R2

w(ξ, τ)dξ =

∫

R2

w0(ξ)dξ (69)

for all τ . Thus, as τ goes to infinity, w(ξ, τ) approaches the vortex αφ0 whose total vorticity
is α =

∫
R2 w0(ξ)dξ. More precisely we find
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Proposition 4.49 Fix 0 < µ < 1
2 . There exist positive constants r2 and C such that for

any initial data with ‖w0‖2 < r2 the solution w(·, τ) with initial conditions w0 satisfies

‖w(·, τ)− αφ0(·)‖2 ≤ Ce−µτ

where α =
∫

R2 w0(ξ)dξ.

By considering the invariant manifolds corresponding to other of the spectral subspaces, one
can make other, more detailed statements about the asymptotics of small solutions. For
instance, one thing that had been discovered about solutions of the Navier-Stokes equations
was that certain relationships were required to hold between the spatial moments of solutions
decaying with particular temporal rates [14]. However, the proofs of these moment conditions
provided little insight into the meaning or origin of these relationships. In [7] Gallay and
I showed that these moment conditions were the consequence of the requirement that the
solution lie on certain invariant manifolds in the phase space and as a consequence were able
to give a simple geometrical interpretation of the results on optimal decay rates. Additional
uses and consequences of these sorts of invariant manifold theorems are contained in [7].

We turn now from the consideration of small solutions to a study of more general sorts of
solutions of the two-dimensional Navier-Stokes equation. The first thing we note is that the
Oseen vortices are not limited in size. The family of solutions

Oα(ξ) = αφ0(ξ)

is an exact, stationary solution of (65) for all values of α. Thus, we can extend the local
center-manifold to a global manifold in this case. However, the proof that nearby solutions
are attracted to the center manifold applies only to solutions of small norm, so our next task
is to analyze the local stability of Oseen vortices of large magnitude.

Begin, by linearizing (65) about the vortex Oα. This leads to the linearized equation

∂w

∂τ
= Lw − αΛw (70)

where the linear operator L is the one we studied in Lecture 2 and the operator Λ is defined
by:

Λw = v0 ·∇w + vw ·∇φ0 (71)

with v0 the velocity field associated to the vorticity φ0 and vw the velocity field associated
with the vorticity w.

We now consider the spectrum of the operator L−αΛ. The first observation is a bit of basic
functional analysis. Note that operator Λ is localized - i.e. the coefficient in each term of
Λw decays as |ξ|→∞. Furthermore it is a first order differential operator while L is second
order. These two facts taken together are sufficient to show that Λ is a relatively compact
perturbation of L and hence the essential spectrum of L and L − αΛ must coincide. Thus
we have
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Lemma 4.50 Fix m > 1 and consider the operator L − αΛ acting on its maximal domain
in L2(m). Then

σess(L) = σess(L− αΛ) = {λ ∈ C | 4(λ) ≤ 1−m

2
} .

Remark 4.51 More details on the proof of this lemma and succeeding results in this lecture
can be found in [8].

As a consequence of Lemma 4.50 the stability or instability of the Oseen vortices of large
norm will be determined by whether or not the isolated eigenvalues of L− αΛ lie in the left
or right half plane. One of these eigenvalues can be immediately and explicitly computed
and we find:

Lemma 4.52 The operator L − αΛ has an eigenvalue λ = 0 with eigenfunction φ0 for all
values of α.

Since the projection of a function f onto this eigenspace is just given by the product of
φ0 with the integral of f , the complementary subspace to the zero eigenspace consists of
the functions of zero mean. Thus, we can restrict our attention of the space of functions
L2

0(m) = {f ∈ L2(m) |
∫

R2 f(ξ)dξ = 0}. When restricted to this space we have the following
result:

Proposition 4.53 Fix m > 1 and α ∈ R. Then any eigenvalue of λ of L − αΛ with
eigenfunction in L2

0(m) satisfies

4(λ) ≤ max

(
−1

2
,
1−m

2

)
.

Remark 4.54 Note that this proposition, in combination with the above remark about the
zero eigenvalue and the essential spectrum implies that the Oseen vortices are spectrally
stable for all values of α. Given this spectral information it follows in a fairly straighforward
fashion that the Oseen vortices are locally stable for all values of α - namely given an initial
condition of (65) sufficiently close to an Oseen vortex the resulting solution of the vorticity
equation will converge to an Oseen vortex as time tends toward infinity.

Remark 4.55 Because we have scaled all other physical parameters to have value one, α
can be thought of as the Reynolds number for the problem. Thus, in contrast to many
other fluid mechanical situations increasing the Reynolds number in this problem does not
lead to instability. In fact, numerical computations [15] indicate that the real parts of most
eigenvalues of L − αΛ actually become more negative as α increases so that the increasing
Reynolds number actually has a sort of stabilizing effect.
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The proof of Proposition 4.53 consists of three steps:

(1.) By writing out the eigenvalue equation in polar coordinates a straightforward but
complicated analysis shows that regardless of the value of α any eigenfunction in L2

0(m)
whose real part is larger than 1−m

2 must have Gaussian decay as |ξ| → ∞. Thus the
eigenfunctions are very strongly localized in space, regardless of the value of α. Given
these results we define a new Hilbert space X = {w ∈ L2(R2) | w/

√
φ0 ∈ L2(R2)},

equipped with the innerproduct

(w1, w2)X =

∫

R2

w̄1(ξ)w2(ξ)

φ0(ξ)
dξ .

We know that the eigenfunctions of L − αΛ lie in X and (since we can continue to
ignore the eigenvalue zero) we will study the spectrum on the space X0 = X ∩ L2

0(m).

(2.) We next compute the representation of L in the Hilbert space X which is given by

LX = (φ0)(−1/2)L(φ0)(1/2) = ∆ξ −
|ξ|2

16
+

1

2
.

This operator is the well known quantum mechanical oscillator and as is well known
in quantum mechanics:

(a) LX is self-adjoint.

(b) The spectrum of LX consists only of the eigenvalues −n/2, n = 0, 1, 2, . . . .

The second of these points is not surprising but the fact that L is self-adjoint in the
Hilbert space X will be critical in what follows.

(3.) The final point is the computation of the representation of Λ in X0. Writing out the
expression for Λ in the X-inner product one finds:

(w̃, Λw)X =

∫

R2

(
1

φ0
w̃v0 ·∇w − 1

2
w̃(v · ξ)

)
dξ , (72)

where we used the fact that ∇φ0 = − ξ
2φ

0. Two easy calculations show that
∫

R2

(
1

φ0
w̃

)
v0 ·∇wdξ = −

∫

R2

1

φ0
wv0 ·∇w̃dξ . (73)

and

w̃(v · ξ) + w(ṽ · ξ) = (ξ1∂1 − ξ2∂2)(v1ṽ2 + v2ṽ1) + (ξ1∂2 + ξ2∂1)(v2ṽ2 − v1ṽ1) . (74)

Integrating both sides of the second equation in (73) we see that
∫

R2

w̃(v · ξ) + w(ṽ · ξ)dξ = 0

which when combined with (72) and (73) imply that

(w̃, Λw)X = −(Λw̃, w)X ,

or
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Lemma 4.56 The linear operator Λ is skew-symmetric on X0.

Proposition 4.53 now follows from the following property from linear algebra. Namely, sup-
pose that L is a self-adjoint operator on a Hilbert space X0 whose spectrum lies in the half
line λ ≤ −µ < 0. Then if Λ is skew-adjoint on X0 any eigenvalue of L − αΛ has real part
less than equal or equal to µ. To see why this is so, suppose that

(L− αΛ)φ = λφ .

Then

λ(φ,φ)X0 = (φ,Lφ)X0 − α(φ, Λφ)X0 , while (75)

λ̄(φ,φ)X0 = (φ,Lφ)X0 − α(φ, Λφ)X0 = (Lφ,φ)X0 − α(Λφ, φ)X0

= (φ,Lφ)X0 + α(φ, Λφ)X0

Adding these two expressions together yields

4(λ) = (φ,Lφ)X0 ≤ −µ .

Reviewing the picture we have of solutions of the two-dimensional Navier-Stokes equation so
far we see that we have a global center manifold, consisting of the family of Oseen vortices
which are locally stable for all values of α. The final question that we consider is the behavior
of solutions of (65) for arbitrary initial data (i.e. for initial vorticity distributions which are
not close to one of the Oseen vortices.)

Given the results of Lecture 3 it is natural to require that the initial vorticity distribution
be in L1(R2). We know that the solution with this initial condition exists for all time and
thus we can ask what its ω-limit set is. From the first lecture we know that in order to
be sure that the ω-limit set exists we need to check whether the trajectory remains in a
compact subset of L1(R2). The details needed to establish this fact are presented in [8] but
we note two main ideas are that by Rellich’s criterion subspaces of L1(R2) that have some
smoothness and decay at infinity are compact. In our problem:

• smoothness comes from the smoothing properties of the semigroup which are preserved
by the nonlinearity.

• decay at infinity comes from estimates of the solution of the vorticity equation due to
Carlen and Loss [3].

Given that the ω-limit set exists how can we calculate it? We determine the ω-limit set with
the aid of two Lypunov functions:

1. The first tells us that the ω-limit set consists of functions that do not change sign - i.e.
an element of the ω-limit set of a solution with initial value w0 is either everywhere
non-positive or everywhere non-negative.
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2. The second will identify those positive (or negative) functions that can be part of the
ω-limit set.

Lyapunov Function No. 1: This Lyapunov function is closely related to Example 1.16
from Lecture 1. Define

Φ(w(τ)) =

∫

R2

|w(ξ, τ)|dξ .

One then has:

Lemma 4.57 Let w0 ∈ L1(R2) and let w be the solution of the rescaled vorticity equation
with this initial condition. Then Φ(w(τ)) ≤ Φ(w0) for all τ ≥ 0. Moreover, equality holds if
and only if w0 ∈ Σ where

Σ =

{
w ∈ L1(R2) |

∫

R2

|w(ξ)|dξ = |
∫

R2

w(ξ)dξ|
}

.

Proof: This lemma follows from the maximum principle very much along the lines of Exam-
ple 1.16. Indeed that example established this result for the linear terms in (65). Including
the nonlinear terms in the equation causes no essential difficulty and we leave the details of
this argument as an exercise for the reader.

Note that as a corollary of this lemma and the LaSalle Invariance Principle we have

Corollary 4.58 Let w0 ∈ L1(R2) The ω-limit set of the solution with this initial condition
must lie in Σ.

Lyapunov Function No. 2: Since from the preceeding corollary the ω-limit set is contained
in set of positive (or negative) functions our second Lyapunov function will be defined only
on such functions. This second Lyapunov function is motivated by Lyapunov functions
used in kinetic theory where one also wants to prove the convergence of solutions toward
Gaussian profiles and is known in that field as the relative entropy function. Define Σ+ =
{w ∈ Σ | w(ξ) ≥ 0 almost everywhere} and define H : Σ+ ∩ L2(m) → R by

H(w(τ)) =

∫

R2

w(ξ, τ) log

(
w(ξ, τ)

φ0(ξ)

)
dξ .

If m > 3 the functions w decay fast enough at infinity that one can show:

1. H is defined and continuous on Σ+ ∩ L2(m)

2. H is bounded below by −1/e.
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Even more importantly for our purposes, H is decreasing along trajectories and hence a
Lyapunov function. Assume for the moment that w is smooth enough that we can differen-
tiate H(w(τ)) by pulling the derivative through the integral sign. (The general case can be
handled by approximation by smooth functions.) Then

d

dτ
H(w(τ)) =

∫

R2

(
1 + log

w

φ0

)
∂τwdξ =

∫

R2

(
1 + log

w

φ0

)
(Lw − v ·∇w)dξ . (76)

We break this last integral into two pieces and consider each piece separately. First note
that thanks to the special properties of the Gaussian

Lw = div

(
φ0∇(

w

φ0
)

)

so that

∫

R2

(
1 + log

w

φ0

)
(Lw)dξ = −

∫

R2

φ0

(
∇(log

w

φ0
)

)
·∇(

w

φ0
) = −

∫

R2

w

∣∣∣∣∇(log
w

φ0
)

∣∣∣∣
2

dξ

To treat the second term in (76) we first integrate by parts to obtain

−
∫

R2

(
1 + log

w

φ0

)
(v ·∇w) = −

∫

R2

(
1 + log

w

φ0

)
(∇ · (vw))dξ (77)

=

∫

R2

φ0v ·∇(
w

φ0
)dξ =

∫

R2

v ·∇w dξ − 1

2

∫

R2

(ξ · v)w dξ .

We claim finally that each of these two last integrals vanish. For the first, this is obvious
since v · ∇w = ∇ · (vw). For the second note that w = ∂ξ1v2 − ∂ξ2v1 (where v = (v1, v2))
and hence

∫

R2

(ξ · v)w dξ =

∫

R2

(ξ1v1 + ξ2v2)(∂ξ1v2 − ∂ξ2v1)dξ

=

∫

R2

ξ1v1∂ξ1v2dξ +

∫

R2

ξ2v2∂ξ1v2dξ −
∫

R2

ξ1v1∂ξ2v1dξ −
∫

R2

ξ2v2∂ξ2v1dξ .

Note that the second and third of these integrals vanish since the second can be rewritten
as 1

2

∫
R2 ∂ξ1(ξ2(v2)2)dξ = 0 and analogously for the third. In the first and fourth integrals we

integrate by parts to obtain

−
∫

R2

v1v2dξ −
∫

R2

ξ1(∂ξ1v1)v2dξ +

∫

R2

v1v2dξ +

∫

R2

ξ2(∂ξ2v2)v1dξ

=

∫

R2

ξ1(∂ξ2v2)v2dξ −
∫

R2

ξ2(∂ξ1v1)v1dξ = 0

where the next to last equality used the fact that v is incompressible and the final equality
noted that the first integral could be written as 1

2

∫
R2 ∂ξ2 (ξ1(v2)2) dξ = 0 and similarly for

the second.
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Remark 4.59 In fact, one needs to take a little more care with this calculation since for
general velocity fields v, integrals like

∫
R2 ξ2v2∂ξ1v2dξ may fail to converge due to the relatively

slow decay at infinity of the velocity field. Nonetheless, the entire expression
∫

R2(ξ ·v)w dξ is
convergent because of cancellations between various terms. The easiest way to take advantage
of these cancellations is to rewrite the velocity in terms of the vorticity via the Biot-Savart
law and then argue that the integral must vanish by symmetry. (See [8] for details.) However,
I think that the present argument which works entirely with the velocity field gives somewhat
more intuition into why these terms vanish.

Putting these computations together we see that we have shown:

Lemma 4.60
d

dτ
H(w(τ)) = −

∫

R2

w

∣∣∣∣∇(log
w

φ0
)

∣∣∣∣
2

dξ

This lemma implies that the Lyapunov function H is strictly decreasing unless w is a multiple
of the Gaussian φ0 and implies, as an immediate corollary:

Corollary 4.61 Assume that w0 ∈ L2(m) ∩ Σ with m > 3. The H(w(τ)) ≤ H(w0) for all
points w(τ) in the forward orbit of w0 and H(w(τ)) = H(w0) for all τ ≥ 0 if and only if
w0 = αG for some α ≥ 0.

We can now put together the various pieces of this argument to derive a quite complete
picture of the long-time asymptotic behavior of solutions of the two-dimensional Navier-
Stokes equations. Suppose we consider any solution of (65) whose initial vorticity w0 ∈ L2(m)
with m > 3. By Lemma 4.57 we know that any point w∗ in the omega limit set of w0 must
lie in the set Σ of functions which do not change sign. Assume, without loss of generality,
that w∗(ξ) > 0.

From the general theory of Lyapunov functionals we know that the solution of the vorticity
equation with initial conditions w∗ exists for all time t ∈ R. Combining this observation
with Corollary 4.61 implies that the orbit of w∗ consists of the single point α0G where
α0 =

∫
w0(ξ)dξ and hence that the omega-limit set of any point w0 ∈ L2(m) with m > 3

consists of the Oseen vortex with the same total vorticity.

In fact, using results of Carlen and Loss [3] on the spatial decay rate of solutions of the
two-dimensional vorticity equation one can prove that any point in the omega-limit set of a
solution whose initial vorticity is in L1(R2) must lie in L2(m) for all m > 1 – in particular it
must lie in L2(m) for some m > 3. Then, proceeding as above, we find that the omega-limit
set must again consist just of an Oseen vortex. If we now undo the change of variables (62)
and (63) we see that solutions ω(x, t) satisfy:
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Theorem 4.62 If ω0 ∈ L1(R2), the solution ω(x, t) of (61) satisfies

lim
t→∞

t1−
1
p

∣∣∣ω(·, t)− α

t
G(

·√
t
)
∣∣∣
p

= 0 , for 1 ≤ p ≤ ∞ , (78)

where α =
∫

R2 ω0(x)x. . If u(x, t) is the solution of the two-dimensional Navier-Stokes equation
obtained from ω(x, t) via the Biot-Savart law, then

lim
t→∞

t
1
2−

1
q

∣∣∣u(·, t)− α√
t
vG(

·√
t
)
∣∣∣
q

= 0 , for 2 < q ≤ ∞ . (79)

where vG is the velocity field (68) associated to the Oseen vortex.

4.1 Conclusions

Summing up, we see that the dynamical systems method provides a quite complete view
of the long-time asymptotics of general solutions of the two-dimensional Navier-Stokes or
vorticity equations.

While one cannot hope to obtain comparably complete information about solutions of the
three-dimensional Navier-Stokes equation where even the existence of solutions with general
initial data is unproven it turns out that one can use the ideas developed above to understand
the existence and stability of some classes of vortex solutions related to the Burgers vortices,
an explicit family of solutions of the three-dimensional Navier-Stokes equations believed to
be important for turbulent flows. [9], [10].

Another interesting and open question is to unterstand the intermediate time behavior of
solutions of the two-dimensional Navier-Stokes equation. While the results proven above
imply that eventually one converges to a single vortex solution, numerical simulations imply
that the evolution at intermediate time scales is dominated by the interaction and merger of
pairs of vortices. A better understanding of this merger process would be very intereresting
and also have important applications.
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