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Abstract

A “metastable solution” to a differential equation typically refers to a family of solutions for which nearby

initial data converges to the family much faster than evolution along the family. Metastable families have

been observed both experimentally and numerically in various contexts; they are believed to be particularly

relevant for organizing the dynamics of fluid flows. In this work we propose a candidate metastable family

for the Burgers equation with periodic boundary conditions. Our choice of family is motivated by our

numerical experiments. We furthermore explain the metastable behavior of the family without reference to

the Cole–Hopf transformation, but rather by linearizing the Burgers equation about the family and analyzing

the spectrum of the resulting operator. We hope this may make the analysis more readily transferable to

more realistic systems like the Navier–Stokes equations. Our analysis is motivated by ideas from singular

perturbation theory and Melnikov theory.

1 Introduction

In the study of differential equations one often is interested in understanding the long-term asymptotic behavior

of solutions; the long term behavior could include, for example, convergence to a periodic orbit or a steady-state.

One typical approach is to prove the existence of a particular solution and then to argue that nearby initial

data converge to that solution; in the case of a steady-state or periodic orbit, such arguments often involve

computations of the linear spectrum.

In this work we address a slightly different question, which arises when the asymptotic state only emerges after a

“long” time; in this case, it may be that the intermediate transient behavior of the system is physically relevant.

In other words, we are not interested in what the asymptotic state is, but how a wide class of initial data approach

it. To address this question we analyze what are known as “metastable” solutions. The term metastable solution

often refers to a family of profiles with the following properties: (1) the asymptotic behavior of the system is not

contained within the family; (2) a profile in the family evolves within the family towards an asymptotic state

of the system; (3) “nearby” initial data remain near the family for all forward times; and (4) the timescale on

which nearby initial data approach the family is much faster than the evolution within the family towards the

asymptotic state. Property (4) is what makes metastable solutions of physical interest.

Metastable solution families are of particular interest in fluid dynamics. For example, in the Navier–Stokes

equation with periodic boundary conditions

Bt~u “ ν∆~u´ ~u ¨∇~u`∇p, ∇ ¨ ~u “ 0, ~u P R2, ν ! 1

~upx, y, tq “ ~upx` 2π, y, tq, and ~upx, y, tq “ ~upx, y ` 2π, tq, (1.1)

which describes two-dimensional viscous fluid flows, vortex pairs known as “dipoles” were numerically observed

[10, 17]; the dipoles emerge quickly and persist for long times before eventually converging to the trivial state.
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The metastable states described in [10, 17] are characterized in terms of their vorticity ω, defined as ω :“ ∇ˆ~u.

In [17] a second metastable family known as “bar” states–solutions with constant vorticity in one spatial direction

and periodic vorticity in the other–were observed; which of the two candidate metastable families dominates the

dynamics depends on the initial data.

A related context in which metastability has been observed and studied is Burgers equation. Although the

Burgers equation is unphysical, it is nevertheless relevant to fluid dynamics since it is, in some sense, the

one-dimensional simplified analog of the Navier–Stokes equation. Thus, one often uses the Burgers equation

as a test case for Navier–Stokes: one hopes that by first observing and analyzing some phenomenon in the

Burgers equation, that insight can be translated into an understanding of related phenomena in Navier–Stokes.

Metastable solutions in Burgers equation were observed numerically in the viscous Burgers equation on an

unbounded domain [7] in the so-called “scaling variables”

Bτw “ νB2
ξw `

1

2
Bξpξwq ´ wwξ w P R, ν ! 1. (1.2)

The scaling variables

ξ “
x

?
1` t

, τ “ lnpt` 1q, and upx, tq “
1

?
1` t

w

ˆ

x
?

1` t
, lnp1` tq

˙

have been defined so that a diffusion wave–a strictly positive triangular profile which approaches zero for |x| Ñ

8—is a steady state solution to (1.2) (otherwise, all solutions to Burgers equation in the unscaled variables

Btu “ νB2
xu´uux approach the zero solution). In [7] the authors observe that “diffusive N-waves”—profiles with

a negative triangular region immediately followed by a positive triangular region so that the profile resembles a

lopsided backwards “N”—quickly emerge before the solution converges to a diffusion wave.

Burgers equation is much more amenable to analysis than the Navier-Stokes equation and there has been a

fair amount of theoretical work to explain the observations of [7]. Already in [7], the authors used the Cole-

Hopf transformation to derive an analytical expression for the diffusive N-waves. In [1], the authors provide

a more dynamical systems motivated explanation of metastability. First they constructed a center-manifold

for (1.2) consisting of the diffusion waves, denoted AM pξq, which is parametrized by the solution mass. Each

of these diffusion waves represents the long-time asymptotic state of all integrable solutions with initial mass

M and they are also fixed points in the scaling variables. Through each of these fixed points there is a one-

dimensional manifold, parameterized by τ , consisting of exactly the diffusive N -waves. Then, using the Cole-Hopf

transformation, the authors show that solutions converge toward the manifold of N -waves on a time scale of

order τ “ Op| ln ν||q, that solutions remain near wN pξ, τq for all future times, and that that evolution along

wN pξ, τq towards AM pξq is on a time scale of the order τ “ Op1{νq. In particular, convergence to the family is

faster than the subsequent evolution along the family. We emphasize that their analysis makes strong use of the

Cole-Hopf transformation.

In [2] the authors proposed an explanation of the metastability of the bar-states of (1.1) as follows. They first

propose as candidates for the metastable family the exact solutions of the Navier-Stokes equations with vorticity

distribution

ωbpx, y, tq “ e´νt cospxq1,

which is again parametrized by time. Solutions in this family converge to the long-time limit (which is the zero

solution in this case) on the viscous time scale t „ 1
ν . In order to understand the convergence of nearby initial

data to the metastable family, the authors linearize the vorticity formulation of (1.1)

Btω “ ν∆ω ´ ~u ¨∇ω, ~u “ p´By∆´1ω, Bx∆´1ωq. (1.3)

1Alternatively, the bar state could be rwbpx, y, tq “ e´νt sinpxq, or the solution could instead be periodic in the y direction and

constant in the x direction.
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about ωbpx, y, tq. The linearization results in a nonlocal time-dependent linear operator

Lptq “ ν∆´ ae´νt sinxByp1`∆´1q.

Using hypercoercivity techniques motivated by the work of Villani [14] and Gallagher, Gallay, and Nier [6],

the authors show that solutions to a modified operator Laptq “ ν∆ ´ ae´νt sinxBy, which differs from Lptq
by removing the non-local, but relatively compact, term, decay with rate at least e´

?
νt. Additionally, they

provide numerical evidence that the real part of the least negative eigenvalue for the nonlocal operator Lptq is

proportional to
?
ν. These arguments, in combination with the fact that the rate of decay of solutions to (1.3)

to zero is given by the much slower viscous time scale provides a mathematical explanation for the metastable

behavior of the family of bar states.

What is notable is that the mechanism for metastability as well as the relevant time scales are different in each

case [1] versus [2]. Thus, the goal of this work is to re-visit the Burgers equation, albeit with periodic boundary

conditions so that the boundary conditions are more similar to those of (1.1), in order to devise a mathematical

explanation for metastability which is more easily transferable to Navier–Stokes. To that end, we intentionally

avoid the Cole–Hopf transformation and instead use spectral analysis from the linearization about the candidate

metastable family. We find that the convergence to the metastable family does not depend, to leading order, on ν,

even though our analysis depends on the presence of the viscosity term in the equation and thus the calculations

below do not apply to the inviscid equation. This is in contrast to the results from [2] for the Navier–Stokes

equation in which the rate of approach toward the metastable solutions occurs at a ν dependent rate, albeit a

much faster rate than the ν dependent time of approach toward the final asymptotic state.

From a technical perspective, the linearization about the metastable states leads to a singularly perturbed

eigenvalue problem, in which the perturbation parameter is the viscosity ν. Our strategy is to construct the

eigenfunction-eigenvalue pairs in each of two spatial scaling regimes (denoted the “slow” and “fast” scales) and

then to glue the eigenfunction pieces together in an appropriate “overlap” region (see Figure 3 for a schematic

representation). We show, in fact, that the eigenvalues are given, to leading order, by the slow-scale eigenvalues;

the rigorous “gluing” of the fast and slow solutions is done with the aid of a Melnikov-like computation which

gives the first order correction of the eigenvalues. The use of such Melnikov-like computations for piecing together

solutions has a long tradition, generally called Lin’s method [8], which has been applied to the construction of

eigenfunctions in, for example, [12]. The idea of piecing together slow and fast eigenfunctions in a singularly

perturbed eigenvalue problem follows, for example, from [5].

It is worth noting another context in which singularly perturbed eigenvalue problems have arisen in connection

with a slightly different type of metastability, including in variants of Burger’s equation. In [13, 15] metastability

refers to the very slow motion of internal layers in nearly steady states of reaction diffusion equations and diffu-

sively perturbed conservation laws. While different in details and physical context, the notion of metastability

in these papers is similar in spirit to our discussion in that it also describes the slow motion along a family

of solutions (in this cases, solutions in which the internal layer occurs at different positions) before the system

reaches its final state. The motion of those internal layers is explained by an exponentially small shift in the

zero eigenvalue of the operator describing the equation linearized about a stationary state. In contrast, in our

problem, the zero eigenvalue is unchanged, regardless of which member of the family of metastable solutions

we linearize around, but the remaining eigenvalues (or at least the four additional eigenvalues that we compute

here) undergo exponentially small shifts.

Another recent study of metastability in the Navier–Stokes equation, which is similar to our work in context, but

very different in methods is the study of the inviscid limit of the Navier–Stokes equations in the neighborhood

of the Couette flow, by Bedrossian, Masmoudi and Vicol [4] (see also [3]). In this paper the authors prove

an enhanced stability of the Couette flow by using carefully chosen energy functionals. They prove that for

times less than OpRe1{3
q, the system approaches the Couette flow in a way governed by the inviscid limit (i.e.

the Euler equations) while for time scales longer than this viscosity effects dominate; here Re is the Reynold’s
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number of the flow. Since our results show that our metastable family attracts nearby solutions at a rate which

is, to leading order, independent of the viscosity, we believe that they are analogous to the initial phase of the

evolution analyzed in [4] in which inviscid effects dominate. It would be interesting to see if the transition to

viscosity dominated evolution could be observed in this Burgers equation context as well.

2 Set-up and statement of main results

In this section we discuss our candidate family of metastable solutions, denoted W px, t; ν, x0, cq, to the viscous

Burgers equation with periodic boundary conditions

Btu “νB
2
xu´ uux ν ! 1, x P R, t P R`

upx, 0q “u0pxq u0 P H
1
perpr0, 2πqq

upx` 2π, tq “upx, tq. (2.1)

We also present numerical and analytical justification for our choice. The analytical justification given in Sec-

tion 2.2 relies, again, heavily on the Cole-Hopf transformation. Thus, although it provides powerful evidence

for the behavior of solutions near W px, t; ν, x0, cq, the result provides no insight into techniques one might use

to analyze Navier–Stokes. Thus we provide an alternative explanation which relies on information about the

spectrum of the linear operator obtained from linearizing (2.1) about the metastable family W px, t; ν, x0, cq; the

statement and discussion of these results can be found in Sections 2.4 and 2.5. In what follows we make the

technical assumption that the primitive of u0pxq attains a unique global maximum on r0, 2πq. We remark that

this assumption is generic since if the primitive of u0pxq does not attain a global maximum on r0, 2πq then for all

ε ą 0 there exists a function vpxq with }v}H1
per
ď ε such that the primitive of u0pxq ` vpxq does attain a global

maximum, where

}v}2H1
per
“

ż 2π

0

“

vpxq2 ` v1pxq2
‰

dx

is the usual periodic H1 norm.

2.1 Family of metastable solutions

It is well known, using the Cole-Hopf transformation, that

upx, tq “ ´2ν
ψxpx, tq

ψpx, tq
(2.2)

is a solution to Burgers on the real line if ψpx, tq satisfies the heat equation

ψt “νψxx ν ! 1, x P R, t P R`. (2.3)

A family of periodic solutions to (2.3) can be constructed by placing heat sources on the real line spaced 2π

apart centered at x “ πp2n´ 1q

ψW px, t; νq :“
1

?
4πνt

ÿ

nPZ
exp

„

´px` π ´ 2nπq2

4νt



. (2.4)

Then every function in the family

W0px, t; νq :“ ´2ν
ψWx
ψW

“
1

t

ř

nPZpx` π ´ 2nπq exp
”

´px`π´2nπq2

4νt

ı

ř

nPZ exp
”

´px`π´2nπq2

4νt

ı (2.5)
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is 2π-periodic and hence a solution to (2.1). We have denoted solutions (2.5) by W0 to indicate the fact that one

can find them in, for example, the classic text by G.B. Whitham [16, §4.6]. Using formula (2.5) one can check

that W0pnπ, t; νq “ 0 and that W0 is an odd function about nπ, for n P Z.

The family of solutions (2.5) is parametrized by t. We can extend the family to include two additional parameters

as follows. Firstly, we can replace x by x´ x0, effectively shifting the origin of the x-axis. Next, suppose upx, tq

is a solution to (2.1). Then ucpx, tq :“ c` upx´ ct, tq solves (2.1) as well since

Btuc “ Btu´ cBxu “ νB2
xuc ´ puc ´ cqBxuc ´ cBxu “ νB2

xuc ´ ucpucqx.

Thus we define an extension of (2.5) by W px, t; ν, x0, cq :“ c`W0px´ x0 ´ ct, t; νq. We remark that if ψpx, tq is

periodic,
ż π

´π

´2νBxψpx, tqdx “ 0

and thus, since
ż π

´π

W px, t; ν, x0, cqdx “ 2πc,

W px, t; ν, x0, cq can not be obtained via the Cole-Hopf transformation of a periodic function unless c “ 0.

We will need the following estimates of W0 and its derivatives.

Proposition 2.1 Fix ν ą 0, 0 ă ε0 ! 1. Then there exists 0 ă Cpε0q ă 8 such that

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

W0px, t; νq ´
1

t

”

x´ π tanh
´ πx

2νt

¯ı

ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t
e´1{νt

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

BxW0px, t; νq ´
1

t

„

1´
π2

2νt
sech2

´ πx

2νt

¯


ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t2
e´1{νt

sup
|x|ďπ

ˇ

ˇ

ˇ

ˇ

BtW0px, t; νq ´
1

t2

„

´x` π tanh
´ πx

2νt

¯

`
π2x

2νt
sech2

´ πx

2νt

¯


ˇ

ˇ

ˇ

ˇ

ď
Cpε0q

t3
e´1{νt (2.6)

for all 0 ă νt ă ε0.

We remark that since W0px, t; νq is periodic, these L8 estimates can be converted into Lpper estimates for any

1 ď p ă 8.

Proof. Due to the fact that W0px, t; νq is an odd function centered about x “ 0, we prove the estimates for

x P r0, πs. Define

Spx, t; νq :“´ 1`
2
ř

nPZ n exp
”

´px`π´2nπq2

4νt

ı

ř

nPZ exp
”

´px`π´2nπq2

4νt

ı

so that

W0px, t; ν,´πq “
x

t
´
π

t
Spx, t; νq

BxW0px, t; ν,´πq “
1

t
´
π

t
Sxpx, t; νq

BtW0px, t; ν,´πq “ ´
x

t2
`
π

t2
Spx, t; νq ´

π

t
Stpx, t; νq.

Thus it remains to estimate Spx, t; νq and its derivatives. We factor expr´px`πq2{4νts out of both the numerator

and denominator, define

expnpx; t, νq :“ exp
“

´πr´nx` n2π ´ nπs{νt
‰

“

$

’

&

’

%

exp
”

´πnrpn´1qπ´xs
νt

ı

: n ě 0

exp
”

πnrp´n`1qπ`xs
νt

ı

: n ď 0

,

/

.

/

-

, (2.7)
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and rearrange to get

“
´ exp

“

´πx
2νt

‰

` exp
“

πx
2νt

‰

` exp
“

´πx
2νt

‰
ř

n‰0,1p2n´ 1q expnpx; t, νq

exp
“

´πx
2νt

‰

` exp
“

πx
2νt

‰

` exp
“

´πx
2νt

‰
ř

n‰0,1 expnpx; t, νq

“ tanh
´ πx

2νt

¯

`Rpx; ν, tq

where

Rpx; ν, tq :“
exp

“

´πx
2νt

‰
ř

n‰0,1

“

2n´ 1´ tanh
`

πx
2νt

˘‰

expnpx; t, νq

exp
“

´πx
2νt

‰
ř

nPZ expnpx; t, νq

Define r :“ exp
“

´π2{νt
‰

; we have that 0 ď r ă 1 for all 0 ď νt ď ε0. Then, using (2.7), we see that for all

x P r0, πs

expnpx; t, νq ď r|n| @n ‰ 0, 1, 2

and

exp

„

´πx

2νt



exp2px; t, νq “ exp

„

´πp4π ´ 3xq

2νt



ď exp

„

´π2

2νt



“ r1{2.

Using the fact that the denominator of R greater than or equal to one since it is a sum of positive terms and

the leading term

exp

„

´πx

2νt



exp1px; ν, tq “ exp
” πx

2νt

ı

ě 1 @x P r0, πs,

we find

|Rpx; ν, tq| ď4r1{2 ` exp

„

´πx

2νt



ÿ

n‰0,1,2

2p|n| ` 1qr|n|

ď4r1{2 ` 4
rp2´ rq

p1´ rq2
.

Thus, there exists 0 ă Cpε0q ă 8 such that |Rpx; ν, tq| ď Cpε0qe
´π2

{2νt for all 0 ď νt ď ε0 and x P r0, πs. The

same transformations and estimates give

ˇ

ˇ

ˇ
Sxpx, t; νq ´

π

2νt
sech2

´ πx

2νt

¯
ˇ

ˇ

ˇ
ď
Cpε0q

t
e´1{νt and

ˇ

ˇ

ˇ
Stpx, t; νq `

πx

2νt2
sech2

´ πx

2νt

¯
ˇ

ˇ

ˇ
ď
Cpε0q

t2
e´1{νt

after potentially making Cpε0q larger.

2.2 Solutions via the Cole-Hopf transformation

Based on our numerical simulations (see Section 2.3), we anticipate that solutions to (2.1) rapidly approach a

profile in the family W px, t; ν, x0, cq, and that the specific member in the family that the solution approaches

depends on the initial data u0pxq. In Section 2.1 we discussed the Cole-Hopf transformation but did not take the

initial data into account; we address the initial value problem now and show how the initial data can be used to

determine which specific profile W px, t; ν, x0, cq the solution is expected to approach.

A solution upx, tq given by the Cole-Hopf transformation (2.2) will satisfy the Burgers equation on the real line

with initial data u0pxq provided ψpx, tq satisfies the initial value problem

ψt “νψxx ν ! 1, x P R, t P R`

ψpx, 0q “ ψ0pxq “e
1
2ν F px;u0q, F px;u0q :“ ´

ż x

0

u0psqds. (2.8)
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Solutions to (2.8) can be expressed as a convolution with the heat kernel Gt : RÑ R`

ψpx, tq “

ż 8

´8

ψ0pyqGtpx´ yqdy “
1

?
4πνt

ż 8

´8

e
1
2ν rF py;u0q´

1
2t px´yq

2sdy.

As was argued in [11], if one additionally assumes that
ş2π

0
u0psqds “ 0 then ψ0pxq is 2π-periodic, and hence so

are ψpx, tq and

uCH0 px, t; ν, u0q :“ ´2ν
ψxpx, tq

ψpx, tq
“

1

t

ş8

´8
px´ yq exp

”

1
2ν

´

´
px´yq2

2t ` F py;u0q

¯ı

dy

ş8

´8
exp

”

1
2ν

´

´
px´yq2

2t ` F py;u0q

¯ı

dy
.

Thus uCH0 px, t; ν, u0q is a solution to the periodic problem (2.1) with initial data uCH0 px, t; ν, u0q “ u0pxq. We

assume that F py;u0q has a single global maximum in the interval y P r´π, πq located at y “ y0

y0 “ argmax
yPr´π,πs

ˆ

´

ż y

0

u0psqds

˙

.

Then the solution uCH0 can be estimated as

uCH0 px, t; ν, u0q “
1

t

„

x´ y0 ´ π ´ π tanh

ˆ

πpx´ y0 ´ πq

2νt

˙

`O
ˆ

?
ν `

1

t

˙

, (2.9)

which can be seen by using, for example, Laplace’s method; since the goal of this work is to get away from

the Cole-Hopf transformation, we leave the details to the reader. Comparison of (2.9) with (2.6) indicates that

solutions to (2.1) will asymptotically approach W0px, t; ν, x0q, and that x0 is close to y0 ` π, where y0 depends

on the initial data. If
ş2π

0
u0psqds “ c ‰ 0 then

uCHpx, t; ν, u0, cq “ c` uCH0 px´ ct, t; ν, u0q.

2.3 Numerical results

The discussion in Sections 2.1 and 2.2 indicates that W px, t; ν, x0, cq should be our candidate metastable solution.

Numerical simulations indicate the same result. We numerically computed solutions to (2.1) in Python using

Gudonov’s scheme for conservative PDEs. Letting h “ dx and k “ dt, the CFL condition is

k “ min

"

λh

maxrupx, 0qs
, λh2

*

for λ ă 1. We used λ “ 0.5. The initial condition upx, 0q was given by

upx, 0q “ a0 `

m
ÿ

j“1

raj sinpjxq ` bj cospjxqs,

where m is the number of modes and the coefficients aj were randomly generated. Due to the symmetry of the

modes for j ě 1, the mean of upx, 0q, denoted upx, 0q, is given by a0; furthermore, due to the periodic boundary

conditions the mean of any solution is preserved since

d

dt
u “

ż π

´π

utdx “

ż π

´π

rνuxx ´ uuxsdx “

„

νux ´
1

2
u2


ˇ

ˇ

ˇ

ˇ

π

´π

“ 0.

The time series for a solution with a0 “ 0 is shown in Figure 1. We find that upx, tq rapidly approaches a solution

W0px, t; ν, x0q, defined in (2.5); for all future times, the solution converges to zero in a manner resembling the

behavior of W0px, t; ν, x0q. When a0 ‰ 0 we find that the solution centers around a0 moves to the left for a0 ă 0

and to the right for a0 ą 0. Although we show only one sample time series here, we ran multiple experiments

with different initial conditions; our results indicate that the evolution of a wide class of initial data evolve in a

qualitatively similar fashion to that shown in Figure 1.
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Figure 1: A numerically computed solution to (2.1) with ν “ 0.008 and random initial data. Solution computed

in Python using Gudonov’s method with h “ 2π{350, CFL constant λ “ 0.5, m “ 20 modes for the random initial

data, upx, tq “ a0 “ 0, and y0 :“ argmaxxPr´π,πq
şx
upy, 0qdy « ´2.53. We find that upx, tq rapidly approaches

a solution W0px, t; ν, x0q and then converges to 0 in a manner consistent with the time evolution of W0. Our

computations are consistent with the discussion in Sections 2.1 and 2.2, which indicates that x0 should be near

y0`π “ 0.611. The scale for (a-d) is not the same as for all other figures. Numerical experiments with different

initial data evolved in a qualitatively similar fashion to that shown here.

2.4 Statement of the main results

Our main result concerns the spectrum of the linearization of the viscous Burgers equation about one of the

solutions W px, t0; ν, x0, c0q “ c0 `W0px´ x0 ´ c0t0, t0; νq. We show that if we fix the time, we can compute the

spectrum of the resulting linearized operator and we find that nearby solutions approach one of the solutions

W px, t˚; ν, x˚, c˚q (with |t0´ t˚|, |c0´ c˚|, |x0´x˚| ! 1) at a much faster rate than the solutions W px, t; ν, x0, cq

themselves evolve, justifying our identification of W px, t; ν, x0, cq as the metastable states of the system. The

linearization about W px, t; ν, x0, cq in the moving frame x´ x0 ´ ct ÞÑ x takes the form

vt “ νvxx ´ pW0px, t; νqvqx, (2.10)

and the resulting eigenvalue problem is

Lpν, tqφ “λφ, Lpν, tqφ :“ νφxx ´ pW0px, t; νqφqx, (2.11)
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where Lpν, tq is considered as an operator Lpν, tq : H2
perpr´π, πqq Ñ L2

perpr´π, πqq for every fixed ν and t. We

use the standard inner product on L2
perpr´π, πqq

xu, vy :“

ż π

´π

upxqvpxqdx

and norm }u}L2
per
“ xu, uy. Motivated by the discussion of the solutions W px, t; ν, x0, cq and uCHpx, t; ν, u0, cq

above we define the small parameter ε2 :“ 2νt. Then our main result is as follows.

Theorem 1 There exists ε0 ą 0 such that for all ν, t such that 0 ă ε ď ε0 with ε “
?

2νt, the spectrum

for (2.11) consists entirely of ordered eigenvalues with λ0 “ 0 and the remaining eigenvalues contained on the

negative real-axis. In particular,

λ1 “´ 1{t`O
´

ε1{2e´1{ε2
¯

, λ2 “´ 2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “´ 3{t`O
´

ε´7{2e´1{ε2
¯

, λ4 “´ 4{t`O
´

ε´6e´1{ε2
¯

. (2.12)

and λj ď λ4 for all j ą 4.

Denoting the eigenfunction associated with λn by φnpx´ x0 ´ ct; t, νq we also show

Theorem 2 Fix γ0 ! 1 and let upx, t0; νq “ W px, t0; ν, x0, c0q ` v0px; t0, x0, c0; νq be a solution to (2.1), with

}v0}H1
per
“ γ ď γ0. Then there exists x˚, t˚, c˚ such that v˚px; t˚, x˚, c˚; νq :“ u0px, t0; νq ´W px, t˚; ν, x˚, c˚q

is orthogonal to the first three eigenfunctions for (2.11)

xv˚px; t˚, x˚, c˚; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy “ 0 for j “ 0, 1, 2.

Figure 2: u0 is a solution to (2.1) which at a fixed time t is known to be close to a solution W px, t0; ν, x0, c0q.

We show that by adjusting the parameters pc0, t0, x0q slightly we can also write u0 “ W px, t˚; ν, x˚, c˚q `

v˚px; t˚, x˚, c˚; νq where v˚ is orthogonal to the first three eigenfunctions for (2.11).

See Figure 2. We remark that the discussion in Section 2.2 indicates that the condition upx, t0; νq “W px, t0; ν, x0, c0q`

v0px; t0, x0, c0; νq with }v}H1
per
! 1 holds for most initial data provided that ν, 1{t ! 1.

2.5 Justification of W as a family of metastable solutions

Finally, we discuss why the combination of Theorems 1 and 2 justifies our identification of the states W as a

metastable family. If we attempt to analyze the dynamics of solutions near the Whitham solutions the resulting

linear equation is non-autonomous. However, for parabolic non-autonomous partial differential equations, the

method of “freezing” the coefficients provides good approximations to the evolution, at least over short time

intervals. Since we know that over long-times, all solutions will tend toward this zero solution, this “frozen”

time evolution should give us a reasonable picture of what happens near the Whitham solutions over times of

Op1q.

9



If we think of the spectral picture of the linearized equation (2.10)

Btu “ Lpν, t˚qu “ νuxx ´ pW0uqx ,

(where W0 is now evaluated at a fixed time t˚), then at first glance it looks as if the solutions don’t tend toward

the Whitham family at all, since due to the zero eigenvalue of Lpν, t˚q the linear evolution is not contractive.

However, the point of Theorem 2 is that by choosing the parameters, c, x0 and t0 of W0 appropriately, the

perturbation of the Whitham solution will actually be orthogonal to the eigenfunctions φ0, φ1 and φ2. Thus, we

expect that the linear evolution will result in the perturbation decaying toward the family of Whitham solutions

with a rate governed by fourth eigenvalue, which according to Theorem 1 satisfies

λ3 « ´
3

t˚
.

Thus, if we write t “ t˚ ` τ , and denote the perturbation of the Whitham solution as ppτq, then the size of the

perturbation will decay like

}ppτq}L2 „ e´
3
t˚
τ .

If not rewrite
1

pt˚ ` τq3
“

1

pt˚q3p1` τ{t˚q3
“
e´3 lnp1` τ

t˚
q

pt˚q3
“
e´

3
t˚
τ

pt˚q3

so we have

}ppτq}L2 „
1

t3
.

Since the evolution along the family behaves like 1{t, as can be seen from equation (2.6)

W0px, t; ν, q “
1

t

”

x´ π tanh
´ πx

2νt

¯

`O
´

e´1{νt
¯ı

,

solutions approach the family at a rate that is much faster than the evolution along the family justifying our

characterization of these states as metastable.

3 Eigenvalue problem

In this section we prove Theorems 1 and 2. Without loss of generality we let c “ 0 and x0 “ 0 (otherwise make

the substitution y “ x´x0´ ct). If we consider the eigenvalue equation for the linear operator (2.11) with λ “ 0

we have

B2
xφ0 ´

1

ν
pW0px, t; νqφ0qx “ 0.

Integrating this equation twice we find

φ0px; t, νq :“ exp

„

1

ν

ż x

W0ps, t; νqds



“
C

rψW px, t; νqs
2 (3.1)

is an exact eigenfunction for (2.11) with λ “ 0, where the function ψW px, t; νq was defined in (2.4). To find the

rest of the spectrum we define the transformation

φpx; t, νq “ exp

„

1

2ν

ż x

W ps, t; νqds



rφpx; t, νq “
rC

ψW px, t; νq
rφpx; t, νq. (3.2)

Without loss of generality we choose rC “ 1. A straightforward computation shows that λ is an eigenvalue

for (2.11) with associated eigenvector φpx; t, νq if, and only if, λ is an eigenvalue for the self-adjoint problem

(3.3)

rLpν, tqrφ “λrφ, rLpν, tqrφ :“ ν rφxx ´
1

2

„

BxW0px, t; νq `
1

2ν
W 2

0 px, t; νq



rφ (3.3)
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with associated eigenfunction φ̃ given by (3.2), where we again consider rLpν, tq as an operator

rLpν, tq : H2
perpr´π, πqq Ñ L2

perpr´π, πqq

for every fixed ν and t. In particular, since the transformation φ ÞÑ rφ is bounded with bounded inverse, the spectra

of L and rL are identical. Owing to Sturm-Liouville theory for periodic self-adjoint scalar eigenvalue problems

(c.f. [9, Thm 2.1, 2.14]), the eigenvalues for (3.3) are ordered λ0 ą λ1 ě λ2 ą λ3 ě λ4 ą . . .. Furthermore,

the eigenfunctions rφ2n´1 and rφ2n have exactly 2n zeros in x P rx0 ´ π, x0 ` πq; since the transformation (3.2)

is strictly positive, the eigenfunctions φ2n´1 and φ2n for (2.11) have exactly 2n zeros in x P rx0 ´ π, x0 ` πq

as well. From (3.1) we see that φ0px; t, νq ą 0 has no zeros in x P r´π, πq since W is continuous; hence, all

other eigenvalues λj are contained on the negative real axis. The following Proposition completes the proof of

Theorem 1.

Proposition 3.1 Let ε :“
?

2νt. There exists 0 ă ε0 ! 1 such that for all ε ď ε0 the next four eigenvalues for

(3.3) after λ0 “ 0 are

λ1 “´ 1{t`O
´

ε1{2e´1{ε2
¯

, λ2 “´ 2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “´ 3{t`O
´

ε´7{2e´1{ε2
¯

, λ4 “´ 4{t`O
´

ε´6e´1{ε2
¯

. (3.4)

Furthermore, defining Ispεq :“ rε3{2, 2π ´ ε3{2s, If pεq :“ r´ε3{2, ε3{2s, there exists a 0 ă Cpε0q ă 8 such that the

following estimates of the first two associated eigenfunctions hold for all ε ď ε0

rφ1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
epx´πq

2
{2ε2

rφ1px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supx

ˇ

ˇ

ˇ

ε2

2π2 e
π2
{2ε2sech

`

πx
ε2

˘

rφ1px; t, νq ´
”

sech2
`

πx
ε2

˘

´

1` x2

2ε2 `
ε2

2π2

¯

´ ε2

2π2

ı
ˇ

ˇ

ˇ
ď Cpε0qε

5{2 : x P If pεq

,

/

.

/

-

(3.5a)

rφ2 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ

ε
x´π e

px´πq2{2ε2
rφ2px; t, νq ` 1

ˇ

ˇ

ˇ
ď Cpε0qε : x P Ispεq

supx

ˇ

ˇ

ˇ

ε
2π e

π2
{2ε2

rφ2px; t, νq ´
“

sinh
`

πx
ε2

˘

` πx
ε2 sech

`

πx
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.5b)

See Figure 3 for a representation of Ispεq and If pεq. We will prove Proposition 3.1 in Sections 3.2-3.4 by

computing the associated eigenfunctions φjpx; t, νq and showing that φ1,2px; t, νq have two zeros in x P r´π, πq

and φ3,4px; t, νq have four zeros in x P r´π, πq. The intervals Is,f come up naturally in the proof of Proposition 3.1

and we will discuss them in more detail in Section 3.1. Estimates (3.5) can then be transformed into estimates

on the eigenfunctions for (2.11) via (3.2) since, using the same types of computations as were used to derive (2.6)

we can derive analogous estimates on the transformation function pψW q´1, namely

$

’

&

’

%

supx

ˇ

ˇ

ˇ
exp

”

´
px´πq2

2ε2

ı

`

ψW px, t; νq
˘´1

´ 1
ˇ

ˇ

ˇ
ď Cpε0qe

´1{
?
ε : x P Ispεq

supx

ˇ

ˇ

ˇ
2 exp

”

´ x2

2ε2

ı

exp
”

´ π2

2ε2

ı

`

ψW px, t; νq
˘´1

´ sech
`

πx
ε2

˘

ˇ

ˇ

ˇ
ď Cpε0qe

´1{ε2 : x P If pεq

,

/

.

/

-

.

Thus, the following Proposition is an immediate corollary to Proposition 3.1 and the fact that φ0px; t, νq “

1{pψW px, t; νq2.

Proposition 3.2 Let y “ x´ x0 ´ ct and ε :“
?

2νt. There exists 0 ă ε0 ! 1 and 0 ă Cpε0q ă 8 such that for
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şε3{2

0
sech2

`

πx
ε2

˘

dx ε2

π `Opε2e´1{
?
εq

şε3{2

0
x2sech2

`

πx
ε2

˘

dx ε6

12π `Opε5e´1{
?
εq

şε3{2

0
x4sech2

`

πx
ε2

˘

dx 7ε10

240π `Opε8e´1{
?
εq

şε3{2

0
sech4

`

πx
ε2

˘

dx 2ε2

3π `Opε2e´1{
?
εq

şε3{2

0
x2sech4

`

πx
ε2

˘

dx ε6pπ2
´6q

18π3 `Opε5e´1{
?
εq

şε3{2

0
x4sech4

`

πx
ε2

˘

dx ε10p7π2
´60q

360π3 `Opε8e´1{
?
εq

şε3{2

0
tanh2

`

πx
ε2

˘

dx Opε3{2q
şε3{2

0
x tanh

`

πx
ε2

˘

dx Opε3q
şε3{2

0
xsech2

`

πx
ε2

˘

tanh
`

πx
ε2

˘

dx Opε4q

Table 1: Estimates on the integrals which arise in the computation of }φj} and the

inner-products (3.8). Integrals and expansions computed using Mathematica.

all ε ď ε0 the first three eigenfunctions for (2.11) are

φ0 :

$

’

&

’

%

supy |φ0py; t, νq| ď Cpε0q
ε e´1{

?
ε : y P Ispεq

supy

ˇ

ˇ

ˇ

ˇ

b

4ε2

3π exp
”

´
y2

ε2

ı

φ0py; t, νq ´ sech2
`

πy
ε2

˘

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε
2 : y P If pεq

,

/

.

/

-

(3.6a)

φ1 :

$

’

’

&

’

’

%

supy

ˇ

ˇ

ˇ

ˇ

b

4π3

3ε2 φ1py; t, νq ` 1

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε
1{2 : y P Ispεq

supy

ˇ

ˇ

ˇ

ˇ

b

4ε2

3π exp
”

´
y2

2ε2

ı

φ1py; t, νq ´
”

sech2
`

πy
ε2

˘

´

1` y2

2ε2 `
ε2

2π2

¯

´ ε2

2π2

ı

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε
3{2 : y P If pεq

,

/

/

.

/

/

-

(3.6b)

φ2 :

$

’

&

’

%

supy

ˇ

ˇ

ˇ

ˇ

b

2π2

3
1

ry´πsφ2py; t, νq ` 1

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε : y P Ispεq

supy

ˇ

ˇ

ˇ

b

2
3φ2py; t, νq ´

“

tanh
`

πy
ε2

˘

`
πy
ε2 sech2

`

πy
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : y P If pεq

,

/

.

/

-

. (3.6c)

We remark that in going from Proposition 3.1 to Proposition 3.2 we have introduced a scaling constant which

ensures that all eigenfunctions in (3.6) have been normalized so that ||φj || “ 1, which one can check by us-

ing

exp

„

ax2

ε2



“ 1`
ax2

ε2
`
a2x4

2ε4
`Opε3q @x P If pεq

and the integrals in Table 1. We observe that even though the eigenfunctions (3.5) for (3.3) are exponentially

small for x P If pεq relative to x P Ispεq, undoing transformation (3.2), which is exponentially localized in x P If pεq,

the behavior of eigenfunctions (3.6) for (2.11) in x P If pεq becomes relevant.

Using Proposition 3.2 we prove Theorem 2.

Proof. (of Theorem 2)

v˚ is given by

v˚px; t˚, x˚, c˚; νq :“W px, t0; ν, x0, c0q ` v0px; t0, x0, c0; νq ´W px, t˚; ν, x˚, c˚q
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We will apply the Implicit Function Theorem to

Fpv0;x˚, t˚, c˚; νq :“

¨

˚

˚

˚

˚

˝

xv˚px; t˚, x˚, c˚; νq, φ0px´ x˚ ´ c˚t˚; t˚, νqy

xv˚px; t˚, x˚, c˚; νq, φ1px´ x˚ ´ c˚t˚; t˚, νqy

xv˚px; t˚, x˚, c˚; νq, φ2px´ x˚ ´ c˚t˚; t˚, νqy

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φ0px´ x˚ ´ c˚t˚; t˚, νqy

xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φ1px´ x˚ ´ c˚t˚; t˚, νqy

xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φ2px´ x˚ ´ c˚t˚; t˚, νqy

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

xc0 ´ c˚, φ0px´ x˚ ´ c˚t˚; t˚, νqy

xc0 ´ c˚, φ1px´ x˚ ´ c˚t˚; t˚, νqy

xc0 ´ c˚, φ2px´ x˚ ´ c˚t˚; t˚, νqy

˛

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˝

xv0px, t0;x0, c0; νq, φ0px´ x˚ ´ c˚t˚; t˚, νqy

xv0px, t0;x0, c0; νq, φ1px´ x˚ ´ c˚t˚; t˚, νqy

xv0px, t0;x0, c0; νq, φ2px´ x˚ ´ c˚t˚; t˚, νqy

˛

‹

‹

‹

‹

‚

near pv0;x˚, t˚, c˚q “ p0;x0, t0, c0q, where the inner product xv, wy is the normal periodic L2 inner product. Due

to Cauchy-Schwartz

xv0px; t0, x0, c0; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy ď }v0}L2
per
}φj} ď }v0}H1

per
.

Thus, Fpv0;x0, t0, c0; νq “ 0 for v0 ” 0. Next we show that the matrix

¨

˚

˚

˝

| | |
dF
dx˚

dF
dc˚

dF
dt˚

| | |

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

px˚,t˚,c˚;v0q“px0,t0,c0;0q

is invertible. We use the facts that

d

dx˚
xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy

ˇ

ˇ

px˚,t˚,c˚q“px0,t0,c0q

“ xrBxW0s px´ x0 ´ c0t0, t0; νq, φjpx´ x0 ´ c0t0; t0, νqy

d

dt˚
xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy

ˇ

ˇ

px˚,t˚,c˚q“px0,t0,c0q

“ c0xrBxW0s px´ x0 ´ c0t0, t0; νq, φjpx´ x0 ´ c0t0; t0, νqy

´ xrBtW0s px´ x0 ´ c0t0, t0; νq, φjpx´ x0 ´ c0t0; t0, νqy

d

dc˚
xW0px´ x0 ´ c0t0, t0; νq ´W0px´ x˚ ´ c˚t˚, t˚; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy

ˇ

ˇ

px˚,t˚,c˚q“px0,t0,c0q

“ t0xrBxW0s px´ x0 ´ c0t0, t0; νq, φjpx´ x0 ´ c0t0; t0, νqy.

Since BxW0px, t; νq, φ0px; 2νtq, and φ1px; 2νtq are even functions, and BtW0px, t; νq and φ2px; 2νtq are odd func-

tions centered about x “ nπ, n P Z, we have that

0 “ xrBtW s py, t0; νq, φ0py; t0, νqy

“ xrBtW s py, t0; νq, φ1py; t0, νqy

“ xrBxW s py, t0; νq, φ2py; t0, νqy

“ x1, φ2py; t0, νqy

where y :“ x´ x0 ´ c0t0. In fact,

0 “ x1, φjpy; t0, νqy @j ‰ 0
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since, integrating the eigenfunction equation (2.11) from y “ ´π to π and using periodicity we get

0 “ λn

ż π

´π

φnpy; t0, νqdy,

where λn “ 0 only for n “ 0. Furthermore, using

exp

„

ax2

ε2



“ 1`
ax2

ε2
`
a2x4

2ε4
`Opε3q @x P If pεq,

the asymptotic expansions for the derivatives of W0px, t; νq, equations (2.6),

BxW0px, t; νq “
1

t

„

1´
π2

2νt
sech2

´ πx

2νt

¯

`O
ˆ

1

t
e´1{νt

˙

BtW0px, t; νq “
1

t2

„

´x` π tanh
´ πx

2νt

¯

`
π2x

2νt
sech2

´ πx

2νt

¯

`O
ˆ

1

t
e´1{νt

˙

(3.7)

and the integrals in Table 1, we get that

xrBxW0s py, t0; νq, φ0py; t0, νqy “ ´
1

t0

c

4π3

3ε2

„

1´
ε2p24´ π2q

12π2
`O

`

ε3
˘



x1, φ0py; t0, νqy “

c

3ε2

π
r1`Opε3qs “ 3ε2

2π2

c

4π3

3ε2
r1`Opε3qs

xrBxW0s py, t0; νq, φ1py; t0, νqy “ ´
1

t0

c

4π3

3ε2

”

1`O
´

ε3{2
¯ı

xrBtW0s py, t0; νq, φ2py; t0, νqy “ ´
2

t20

c

3

2π2

„

π3

3
`O pεq



. (3.8)

Finally, using the fact that v P H1
per and integrating by parts we have

d

dx˚
xv0px, t0;x0, c0; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy “ ´ xv0px, t0;x0, c0; νq, Bxφjpx´ x˚ ´ c˚t˚; t˚, νqy

“xBxv0px, t0;x0, c0; νq, φjpx´ x˚ ´ c˚t˚; t˚, νqy

ď}Bxv0}L2
per
ď }v0}H1

per

and similarly for the c˚ and t˚ derivatives. Thus
¨

˚

˚

˝

| | |
dF
dx˚

dF
dc˚

dF
dt˚

| | |

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

px˚,t˚,c˚;v0q“px0,t0,c0;0q

“

¨

˚

˚

˚

˚

˝

xrBxW0s pyq, φ0pyqy xt0 rBxW0s pyq ´ 1, φ0pyqy xc0 rBxW0s pyq ´ rBtW0s pyq, φ0pyqy

xrBxW0s pyq, φ1pyqy xt0 rBxW0s pyq ´ 1, φ1pyqy xc0 rBxW0s pyq ´ rBtW0s pyq, φ1pyqy

xrBxW0s pyq, φ2pyqy xt0 rBxW0s pyq ´ 1, φ2pyqy xc0 rBxW0s pyq ´ rBtW0s pyq, φ2pyqy

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

´ 1
t0

b

4π3

3ε2

”

1´ ε2p24´π2
q

12π2 `O
`

ε3
˘

ı

´

b

4π3

3ε2

”

1´ ε2p6´π2
q

12π2 `O
`

ε3
˘

ı

´ c0
t0

b

4π3

3ε2

“

1`O
`

ε2
˘‰

´ 1
t0

b

4π3

3ε2

“

1`O
`

ε3{2
˘‰

´

b

4π3

3ε2

“

1`O
`

ε3{2
˘‰

´ c0
t0

b

4π3

3ε2

“

1`O
`

ε3{2
˘‰

0 0 2
t20

b

3
2π2

”

π3

3 `O pεq
ı

˛

‹

‹

‹

‹

‚

“: Apεq

which is invertible since detpApεqq “ ´π3

t30

b

8
3 r1`O pεqs which, for all ε sufficiently small, is not equal to zero.

We observe, in particular, that detpApεqq “ Op1q, which implies that the difference }v˚ ´ v0} is small for all

ε ! 1.

Thus it remains to prove Proposition 3.1, which we do in the remainder of this section.
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3.1 Overview and formal asymptotics

In this section we give a formal asymptotic analysis argument to provide intuition for our proof of Proposition 3.1

and the form of the eigenfunctions (3.5). The rigorous proof makes up the majority of this work and is given

in Sections 3.2-3.4. We focus on the n “ 1, 2 cases since all of the technical difficulties arise in these cases.

Let x P r´π, πq; then, using estimates (2.6), the definition ε2 :“ 2νt, and formally dropping the higher order

Ope´1{νtq terms, the eigenfunction problem (3.3) is

ε2Bxxrφn ´

„

1´
π2

ε2
sech2

´πx

ε2

¯

`
1

ε2

´

x´ π tanh
´πx

ε2

¯¯2


rφn “ 2tλnrφn. (3.9)

Let pλn “ 2tλn; rescaling space as ζ :“ x{ε (which, for reasons which will become clear shortly, we call the “slow

scale”) regularizes the problem, so that (3.9) becomes

Bζζ pφn ´

«

1´
π2

ε2
sech2

ˆ

πζ

ε

˙

`

ˆ

ζ ´
π

ε
tanh

ˆ

πζ

ε

˙˙2
ff

pφn “ pλnpφn. (3.10)

The functions tanhp¨q and sechp¨q have highly localized derivatives with

sech pyq “ Ope´yq and tanh p˘yq “ ˘1`Ope´yq for |y| „ 8.

Thus, for |ζ| P r
?
ε, π{εs, the terms 1

ε sechpπζ{εq and 1
ε r˘1´ tanhpπζ{εqs are Op 1

ε e
´1{

?
εq. Then formally taking

the limit εÑ 0 of (3.10) results in the limiting eigenvalue problem

Bζζ pφn ´ r1` pζ ` π{εq
2spφn “pλnpφn, for ζ ă 0 and

Bζζ pφn ´ r1` pζ ´ π{εq
2spφn “pλnpφn, for ζ ą 0.

We re-center the problem by defining ξ :“ ζ ´ π{ε and the fact that rφnpx´ 2πq “ rφnpxq to get

Bξξ pφn ´ r1` ξ
2spφn “pλnpφn (3.11)

for ξ P r´π{ε`
?
ε, π{ε´

?
εs (which corresponds with x P Ispεq in Proposition 3.1). Equation (3.11) has explicit

eigenvalues pλn “ ´2n with associated eigenfunctions

pφnpξq “Hn´1pξqe
´ξ2{2

where Hnpξq are the physicist’s Hermite polynomials, the first few of which are

H0pyq “ 1, H1pyq “ 2y, H2pyq “ 2p2y2 ´ 1q, H3pyq “ 4yp2y2 ´ 3q.

The slow variables, however, do not capture the behavior of the eigenfunctions for |ξ| !
?
ε where the terms

1
ε sechpπξ{εq and 1

ε r˘1 ´ tanhpπξ{εqs are non-negligible. On the other hand, introducing the faster space scale

z :“ x{ε2 (which we henceforth refer to as the “fast scale”), equation (3.3) becomes

Bzz qφn ´
“

ε2 ` π2 ´ 2π2sech2
pπzq ` ε4z2 ´ 2πε2z tanh pπzq

‰

qφn “ ε2pλnqφn. (3.12)

Hence, for z P r´1{
?
ε, 1{

?
εs (which corresponds with x P If pεq in Proposition 3.1), the terms ε2z are Opε3{2q.

Again formally taking the limit εÑ 0 results in the limiting eigenvalue problem

Bzz qφn ` π
2r2sech2

pπzq ´ 1sqφn “0. (3.13)

Equation (3.13) has two linearly independent solutions

P pzq “sechpπzq and Qpzq “ sinhpπzq ` πzsechpπzq.
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We set qφ2pz; pλnq “ Qpzq, anticipating that the fast eigenfunction does not depend, to leading order, on the

eigenvalues pλn. As we will show below, however, the matching occurs on the terms which exponentially grow

like eπz; thus, since sechpπzq is exponentially decaying, for qφ1 we need to include the Opε2q correction so that
qφ1pz; pλnq “ P pzq ` ε2P1pz; pλnq where

P1pz; pλnq “
pλn
π2

coshpπzq `

ˆ

z2

2
` c

˙

sechpπzq

solves

B2
zP1pz; pλnq ` π

2r2sech2
pπzq ´ 1sP1pz; pλnq “

”

1` pλn ´ 2πz tanhpπzq
ı

P pz; pλnq.

P1pxq now includes the exponentially growing term coshpπzq. The fast variables are complementary to the slow

variables in the sense that now they do not capture the behavior of the eigenfunctions for |z| " 1{
?
ε where the

terms ε2z and ε4z2 are non-negligible.

Our decomposition of the interval r´ε3{2, 2π ´ ε3{2s “ Ispεq Y If pεq now becomes clear. For x P Ispεq, we expect

the slow-variable eigenfunctions pφ to give a good approximation to rφ, whereas for x P If pεq we expect the

fast-variable eigenfunctions qφ to give a good approximation. See Figure 3.

We formally construct eigenfunctions rφnpxq for (3.9) by pasting a slow and a fast solution together; due to

symmetry considerations, we glue pφnppx ´ πq{εq with qφ1px{ε
2; pλnq for n odd and to qφ2pz; pλnq for n even. The

formal asymptotic analysis procedure is as follows. We add the formal eigenfunctions for (3.10) and (3.12)

with relative scaling Cn. We determine Cn by requiring pφnppx ´ πq{εq “ Cnqφnpx{ε
2q in the overlap region

|x| « ε3{2. We then subtract the overlap at the matching point x “ ε3{2; we define the overlap function

φ̆n :“ pφnp
?
ε´ π{εq “ Cnqφnp1{

?
εq. We consider x P r0, πs; the analysis for x P r´π, 0s is completely analogous

by symmetry. The resulting eigenfunctions are of the form

rφ1px; t, νq “e´px´πq
2
{2ε2 ` C1

„

1`
x2

2ε2
` ε2c



sech
´πx

ε2

¯

´ C1
ε2

π2
cosh

´πx

ε2

¯

´ φ̆1

rφ2px; t, νq “
x´ π

ε
e´px´πq

2
{2ε2 ` C2 sinh

´πx

ε2

¯

` C2
πx

ε2
sech

´πx

ε2

¯

´ φ̆2

We define the spatial variable

η :“
x

ε3{2
“

ζ
?
ε
“
?
εz

which captures the behavior of rφn in the overlap region. Then, for 0 ă η “ Op1q, the matching conditions

Cnpφnpx{εq “ qφnpx{ε
2q are

e´π
2
{2ε2eηπ{

?
εe´εη

2
{2 “C1

ˆ

1`
εη2

2

˙

2

eπη{
?
ε ` e´πη{

?
ε
´ C1

ε2

2π2

´

eπη{
?
ε ` e´πη{

?
ε
¯

pπ ` ε
?
εηq

ε
e´π

2
{2ε2eηπ{

?
εe´εη

2
{2 “

1

2

´

eπη{
?
ε ´ e´πη{

?
ε
¯

` C2
πη
?
ε

2

eπη{
?
ε ` e´πη{

?
ε
.

which to leading order becomes

e´π
2
{2ε2eηπ{

?
ε “´ C1

ε2

2π2
eπη{

?
ε and

π

ε
e´π

2
{2ε2eηπ{

?
ε “ C2

1

2
eπη{

?
ε

and is satisfied by C1 “
´2π2

ε2 e´π
2
{2ε2 and C2 “

2π
ε e
´π2

{2ε2 with overlap

φ̆1 “ e´π
2
{2ε2eπx{ε

2

and φ̆2 “
π

ε
e´π

2
{2ε2eπx{ε

2

We emphasize that the matching for both eigenfunctions was done using the coefficients in front of the exponen-

tially growing terms eηπ{
?
ε and is why we needed to include the first order correction term in qφ1pzq. Putting

everything together, and subtracting the overlap we get

rφ1px; t, νq “e´px´πq
2
{2ε2 ´ e´π

2
{2ε2

"

2π2

ε2

„

1`
x2

2ε2
` ε2c



sech
´πx

ε2

¯

´ 2 cosh
´πx

ε2

¯

*

´ e´π
2
{2ε2eπx{ε

2

rφ2px; t, νq “
1

ε

”

px´ πqe´px´πq
2
{2ε2 ` 2πe´π

2
{2ε2 sinh

´πx

ε2

¯

´ πe´π
2
{2ε2eπx{ε

2
ı

.
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The analysis for x P r´π, 0s is completely analogous and the results can be extended to x P R by periodicity.

The asymptotic results agree with (3.5). A schematic of the resulting eigenfunctions rφ1 through rφ4 is shown in

Figure 3.

(a) rφ1px; εq where pφ1pξq « e´ξ
2{2 and

qφ1pz; pλ1q « P pzq ` ε2P1pz;´2q

(b) rφ2px; εq where pφ2pξq « ξe´ξ
2{2 and

qφ2pz; pλ2q « Qpzq

(c) rφ3px; εq where pφ3pξq « p2ξ
2
´ 1qe´ξ

2{2 and
qφ1pz; pλ3q « P pzq ` ε2P1pz;´6q

(d) rφ4px; εq where pφ4pξq « ξp2ξ2 ´ 3qe´ξ
2{2 and

qφ2pz; pλ4q « Qpzq

Figure 3: Eigenfunctions for (3.3) constructed by gluing a slow solution pφn to a fast solution qφj. Due to symmetry

considerations, we glue pφn to qφ1 for n odd and to qφ2 for n even. Figures not drawn to scale; in fact, the magnitude

of qφj is exponentially small relative to the magnitude of pφn.

We make a few observations. First, to leading order, the eigenvalues λn “ pλn{2t “ ´n{t are given by the

slow eigenvalue problem (3.10). Secondly, the contribution to rφnpxq from the fast eigenfunctions qφnpx{ε
2q

is exponentially smaller than the contribution from the slow eigenfunctions pφnpx{εq. However, as we have

already remarked, undoing transformation (3.2), which is exponentially localized in x P If pεq, the behavior of

eigenfunctions (3.6) for (2.11) in x P If pεq becomes relevant. Thus it is essential that we carefully construct the

eigenfunctions in both the slow and the fast variables.

In Sections 3.2-3.4 we make the above formal arguments rigorous by computing the eigenfunctions for (3.3).

In Sections 3.2 and 3.3 we rigorously compute the eigenfunction in each of the spatial regimes, Ispεq and If pεq

respectively, using the spatial scaling motivated by the arguments above. We then rigorously match these

solutions at the overlap point x “ ˘ε3{2 in Section 3.4.

3.2 Slow variables

In this section we compute the eigenfunctions for (3.3) for x P Ispεq. Motivated by the formal asymptotic analysis

in Section 3.1 we define the slow variable ξ :“ px´ πq{ε. We call the eigenfunctions in these coordinates pφnpξq;

they are defined for ξ P r´π{ε` ε1{2, π{ε´ ε1{2s “: pIspεq and satisfy

Bξξ pφn ´
”

xWξpξ; εq `xW 2pξ; εq
ı

pφn “ pλnpφn (3.14)
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(a)
`

ψW px, t; νq
˘´1

and also rφ0px; εq. (b) φ0px; εq

(c) φ1px; εq (d) φ2px; εq

Figure 4: (4a) The function in (3.2) used to compute the eigenfunctions for (2.11) from the eigenfunctions for

(3.3): φjpx; εq “ rψW px, t; νqs´1
rφjpx; εq. Additionally, by comparing the formula for the transformation (3.2) to

the formula for eigenfunction φ0pxq (3.1), we get rψW px, t; νqs´2
“ rψW px, t; νqs´1

rφ0px; εq; thus, Figure 4a also

represents the un-transformed eigenfunction rφ0px; εq. (4b) Eigenfunction φ0px; εq “ rψW px, t; νqs´2, which we

explicitly found in (3.1). (4c) and (4d) The eigenfunctions φ1px; εq and φ2px; εq, respectively. Due to the fact

that rψW px, t; νqs´1 is exponentially localized at the origin, the behavior of the fast solutions qφjpz; εq is magnified,

making the behavior and influence of the fast solutions qφjpz; εq visible. Figures not drawn to scale.

where for any t P R`

xW pξ; εq :“
t

ε
W0pεξ ` π, t; νq “

„

ξ ´
2π

ε

ř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq



,

xWξpξ; εq :“t rBxW0s pεξ ` π, t; νq “

«

1´
4π2

ε2

˜

ř

nPZ n
2
yexpnpξ; εq

ř

nPZ yexpnpξ; εq
´

ˆř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

˙2
¸ff

,

and yexpnpξ; εq :“

#

expr´2nπpnπ ´ εξq{ε2s : n ě 0

expr2nπp´nπ ` εξq{ε2s : n ď 0

(3.15)

The form of yexpnpξ; εq follows from the same type of computations as for (2.7) in Proposition 2.1

exp

„

´pεξ ` 2π ´ 2nπq2

2ε2



“ exp

„

´pεξ ´ 2πpn´ 1qq2

2ε2



“ exp

„

´ξ2

2



exp

„

´2πp´εξpn´ 1q ` pn´ 1q2q

ε2



,

factoring out the dominant mode expr´ξ2{2s from the numerator and denominator and shifting n. We remark

that even though xWξpξ; εq is determined by an appropriate transformation of BxW0px, t; νq, it is also true that

BξxW pξ; εq “ xWξpξ; εq; hence our notation.

Motivated by the formal analysis we re-write (3.14) as

Bξξ pφn ´
”

1` ξ2 ` pN pξ; εq
ı

pφn “ p´2n` pΛnqpφn

with pΛn :“ pλn`2n and pN pξ; εq :“ xWxpξ; εq`xW
2pξ; εq´p1`ξ2q, which is equivalent to the first order system

Bξ pUn “ pAnpξqpUn ` pNnppUn, ξ; ε, pΛnq (3.16)

where pUn :“ ppφn, pψnq
T with pψn :“ Bξ pφn,

pAn :“

¨

˚

˝

0 1

1` ξ2 ´ 2n 0

˛

‹

‚

, and pNnppφn, pψn, ξ; ε, pΛnq :“

¨

˚

˝

0
´

pN pξ; εq ` pΛn

¯

pφn

˛

‹

‚

.
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Lemma 3.3 Fix pε1 ą 0. There exists 0 ă pCppε1q ă 8 such that for all ε ď pε1 and ξ P pIspεq,

ˇ

ˇ

ˇ

pN pξ; εq
ˇ

ˇ

ˇ
ď

pCppε1q

ε2
expr´π2{ε2s expr´pπ ´ εξq2{ε2s exprξ2s (3.17a)

ď
pCppε1q

ε2
expr´2π{

?
εs. (3.17b)

Proof. Define r :“ expr´2πpπ´ ε|ξ|q{ε2s. Then, due to (3.15), 0 ăyexpnpξ; εq ď r|n| with r ď expr´2π{
?
εs ă 1;

furthermore, since yexp0pξ; εq “ 1 for all ξ and ε,
ř

nPZ yexpnpξ; εq ě 1. Thus there exists 0 ă pCppε1q ă 8 such that

for all ε ď pε1
ˇ

ˇ

ˇ

pN pξ; εq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

xWxpξ; εq `xW 2pξ; εq ´ p1` ξ2q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

8π2

ε2

ˆř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

˙2

´
4π2

ε2

ř

nPZ n
2
yexpnpξ; εq

ř

nPZ yexpnpξ; εq
´

4πξ

ε

ř

nPZ nyexpnpξ; εq
ř

nPZ yexpnpξ; εq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
4π

ε2

»

–2

˜

ÿ

nPZ
|n|r|n|

¸2

`
ÿ

nPZ
n2r|n| ` ε|ξ|

ÿ

nPZ
|n|r|n|

fi

fl

ď
4π

ε2

«

2

ˆ

2r

p1´ rq2

˙2

`
2rp1` rq

p1´ rq3
` ε|ξ|

2r

p1´ rq2

ff

ď
pCppε1qr

ε2
“

pCppε1q

ε2
expr´2π2{ε2s expr2πξ{εs

“
pCppε1q

ε2
expr´π2{ε2s expr´pπ ´ εξq2{ε2s exprξ2s

ď
pCppε1q

ε2
expr´2π{

?
εs,

using the fact that ε|ξ| ď π ´ ε3{2.

For n P t1, 2, 3, 4u the leading-order evolution equation Bξ pVn “ pAnpξqpVn has the two linearly independent

solutions pVn,jpξq, j P t1, 2u, where

pV1,1pξq :“

¨

˚

˝

e´ξ
2
{2

´ξe´ξ
2
{2

˛

‹

‚

pV1,2pξq :“
1

2

¨

˚

˝

?
πe´ξ

2
{2erfipξq

”

´
?
πξe´ξ

2

erfipξq ` 2
ı

eξ
2
{2

˛

‹

‚

pV2,1pξq :“

¨

˚

˝

ξe´ξ
2
{2

p1´ ξ2qe´ξ
2
{2

˛

‹

‚

pV2,2pξq :“

¨

˚

˝

”

1´
?
πξe´ξ

2

erfipξq
ı

eξ
2
{2

”

´ξ `
?
πpξ2 ´ 1qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

pV3,1pξq :“

¨

˚

˝

p2ξ2 ´ 1qe´ξ
2
{2

ξp5´ 2ξ2qe´ξ
2
{2

˛

‹

‚

pV3,2pξq :“
1

4

¨

˚

˝

”

2ξ `
?
πp1´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

”

4´ 2ξ2 `
?
πp2ξ2 ´ 5qξe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

pV4,1pξq :“

¨

˚

˝

ξp2ξ2 ´ 3qe´ξ
2
{2

p´2ξ4 ` 9ξ2 ´ 3qe´ξ
2
{2

˛

‹

‚

pV4,2pξq :“
1

6

¨

˚

˝

”

2´ 2ξ2 `
?
πξp2ξ2 ´ 3qe´ξ

2

erfipξq
ı

eξ
2
{2

”

2ξpξ2 ´ 4q `
?
πp´2ξ4 ` 9ξ2 ´ 3qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

,

as can be verified by explicit computation. We solve (3.16) for ξ P pIspεq :“ r´π{ε `
?
ε, π{ε ´

?
εs. We expect

pφnpξq is close to the formal eigenfunction Hn´1pξqe
´ξ2{2; thus, owing to symmetry considerations, we assume

that pUnp0q P span
!

pVn,1p0q
)

. We then parametrize the corresponding solution to (3.16) at the matching point

x “ ˘ε3{2, which corresponds with ξ “ ¯pπ{ε´
?
εq “: ¯ξ0.

Proposition 3.4 Define for every ε the norm }up¨q}ε “ supξPpIspεq |upξq|; also define

Λ̆1 :“
1

ξ0
eξ

2
0 pΛ1, Λ̆2 :“

1

ξ3
0

eξ
2
0 pΛ2, Λ̆3 :“

1

ξ5
0

eξ
2
0 pΛ3, and Λ̆4 :“

1

ξ7
0

eξ
2
0 pΛ4.
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Then there exist constants pε0,pρ1,pρ2 ą 0 such that for all 0 ď ε ď pε0 the set of all solutions to (3.16) with

}up¨q}ε ď pρ1, pUnp0q “ pdn pVn,1p0q and |dn|, |Λ̆n| ď pρ2 are given by

pφ1pξ; ε, Λ̆1q “ pd1

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆1|q

ı

e´ξ
2
{2

pψ1pξ; ε, Λ̆1q “ ´ pd1

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆1|q

ı

ξe´ξ
2
{2

pφ2pξ; ε, Λ̆2q “ pd2

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆2|q

ı

ξe´ξ
2
{2

pψ2pξ; ε, Λ̆2q “ ´ pd2

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆2|q

ı

pξ2 ´ 1qe´ξ
2
{2,

pφ3pξ; ε, Λ̆3q “ pd3

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆3|q

ı

p2ξ2 ´ 1qe´ξ
2
{2

pψ3pξ; ε, Λ̆3q “ ´ pd3

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆3|q

ı

ξp2ξ2 ´ 5qe´ξ
2
{2

pφ4pξ; ε, Λ̆4q “ pd4

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆4|q

ı

ξp2ξ2 ´ 3qe´ξ
2
{2

pψ4pξ; ε, Λ̆4q “ ´ pd4

”

1`Opε´2e´2π{
?
ε ln ε` |Λ̆4|q

ı

p2ξ4 ´ 9ξ2 ` 3qe´ξ
2
{2 (3.18)

where the coefficients in front of Λ̆n at the matching point ξ “ ξ0 are

pφ1 :

?
π

4

“

1`Opε2q
‰

Λ̆1
pψ1 : ´

?
π

4

“

1`Opε2q
‰

Λ̆1

pφ2 :

?
π

8

“

1`Opε2q
‰

Λ̆2
pψ2 : ´

?
π

8

“

1`Opε2q
‰

Λ̆2

pφ3 :

?
π

8

“

1`Opε2q
‰

Λ̆1
pψ3 : ´

?
π

8

“

1`Opε2q
‰

Λ̆1

pφ4 :
3
?
π

16

“

1`Opε2q
‰

Λ̆2
pψ4 : ´

3
?
π

16

“

1`Opε2q
‰

Λ̆2. (3.19)

Furthermore,

pφ1p´ξ; ¨q “ pφ1pξ; ¨q, pφ2p´ξ; ¨q “ ´pφ2pξ; ¨q, pφ3p´ξ; ¨q “ pφ3pξ; ¨q, pφ4p´ξ; ¨q “ ´ pφ4pξ; ¨q

pψ1p´ξ; ¨q “ ´ pψ1pξ; ¨q, pψ2p´ξ; ¨q “ pψ2pξ; ¨q, pψ3p´ξ; ¨q “ ´ pψ3pξ; ¨q, pψ4p´ξ; ¨q “ pψ4pξ; ¨q.

We remark that the definition of Λ̆n implies that the eigenvalues for (3.3) are exponentially close to the eigenvalues

for (3.11). This is consistent with our numerical simulations; we will show why this is a valid assumption in

Section 3.4. Note further that (3.18) shows that the eigenfunctions pφn are close to the formal eigenfunctions

Hn´1pξqe
´ξ2{2 as expected from the formal calculations in Section 3.1.

Proof. All solutions to (3.16) with initial data pUnp0q “ pdn pVn,1p0q satisfy the fixed point equation

pUnpξq “pdn pVn,1pξq ` pVn,1pξq

ż ξ

0

xxWn,1pτq, pNnppUnpτq, τ ; ε, pΛnqydτ ` pVn,2pξq

ż ξ

0

xxWn,2pτq, pNnppUnpτq, τ ; ε, pΛnqydτ

(3.20)
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where

xW1,1pξq :“
1

2

¨

˚

˝

”

´
?
πξe´ξ

2

erfipξq ` 2
ı

eξ
2
{2

´
?
πe´ξ

2
{2erfipξq

˛

‹

‚

xW1,2pξq :“

¨

˚

˝

ξe´ξ
2
{2

e´ξ
2
{2

˛

‹

‚

xW2,1pξq :“

¨

˚

˝

”

ξ `
?
πp1´ ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

”

1´
?
πξe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW2,2pξq :“

¨

˚

˝

p1´ ξ2qe´ξ
2
{2

´ξe´ξ
2
{2

˛

‹

‚

,

xW3,1pξq :“
1

4

¨

˚

˝

”

2ξ2 ´ 4`
?
πp5´ 2ξ2qξe´ξ

2

erfipξq
ı

eξ
2
{2

”

2ξ `
?
πp1´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW3,2pξq :“

¨

˚

˝

ξp5´ 2ξ2qe´ξ
2
{2

p1´ 2ξ2qe´ξ
2
{2

˛

‹

‚

xW4,1pξq :“
1

6

¨

˚

˝

r2ξpξ2 ´ 4q `
?
πp´2ξ4 ` 9ξ2 ´ 3qe´ξ

2

erfipξqseξ
2
{2

”

2ξ2 ´ 2`
?
πξp3´ 2ξ2qe´ξ

2

erfipξq
ı

eξ
2
{2

˛

‹

‚

xW4,2pξq :“

¨

˚

˝

p2ξ4 ´ 9ξ2 ` 3qe´ξ
2
{2

ξp2ξ2 ´ 3qe´ξ
2
{2

˛

‹

‚

,

are two linearly independent solutions to the associated adjoint equation xW 1
n “ ´ pA˚npξqxWn, which have been

normalized so that xpVn,i,xWn,jyR2 “ δij . Equation (3.20) is linear and defined for ξ P R; thus solutions exist

and are bounded on any finite interval. However, they may not be uniformly bounded in ε since the interval

of integration pIspεq grows like 1{ε. Our first goal, therefore, is to show that the constant bounding the higher

order terms in (3.18) does not grow with pIspεq. Motivated by the formal analysis we use the ansatz pφnpξq “

Hn´1pξqe
´ξ2{2

punpξq and pψnpξq “
d
dξ

”

Hn´1pξqe
´ξ2{2

ı

pvnpξq to solve (3.20). We focus on n “ 1, 2, since all of the

technical difficulties arise in these cases; the n “ 3, 4 cases can be proven completely analogously. The resulting

evolution equations for pun and pvn are

pu1pξ; ε, Λ̆1q “pd1 ´

?
π

2

ż ξ

0

e´τ
2

erfipτq
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

`

?
π

2
erfipξq

ż ξ

0

e´τ
2
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

“ : pF1,uppu1; ε, pd1, pΛ1q (3.21a)

pv1pξ; ε, Λ̆1q “pd1 ´

?
π

2

ż ξ

0

e´τ
2

erfipτq
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

´
1

2ξ

”

2eξ
2

´
?
πξerfipξq

ı

ż ξ

0

e´τ
2
´

pN pτ ; εq ` pΛ1

¯

pu1pτ ; ε, Λ̆1qdτ

“ : pF1,vppu1; ε, pd1, pΛ1q (3.21b)

pu2pξ; ε, Λ̆2q “pd2 `

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı ´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

´
1

ξ

”

eξ
2

´
?
πξerfipξq

ı

ż ξ

0

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

“ : pF2,uppu2; ε, pd2, pΛ2q (3.21c)

All terms in (3.21a)-(3.21c) are well defined for all ξ since for ξ small we have

ż ξ

0

e´τ
2

dτ “ξ ´
ξ3

3
`Opξ5q and

ż ξ

0

τ2e´τ
2

dτ “
ξ3

3
`Opξ5q.

For ψ2pξq we fix ξ1 ą 1 and make the ansatz

ψ2pξ; ε, Λ̆2q “

$

’

&

’

%

e´ξ
2
{2v̆2pξ; ε, Λ̆2q : |ξ| ď ξ1

e´ξ
2
{2
”

v̆2p|ξ1|; ε, Λ̆2q ` p1´ ξ
2qpv2pξ; ε, Λ̆2q

ı

: |ξ| ě ξ1

,

/

.

/

-
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where v̆2 is defined for |ξ| ď ξ1 and pv2 is defined for |ξ| ě ξ1 and

v̆2pξ; ε, Λ̆2q “pd2p1´ ξ
2q ` p1´ ξ2q

ż ξ

0

τ
“

1´
?
πτe´τerfipτq

‰

´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

`

”

ξeξ
2

´
?
πpξ2 ´ 1qerfipξq

ı

ż ξ

0

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

pv2pξ; ε, Λ̆2q “pd2
ξ2
1 ´ ξ

2

1´ ξ2
`

ż ξ

ξ1

τ
“

1´
?
πτe´τerfipτq

‰

´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

´
1

ξ2 ´ 1

”

ξeξ
2

´
?
πpξ2 ´ 1qerfipξq

ı

ż ξ

ξ1

τ2e´τ
2
´

pN pτ ; εq ` pΛ2

¯

pu2pτ ; ε, Λ̆2qdτ

“ : pF2,vppu2; ε, pd2, pΛ2q. (3.21d)

Now v̆2pξq is clearly uniformly bounded with

v̆2pξ; ε, Λ̆2q “ pd2p1´ ξ
2q `Opε´2e´2π{

?
ε ln ε` |Λ̆2|q for |ξ| ď ξ1

and pF2,v is well-defined for all ξ ě ξ1. Define pDεpρq :“ tu P C0ppIspεqq : }u}ε ď ρu. Our goal is to show there

exists pρ1, pρ2,pε0 ! 1 small enough such that

pFn,jppu; ε, pdn, Λ̆nq : pDεppρ1q ˆ tε ď pε0u ˆ t|pdn|, |Λ̆n| ď pρ2u Ñ pDεppρ1q with j P tu, vu,

whence punpξ; ε, Λ̆nq and pvnpξ; ε, Λ̆nq will be uniformly bounded in pIspεq. Using (3.17a) to bound the nonlinearity

when multiplied by an exponentially small integrand „ e´τ
2

and (3.17b) to bound the nonlinearity when multi-

plied by an algebraic integrand „ e´τ
2

erfipτq, and Claim 3.5 below, there exists a 0 ă C2ppε1q ă 8 such that for

all pu1 P pDεpρq and ε ď pε2,

} pF1,uppu1; ε, pd1, ξ0e
´ξ20 Λ̆1q}ε ď|pd1| `

?
πρ

2

„

˜

pCppε1q

ε2
e´2π{

?
ε `

1

ε
e´π

2
{ε2e2π{

?
εΛ̆1

¸

ż ξ0

0

e´τ
2

erfipτqdτ

`
pCppε1q

ε2
e´π

2
{ε2erfipξ0q

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ` ξ0e

´ξ20 Λ̆1erfipξ0q

ż ξ0

0

e´τ
2

dτ



ď|pd1| `

?
πρ pC2ppε1q

2

„

˜

pCppε1q

ε2
e´2π{

?
ε `

1

ε
e´π

2
{ε2e2π{

?
εΛ̆1

¸

ln ε`
pCppε1q

ε
e´2π{

?
ε ` Λ̆1



.

It is now straightforward to show that there exist constants pρ1, pρ2 ą 0 and 0 ă pε0 ď pε2 such that pFnppun; ε, pdn, e
´ξ20 Λ̆nq P

pDεppρ1q for all pun P pDεppρ1q, |pdn|, |Λ̆n| ď pρ1, and ε ď pε0. We remark that the coefficients in Λ̆1 is Op1q as a conse-

quence of our choice of scaling of pΛ1.

A completely analogous argument holds for pF1,v, pF2,u, and pF2,v, with the following modification

(i) For pF2,v we use the function space pDεpρq :“ tu P C0prξ1, ξ0sq : }u}ε ď ρu.

(ii) For pF2,u, in order to get the specific form of the Opε´2e´2π{
?
ε ln ε` |Λ̆2|q we need

argmax
ξPpIspεq

ˇ

ˇ

ˇ

ˇ

ˇ

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

“ argmax
ξPpIspεq

ˇ

ˇ

ˇ

ˇ

ˇ

1

ξ
eξ

2
”

1´
?
πξe´ξ

2

erfipξq
ı

ż ξ

0

τ2e´τ
2

dτ

ˇ

ˇ

ˇ

ˇ

ˇ

“ ˘ξ0.

In other words, we need to keep the minus signs and still show that the argmax occurs at the end of the

interval pIspεq. But this is true for all ε small enough by using the asymptotic expansions shown in Table 2

to get

lim
ξÑ8

ż ξ

0

τ
”

1´
?
πτe´τ

2

erfipτq
ı

“ lim
ξÑ8

„

1

2
ln

ˆ

1

ξ

˙

`O p1q


Ñ ´8

lim
ξÑ8

1

ξ

”

eξ
2

´
?
πξerfipξq

ı

ż ξ

0

τ2e´τ
2

dτ “ lim
ξÑ8

eξ
2 1

ξ3

„

´

?
π

8
`Op1{ξ2q



Ñ ´8,

and noting that the expressions are bounded on any bounded interval.
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erfipξq eξ
2 1
ξ
?
π

”

1` 1
2ξ2 `O

´

1
ξ4

¯ı

şξ

0
e´τ

2

dτ
?
π

2 ´ e´ξ
2 1

2ξ

”

1´ 1
2ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ2e´τ

2

dτ
?
π

4 ´ e´ξ
2 ξ

4

”

2` 1
ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ4e´τ

2

dτ 3
?
π

8 ´ e´ξ
2 ξ3

4

”

2` 3
ξ2 `O

´

1
ξ4

¯ı

şξ

0
τ6e´τ

2

dτ 15
?
π

16 ´ e´ξ
2 ξ5

4

”

2` 5
ξ2 `O

´

1
ξ4

¯ı

?
π
şξ

0
e´τ

2

erfipτqdτ ´ ln
´

1
ξ

¯

´ 1
2ψ
p0q

`

1
2

˘

`O
´

1
ξ2

¯

şξ

0
τ r1´

?
πτe´τ

2

erfipτqsdτ 1
2 ln

´

1
ξ

¯

` 1
4ψ
p0q

`

´ 1
2

˘

`O
´

1
ξ2

¯

şξ

0
τ3r1´

?
πτe´τ

2

erfipτqsdτ ´
ξ2

4 `
3
4 ln

´

1
ξ

¯

` 3
8ψ
p0q

`

´ 3
2

˘

`O
´

1
ξ2

¯

şξ

0
τ5r1´

?
πτe´τ

2

erfipτqsdτ ´
ξ2pξ2`3q

8 ` 15
8 ln

´

1
ξ

¯

` 15
16ψ

p0q
`

´ 5
2

˘

`O
´

1
ξ2

¯

Table 2: The asymptotic behavior of all terms in (3.20) for ξ " 1 and n P

t1, 2, 3, 4u. The integrals and asymptotic expansions were computed using Mathemat-

ica. ψp0qpxq is the digamma function, where ψp0qp1{2q “ ´γ ´ lnp4q, ψp0qp´1{2q “

2 ´ γ ´ lnp4q, ψp0qp´3{2q “ 8
3
´ γ ´ lnp4q, ψp0qp´5{2q “ 45

15
´ γ ´ lnp4q, and

γ “ limnÑ8

´

řn
j“1

1
n
´ lnn

¯

is the Euler-Mascheroni constant.

(iii) A similar issue as (ii) arises in pF2,v; a completely analogous argument gives the desired result.

Using the uniform bounds on pun we get estimates (3.18). Plugging these estimates back into (3.21), again using

Claim 3.5 and the asymptotic expansions shown in Table 2, we can explicitly integrate the terms multiplying Λ̆n

to leading order at ξ “ ξ0 since pdn is a constant. We obtain (3.19).

The symmetries then follow from the symmetry of the nonlinear term pN pξ; εq which is an even function in ξ

since W px; εq is odd and Wxpx; εq is even in x, as we noted in Section 2.1. Hence, for all even functions punpξq,
pFnppun; ¨q is even. Thus punpξq and pvnpξq are even and the symmetries for pφn and pψn follow from the symmetries

of Hnpξqe
´ξ2{2.

It remains to prove the following claim.

Claim 3.5 Fix pε1 as in Lemma 3.3. Then there exists 0 ă pC2ppε1q ă 8 such that

ż ξ0

0

e´τ
2

erfipτqdτ ď pC2ppε1q ln ε and erfipξ0q

ż ξ0

0

e´τ
2

dτ ď pC2ppε1qεe
π2
{ε2e´2π{

?
ε

and, moreover, such that

erfipξ0q

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ď pC2ppε1qεe

π2
{ε2e´2π{

?
ε.

Proof. The claim follows from the asymptotic expansions in Table 2, the facts that

ż ξ0

0

e´pπ´ετq
2
{ε2dτ ď

ż 8

´8

e´pπ´ετq
2
{ε2dτ “

ż 8

´8

e´τ
2

dτ “
?
π

due to symmetry, and the small argument approximation
ş

?
ε

0
e´τ

2

dτ “
?
ε r1`O pεqs .

3.3 Fast variables

In this section we compute the eigenfunctions for (3.3) for x P If pεq :“ r´ε3{2, ε3{2s. Motivated by the formal

asymptotic analysis in Section 3.1 we define the fast variable z :“ x{ε2. We call the eigenfunctions in these
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coordinates qφnpzq; they are defined for z P r´1{
?
ε, 1{

?
εs “: qIf pεq and satisfy

Bzz qφn ´
”

|Wzpz; εq `|W 2pz; εq
ı

qφn “ ε2pλnqφn (3.22)

where for any t P R`

|W pz; εq :“tW0pε
2z, t; νq,

|Wzpz; εq :“tε2 rBxW0s pε
2z, t; νq,

We remark that even though |Wzpz; εq is obtained through an appropriate transformation of BxW0px, t; νq, it is

also true that |Wzpz; εq “ Bz|W pz; εq; hence our notation.

Motivated by the formal analysis we re-write (3.22) as

Bzz qφn ´
”

π2 ´ 2π2sech2
pπzq ` qN pz; εq

ı

qφn “ ε2pλnqφn

with qN pz; εq :“ |Wxpz; εq `|W 2pz; εq ´ π2r1´ 2sech2
pπzqs, which is equivalent to the first order system

Bz qUn “ qAnpzqqUn ` qNnpqUn, z; ε, pΛnq (3.23)

where qUn :“ pqφn, qψnq
T with qψn :“ Bz qφn, pλn “ ´2n` pΛn from Section 3.2,

qAn :“

¨

˚

˝

0 1

π2r1´ 2sech2
pπzqs 0

˛

‹

‚

, and qNnpqφn, qψn, z; ε, pΛnq :“

¨

˚

˝

0
´

qN pz; εq ` ε2pλn
¯

qφn

˛

‹

‚

.

Lemma 3.6 Define qNalgpz; εq :“ ε2r1´ 2πz tanhpπzqs ` ε4z2 and qNexppz; εq :“ qN pz; εq ´ qNalgpz; εq. Then there

exists qε1 ą 0 and 0 ă qCpqε1q ă 8 such that for all ε ď qε1 and z P qIf pεq,
ˇ

ˇ

ˇ

qNexppz; εq
ˇ

ˇ

ˇ
ď qCpqε1qe

´1{ε2

Thus, for all ε ď qε1, qN pz; εq is exponentially close to qNalgpz; εq. In particular, there exists a constant 0 ă qC1pqε1q ă

8 such that for all ε ď qε1 and z P qIf pεq
ˇ

ˇ

ˇ

qN pz; εq
ˇ

ˇ

ˇ
ď qC1pqε1qε

3{2

Proof. The result follows from the definitions of |W and |Wz in terms of W and estimates (2.6).

The leading order evolution equation Bz qV “ qApzqqV has the two linearly independent solutions qVjpzq, j P t1, 2u,

where

qV1pzq :“

¨

˚

˝

´sechpπzq

πsechpπzq tanhpπzq

˛

‹

‚

and qV2pzq :“
1

2π

¨

˚

˝

sinhpπzq ` πzsechpπzq

π
“

coshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzq
‰

˛

‹

‚

,

as can be verified by explicit computation. Observe that the leading order terms no longer depends on n. Due

to symmetry considerations we construct purely even or purely odd eigenfunctions; thus we assume that either
qUnp0q P span

!

qV1p0q
)

or span
!

qV2p0q
)

. We then parametrize the corresponding solution to (3.16) at the matching

point x “ ˘ε3{2, which corresponds with z “ ˘1{
?
ε “: ˘z0.

Proposition 3.7 Define for every ε the norm }up¨q}ε “ supzPqIf pεq |upzq|. Then for each for n P N there exist

constants ε0,qρ1,qρ2 ą 0 such that for all 0 ď ε ď ε0 the set of all solutions to (3.23) with pλn “ ´2n ` pΛn, and

which satisfy }up¨q}ε ď qρ1, with |dn|, |pΛn| ď qρ2 and qUnp0q “ qdn qV1p0q are given by

qφ1pz; ε, pλnq “qdn

„

´sech2
pπzq

ˆ

1`
ε2z2

2
`
nε2

π2

˙

`
nε2

π2
`Onpε

5{2 ` ε2|pΛn|q



coshpπzq,

qψ1pz; ε, pλnq “qdnπ

„

sech2
pπzq

ˆ

1´
ε2z

π
cothpπzq `

ε2z2

2
`
nε2

π2

˙

`
nε2

π2
`Onpε

5{2 ` ε2|pΛn|q



sinhpπzq (3.24a)
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and for qUnp0q “ qdn qV2p0q are given by

qφ2pz; ε, pλnq “qdn
1

2π

”

1`Onpε` ε
3{2|pΛn|q

ı

rsinhpπzq ` πzsechpπzqs ,

qψ2pz; ε, pλnq “qdn
1

2

”

1`Onpε` ε
3{2|pΛn|q

ı

rcoshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzqs . (3.24b)

Furthermore, qφ1p´zq “ qφ1pzq, qψ1p´zq “ ´ qψ1pzq, qφ2p´zq “ ´qφ2pzq, and qψ2p´zq “ qψ2pzq.

We remark that for all 0 ă N ă 8, it is possible to choose ε0 and pρ2 small enough (where pρ2 was chosen in the

proof of Proposition 3.4) such that |pΛn| ď qρ2 whenever Λ̆n ď pρ2 for all n ď N . We also remark that, unlike in

the analogous proposition for the slow variables, Proposition 3.7, where we computed a different eigenfunction

associated with each eigenvalue pλn « ´2n, here we have only two functions qφ1 and qφ2, which now take pλn as a

parameter. This difference is in accord with the formal analysis which indicates that, at least to leading order,

we expect that the fast eigenfunctions to solve the eigenvalue-independent equation

qφzz ` π
2r2sech2

pπzq ´ 1sqφ “ 0.

Proof. The argument is completely analogous to Proposition 3.4 so we abbreviate the proof. The symmetries

follow from the same argument as in Proposition 3.4. For the other claims we set up the fixed point equation on

the space of bounded functions
qDεpρq :“ tu P C0pqIf pεqq : }u}ε ď ρu.

using the Variation of Parameters formula, the normalized adjoint eigenfunctions

xW1pzq :“
1

2π

¨

˚

˝

´π
“

coshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzq
‰

sinhpπzq ` πzsechpπzq

˛

‹

‚

and xW2pzq :“

¨

˚

˝

πsechpπzq tanhpπzq

sechpπzq

˛

‹

‚

and the ansatz

qφ1pz; ε, pλnq “ coshpπzqqu1pz; ε, pλnq, qφ2pz; ε, pλnq “
1

2π
rsinhpπzq ` πzsechpπzqs qu2pz; ε, pλnq,

qψ1pz; ε, pλnq “π sinhpπzqqv1pz; ε, pλnq, qψ2pz; ε, pλnq “
1

2
rcoshpπzq ` sechpπzq ´ πzsechpπzq tanhpπzqs qv2pz; ε, pλnq.

We emphasize that pu1 exponentially grows in z, rather than exponentially decaying as the linear eigenfunction

sechpπzq might suggest. This ansatz is motivated by the formal asymptotic analysis. Owing to Claim 3.8 below

the following expressions are well defined and bounded on any bounded interval

qu1pz; ε, pλnq “ ´ qd1sech2
pπzq

`
1

2π

„

´ sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s
´

qN pτ ; εq ` ε2pλn

¯

qu1pτ ; ε, pλnqdτ

`
“

tanhpπzq ` πzsech2
pπzq

‰

ż z

0

´

qN pτ ; εq ` ε2pλn

¯

qu1pτ ; ε, pλnqdτ



“ : qF1,upqu1; ε, qd1,´2n` pΛnq (3.25a)

qv1pz; ε, pλnq “qd1sech2
pπzq

`
1

2π

„

sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s
´

qN pτ ; εq ` ε2pλn

¯

qu1pτ ; ε, pλnqdτ

`

„

cothpπzq ´ πzsech2
pπzq `

1

coshpπzq sinhpπzq


ż z

0

´

qN pτ ; εq ` ε2pλn

¯

qu1pτ ; ε, pλnqdτ



“ : qF1,vpqu1; ε, qd1,´2n` pΛnq (3.25b)
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qu2pz; ε, pλnq “qd2

`
1

2π

„

´
1

coshpπzq sinhpπzq ` πz

ż z

0

rsinhpπτq ` πτsechpπτqs
2
´

qN pτ ; εq ` ε2pλn

¯

qu2pτ ; ε, pλnqdτ

`

ż z

0

sechpπτq rsinhpπτq ` πτsechpπτqs
´

qN pτ ; εq ` ε2pλn

¯

qu2pτ ; ε, pλnqdτ



“ : qF2,upqu2; ε, qd2,´2n` pΛnq (3.25c)

qv2pz; ε, pλnq “qd2

`
1

2π

„

tanhpπzq

cosh2
pπzq ` 1´ πz tanhpπzq

ż z

0

rsinhpπτq ` πτsechpπzqs
2
´

qN pτ ; εq ` ε2pλn

¯

qu2pτ ; ε, pλnqdτ

`

ż z

0

sechpπτq rsinhpπτq ` πτsechpπτqs
´

qN pτ ; εq ` ε2pλn

¯

qu2pτ ; ε, pλnqdτ



“ : qF2,vpqu2; ε, qd2,´2n` pΛnq. (3.25d)

Thus pqφn, qψnq satisfies (3.23) if, and only if, qun and qvn satisfy (3.25). Using Lemma 3.6 and Claim 3.8 below we

find that for all qun P qDεpρq, z P qIf pεq there exists 0 ă qC2pqε1q ă 8 such that

} qF1,upqu1; ε, qd1,´2n` pΛnq}ε

ď |qd1| `
ρ

2π

´

qC1pqε1qε
3{2 ` ε2p´2n` pΛnq

¯

ˆ

›

›

›

›

sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ sdτ `
“

tanhpπzq ` πzsech2
pπzq

‰

ż z

0

dτ

›

›

›

›

ε

ď |qd1| `
ρ

2π

´

qC1pqε1qε` ε
3{2p´2n` pΛnq

¯

qC2pqε1qp
?
ε` 1q

It is now straightforward to show that there exists constants qρ1, qρ2 ą 0 and 0 ă qε0 ď qε1 such that qF1,upqun; ε, qdn, qΛnq P
qDεpqρ1q for all qun P qDεpqρ1q, |qdn|, |qΛn| ď qρ1, and ε ď qε0. A completely analogous argument holds for qF1,v, qF2,u,

and qF2,v. Using this uniform bound on qun in (3.25) and again Claim 3.8 we get the expansions2

qu1pz; ε,´2n` pΛnq “qdn

”

´sech2
pπzq `Onpε` ε

3{2|pΛn|q
ı

, qu2pz; ε,´2n` pΛnq “qdn
1

2π

”

1`Onpε` ε
3{2|pΛn|q

ı

,

qv1pz; ε,´2n` pΛnq “qdnπ
”

´sech2
pπzq `Onpε` ε

3{2|pΛn|q
ı

, qv2pz; ε,´2n` pΛnq “qdn
1

2

”

1`Onpε` ε
3{2|pΛn|q

ı

.

We observe that the leading order terms for qu1pzq and qv1pzq at the matching point z “ ˘z0 are the Opεq terms

since sech2
pπz0q “ Ope´2π{

?
εq. Thus we compute the next order terms by plugging the expansion for qu1pzq back

into (3.25a) and integrating explicitly using the form of qNalg and
ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτqdτ “ z tanhpπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτq2πτ tanhpπτqdτ “ πz2 tanh2

pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ s sech2
pπτqτ2dτ

“
1

3π3

ˆ

6πzLi2p´e
´2πzq ` 3Li3p´e

´2πzq ´ 2π3z3 ´ 6π2z2 lnp1` e´2πzq ` 3π3z3 tanhpπzq `
9ζp3q

4

˙

ż z

0

sech2
pπτqdτ “

1

π
tanhpπzq

ż z

0

sech2
pπτq2πτ tanhpπτqdτ “

1

π

`

tanhpπzq ´ πzsech2
pπzq

˘

ż z

0

sech2
pπτqτ2dτ “

1

π3

ˆ

Li2p´e
´2πzq ´ π2z2 ´ 2πz lnp1` e´2πzq ` π2z2 tanhpπzq `

π2

12

˙

where ζpzq is the Riemann zeta function. We get (3.24).
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z Ñ 0 z Ñ8

Li2p´e
´2πzq ´π2

12 ` 2πz lnp2q ´ π2z2 ` π3z3

3 `Opz4q e´2πzr´1`Ope´2πzqs

Li3p´e
´2πzq ´

3ζp3q
4 ` π3z

6 ´ π2z2 lnp4q ` 2π3z3

3 `Opz4q e´2πzr´1`Ope´2πzqs

lnpe´2πz ` 1q lnp2q ´ πz ` π2z2

2 `Opz3q e´2πzr1`Ope´2πzqs

coshpπzq 1` π2z2

2 `Opz4q 1
2e
πz

`

1`O
`

e´2πz
˘˘

sinhpπzq πz ` π3z3

6 `Opz5q 1
2e
πz

`

1`O
`

e´2πz
˘˘

tanhpπzq πz ´ π3z3

3 `Opz5q 1`O
`

e´2πz
˘

sechpπzq 1´ π2z2

2 `Opz4q e´πz
`

2`O
`

e´2πz
˘˘

cschpπzq 1
πz ´

πz
6 `Opz3q e´πz

`

2`O
`

e´2πz
˘˘

cothpπzq 1
πz `

πz
3 `Opz3q 1`O

`

e´2πz
˘

Table 3: The asymptotic behavior of relevant functions for the integrals in (3.25).

Linpxq is the polylogarithm function and ζpzq is the Riemann zeta function. Expan-

sions computed using Mathematica.

It remains to prove the following claim.

Claim 3.8 All integrals in (3.25) are well defined and bounded on any bounded interval. Furthermore, there

exists qε2 ą 0 such that the maximum of each of the following integrals for |z| ď z0 occurs at z “ ˘z0 :“ ˘1{
?
ε

for all ε ď qε2

(i) max|z|ďz0
ˇ

ˇ

“

tanhpπzq ` πzsech2
pπzq

‰ şz

0
dτ

ˇ

ˇ “ z0 `Opz2
0e
´2πz0q

(ii) max|z|ďz0

ˇ

ˇ

ˇ

”

cothpπzq ´ πzsech2
pπzq ` 1

coshpπzq sinhpπzq

ı

şz

0
dτ

ˇ

ˇ

ˇ
“ z0 `Opz2

0e
´2πz0q

(iii) max|z|ďz0
ˇ

ˇ

şz

0
tanhpπτqdτ

ˇ

ˇ “ z0 ´
ln 2
π `Ope´2πz0q

and so that the following integrals are bounded uniformly in z0

(iv)
ˇ

ˇsech2
pπzq

şz

0
rsinhpπτq coshpπτq ` πτ sdτ

ˇ

ˇ

(v)
ˇ

ˇ

ˇ

1
coshpπzq sinhpπzq`πz

şz

0

“

sinh2
pπτq ` πτ tanhpπτq

‰

dτ
ˇ

ˇ

ˇ

(vi)
ˇ

ˇ

ˇ

tanhpπzq
cosh2pπzq`1´πz tanhpπzq

şz

0

“

sinh2
pπτq ` πτ tanhpπzq

‰

dτ
ˇ

ˇ

ˇ

Proof. To show that the integrals are well defined we need to check that they are finite for all z bounded.

This is clear for (i), (iii) and (iv) since each of these expressions at z “ 0 equals zero. For (vi) we observe that

cosh2
pπzq ` 1´ πz tanhpπzq is never zero since cosh2

p0q ` 1´ 0 ¨ tanhp0q “ 2 ą 0 and at πz “ 2

d

dz

“

cosh2
pπzq ` 1´ πz tanhpπzq

‰

ˇ

ˇ

ˇ

ˇ

πz“2

“π
“

2 coshpπzq sinhpπzq ´ tanhpπzq ´ πzsech2
pπzq

‰

ˇ

ˇ

ˇ

ˇ

πz“2

“
π

4
rsinhp4πzq ´ 4πzs sech2

pπzq

ˇ

ˇ

ˇ

ˇ

πz“2

ą 0

since sinhpxq ´ x ě 0 for all x ě 0 (this can be seen since sinhp0q “ 0 and d
dx sinhpxq “ coshpxq ě 1). Thus it

remains to consider (ii) and (v), which may develop a singularity at z “ 0.

(ii) We explicitly evaluate the integral to obtain f2pzq :“
“

cothpπzq ´ πzsech2
pπzq ` sechpπzqcschpπzq

‰

z. Using

2The notation On refers to the fact that the constant may depend on n.
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the asymptotic expansions in Table 3 we get

lim
zÑ0

f2pzq “ lim
zÑ0

„

2

π
`Opz2q



“
2

π

(v) We explicitly integrate to obtain

f5pzq “ :
1

coshpπzq sinhpπzq ` πz

ż z

0

“

sinh2
pπτq ` πτ tanhpπτq

‰

dτ

“
1

coshpπzq sinhpπzq ` πz

„

sinhp2πzq

4π
´
z

2
´

π

24
´

Li2p´e
´2πzq

2π
`
πz2

2
` z lnpe´2πz ` 1q



where Li2pxq is the polylogarithm function. Using the expansions in Table 3 we find

lim
zÑ0

f5pzq “ lim
zÑ0

1

2πz `Opz3q

„

2π2z3

3
`Opz5q



“ lim
zÑ0

1

1`Opz2q

„

πz2

3
`Opz4q



“ 0.

Away from z “ 0 we use the fact that each of the six expressions is even; thus, without loss of generality,

we assume z ě 0. For (i)-(iii) we first show that the maximum occurs at z “ z0 and then use the large

argument asymptotic expansion of the integral to evaluate the maximum. For (iv) - (vi) we explicitly compute

the expression in the limit z Ñ 8 and it is bounded; thus, since we’ve already shown that each expression is

bounded for z “ 0 and they are continuous, they are bounded for all z ą 0.

(i) We explicitly evaluate the integral to obtain f1pzq :“
“

tanhpπzq ` πzsech2
pπzq

‰

z. Then

lim
zÑ8

f1pzq

z
“ 1

so that f1pzq „ z as z Ñ8; thus, since z0 “ 1{
?
ε
εÑ0
ÝÝÝÑ 8, there exists qε2 such that

max
0ďzďz0

f1pzq “ f1pz0q “ z0

`

1`Opz0e
´2πz0q

˘

for all ε ď qε2, where f1pz0q was determined using the asymptotic expansions in Table 3.

(ii) Follows exactly as (i).

(iii) The fact that the maximum occurs at z “ z0 is clear since tanhpπzq is monotone increasing. We integrate

explicitly and use the asymptotic expansion for lnp1` e´2πz0q for z0 " 1 shown in Table 3 to get the asymptotic

expansion.

(iv) We explicitly integrate to obtain

f4pzq :“sech2
pπzq

ż z

0

rsinhpπτq coshpπτq ` πτ sdτ “ sech2πz

„

cosh2
pπzq ´ 1

2π
`
πz2

2



“
1

2π
`

1

2π

“

´1` π2z2
‰

sech2πz.

It is now clear that limzÑ8 f4pzq “ 0.

(v) Using the expansions in Table 3 and f5pzq defined above, we find

lim
zÑ8

f5pzq “ lim
zÑ8

4e´2πz

1`Opze´2πzq

„

e2πz

8π
`Op1q



“ lim
zÑ8

1

1`Opze´2πzq

„

1

2π
`Ope´2πzq



“
1

2π
.

(vi) Follows exactly as (v).

At the matching point z “ 1{
?
ε, we will need the following improved estimates on qφ1 and qψ1, which can be

obtained by substituting (3.24) back into (3.25) one more time.
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Proposition 3.9 Let ε0,qρ1,qρ2 ą 0 be as in Proposition 3.7. Then the set of all solutions to (3.23) with pλn “

´2n` pΛn, }upzq}ε ď qρ1, |dn|, |pΛn| ď qρ2 and qUnp0q “ qdn qV1p0q are given at the matching point z0 “ 1{
?
ε by

qφ1pz0; ε, pλnq “qdn

„

nε2

π2
´
nε3

2π2
`Onpε

7{2 ` ε2|pΛn|q



coshpπz0q,

qψ1pz0; ε, pλnq “qdnπ

„

nε2

π2
´
nε3

2π2
`Onpε

7{2 ` ε2|pΛn|q



sinhpπz0q (3.26)

3.4 Gluing

Using the approximations to the eigenfunctions in the slow and fast variables, from Propositions 3.4 and 3.7

respectively, we show that there exists a unique global eigenfunction for (3.3)

λnrφn :“ νBxxrφn ´
1

2

„

BxW0px, t; νq `
1

2ν
W 2

0 px, t; νq



rφn (3.27)

which can be constructed by gluing a fast eigenfunction to a slow eigenfunction at the overlap point x “ ε3{2.

Due to symmetry considerations, we glue pφn to qφ1 for n odd and to qφ2 for n even. The matching conditions can

be understood as follows. We need both that the functions pφn and qφn are the same at the matching point as

well as their slopes

dpφnppx´ πq{ε, ¨q

dx
“

1

ε
pψnppx´ πq{ε; ¨q and

dqφnpx{ε
2; ¨q

dx
“

1

ε2
qψnpx{ε

2; ¨q.

Since (3.27) is linear, any scalar multiple of pφnpξ; εq and qφnpx; εq is an eigenfunction in the appropriate scaling

regime; thus, instead of matching the slopes directly we impose the condition that the ratio of the fast eigenfunc-

tion and its derivatives is equal to the ratio of the slow eigenfunction and its derivative at the matching point:

fn,1pΛ̆n; εq :“ ε2

«

pψnppx´ πq{ε; ε, Λ̆nq

εpφnppx´ πq{ε; ε, Λ̆1q
´

qψmodpn,2q`1px{ε
2; ε, pλnq

ε2qφmodpn,2q`1px{ε2; ε, pλ1q

ff

ˇ

ˇ

ˇ

ˇ

x“ε3{2
“ 0 (3.28a)

where

pλ1 :“ ´2` ξ0e
´ξ20 Λ̆1, pλ2 :“ ´4` ξ3

0e
´ξ20 Λ̆2, pλ3 :“ ´6` ξ5

0e
´ξ20 Λ̆3, and pλ4 :“ ´8` ξ7

0e
´ξ20 Λ̆4.

The factor ε2 in front regularizes the problem and can be thought of as taking the z, rather than x, derivatives.

We observe that (3.28a) has no explicit dependence on the magnitude of the eigenfunctions. Using the Implicit

Function Theorem we will show that there exists a unique fixed point to (3.28a) near ε “ Λ̆n “ 0. For this Λ̆n,

we ensure that the magnitude of the slow and fast eigenfunction at the same at the matching point by showing

that there exists a unique Cn such that

fn,2pCn, Λ̆npεq; εq :“
”

pφnppx´ πq{ε; ε, Λ̆nq ´ Cnqφmodpn,2q`1px{ε
2; ε, pλnq

ı

ˇ

ˇ

ˇ

ˇ

x“ε3{2
“ 0 (3.28b)

which we will again show is true using the Implicit Function Theorem. We start with condition (3.28a). Using

the expansions (3.18) and (3.24) at the matching point x “ ε3{2 (equivalently, ξ “ p´π ` ε3{2q{ε and z “ 1{
?
ε)

with coefficients in front of Λ̆n given by (3.19) we get

1

π
f1,1pΛ̆1; εq “

”

1´
?
π

4 Λ̆1 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆1|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

4 Λ̆1 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆1|q

ı

´

”

1`Opε3{2 ` 1
ε e
´p´π`ε3{2q2{2ε2 |Λ̆1|q

ı ”

1`Ope´2π{
?
εq

ı

”

1`Opε3{2 ` 1
ε e
´p´π`ε3{2q2{2ε2 |Λ̆1|q

ı .
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1

π
f2,1pΛ̆2; εq “

”

1´
?
π

8 Λ̆2 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆2|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

8 Λ̆2 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆2|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε` 1?
ε
e´p´π`ε

3{2
q
2
{2ε2 |pΛ2|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

”

1`Opε` 1?
ε
e´p´π`ε3{2q2{2ε2 |pΛ2|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

1

π
f3,1pΛ̆3; εq “

”

1´
?
π

8 Λ̆3 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆3|q

ı

“

1`Opε3{2q
‰

”

1`
?
π

8 Λ̆3 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆3|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε3{2 ` 1
ε3 e

´p´π`ε3{2q2{2ε2 |Λ̆3|q

ı ”

1`Ope´2π{
?
εq

ı

”

1`Opε3{2 ` 1
ε3 e

´p´π`ε3{2q2{2ε2 |Λ̆3|q

ı

1

π
f4,1pΛ̆4; εq “

”

1´ 3
?
π

16 Λ̆4 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆4|q

ı

“

1`Opε3{2q
‰

”

1` 3
?
π

16 Λ̆4 `Opε´2e´2π{
?
ε ln ε` ε2|Λ̆4|q

ı

“

1`Opε3{2q
‰

´

”

1`Opε` 1
ε2
?
ε
e´p´π`ε

3{2
q
2
{2ε2 |pΛ4|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

”

1`Opε` 1
ε2
?
ε
e´p´π`ε3{2q2{2ε2 |pΛ4|q

ı ”

1`Op 1?
ε
e´2π{

?
εq

ı

It is clear that fn,1p0; 0q “ 0 and
dfn,1

dΛ̆j

ˇ

ˇ

ˇ

ˇ

pΛ̆n;εq“p0;0q

‰ 0

so that the hypotheses of the Implicit Function Theorem are satisfied. Expanding the unique function Λ̆npεq in

orders of ε we find

Λ̆1 “ Opε3{2q, Λ̆2 “ Opεq, Λ̆3 “ Opε3{2q, and Λ̆4 “ Opεq.

Next we solve (3.28b) using the expansions for Λ̆npεq and obtain the expressions

e´π{
?
εf1,2pC1,Opε3{2q; εq :“

”

1`Opε3{2q
ı

e´π
2
{2ε2e´ε{2 ´

C1ε
2

π2

”

1´ ε{2`Opε3{2q
ı

„

1

2
`Ope´2π{

?
εq



e´π{
?
εf2,2pC2,Opεq; εq :“

π

ε
r1`Opεqs

”

´1`Opε3{2q
ı

e´π
2
{2ε2e´ε{2 ´

C2

2π
r1`Opεqs

„

1

2
`O

ˆ

1
?
ε
e´2π{

?
ε

˙

e´π{
?
εf3,2pC3,Opε3{2q; εq :“

π2

ε2

”

1`Opε3{2q
ı ”

2`Opε3{2q
ı

e´π
2
{2ε2e´ε{2 ´

3C3ε
2

π2
r1`Opεqs

„

1

2
`Ope´2π{

?
εq



e´π{
?
εf4,2pC4,Opεq; εq :“

π3

ε3
r1`Opεqs

”

´2`Opε3{2q
ı

e´π
2
{2ε2e´ε{2 ´

C4

2π
r1`Opεqs

„

1

2
`O

ˆ

1
?
ε
e´2π{

?
ε

˙

.

We define

2π2C̆1 :“ ε2eπ
2
{2ε2eε{2C1, ´4π2C̆2 :“ εeπ

2
{2ε2eε{2C2,

4π4

3
C̆3 :“ ε4eπ

2
{2ε2eε{2C3, and ´8π4C̆4 :“ ε3eπ

2
{2ε2eε{2C4

and

f̆1,2pC̆1; εq :“epπ´ε
3{2
q
2
{2ε2f1,2

ˆ

2π2

ε2
e´π

2
{2ε2e´ε{2C̆1,Opε3{2q; ε

˙

f̆2,2pC̆2; εq :“εepπ´ε
3{2
q
2
{2ε2f2,2

ˆ

´
4π2

ε
e´π

2
{2ε2e´ε{2C̆2,Opεq; ε

˙

f̆3,2pC̆3; εq :“ε2epπ´ε
3{2
q
2
{2ε2f3,2

ˆ

4π4

3ε4
e´π

2
{2ε2e´ε{2C̆3,Opε3{2q; ε

˙

f̆4,2pC̆4; εq :“ε3epπ´ε
3{2
q
2
{2ε2f4,2

ˆ

´
8π4

ε3
e´π

2
{2ε2e´ε{2C̆4,Opεq; ε

˙

.
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Now it is clear that f̆n,2 p1; 0q “ 0 and

df̆n,2

dC̆n

ˇ

ˇ

ˇ

ˇ

pC̆n;εq“p1;0q

‰ 0

so that the hypotheses of the Implicit Function Theorem are again satisfied. Expanding the unique function

C̆npεq in orders of ε we find C̆npεq “ 1`Opεq, and, in particular, C̆1pεq “ 1` ε{2`Opε3{2q.

Putting everything together, and recalling the definitions ε :“
?

2νt, Ispεq :“ rε3{2, 2π´ε3{2s, If pεq :“ r´ε3{2, ε3{2s,

we get that

λ1 “
1

2t

´

´2`Opξ0e´ξ
2
0 Λ̆1q

¯

“ ´1{t`Opε1{2e´1{ε2q,

λ2 “
1

2t

´

´4`Opξ3
0e
´ξ20 Λ̆2q

¯

“ ´2{t`O
´

ε´2e´1{ε2
¯

,

λ3 “
1

2t

´

´6`Opξ5
0e
´ξ20 Λ̆3q

¯

“ ´3{t`O
´

ε´7{2e´1{ε2
¯

,

λ4 “
1

2t

´

´8`Opξ7
0e
´ξ20 Λ̆4q

¯

“ ´4{t`O
´

ε´4e´1{ε2
¯

are eigenvalues for (3.27) with associated eigenfunctions

rφ1 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ
epx´πq

2
{2ε2

rφ1px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supx

ˇ

ˇ

ˇ

ε2

2π2 e
π2
{2ε2sech

`

πx
ε2

˘

rφ1px; t, νq ´
”

sech2
`

πx
ε2

˘

´

1` x2

2ε2 `
ε2

2π2

¯

´ ε2

2π2

ı
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P If pεq

,

/

.

/

-

(3.29a)

rφ2 :

$

’

&

’

%

supx

ˇ

ˇ

ˇ

ε
x´π e

px´πq2{2ε2
rφ2px; t, νq ` 1

ˇ

ˇ

ˇ
ď Cpε0qε : x P Ispεq

supx

ˇ

ˇ

ˇ

ε
2π e

π2
{2ε2

rφ2px; t, νq ´
“

sinh
`

πx
ε2

˘

` πx
ε2 sech

`

πx
ε2

˘‰

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.29b)

rφ3 :

$

’

&

’

%

supy

ˇ

ˇ

ˇ

ε2

2px´πq2´ε2
epx´πq

2
{2ε2

rφ3px; t, νq ` 1
ˇ

ˇ

ˇ
ď Cpε0qε

3{2 : x P Ispεq

supy

ˇ

ˇ

ˇ

3ε4

4π4 e
π2
{2ε2sech

`

πx
ε2

˘

rφ3px; t, νq ´ sech2
`

πx
ε2

˘

ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.29c)

rφ4 :

$

’

&

’

%

supy

ˇ

ˇ

ˇ

ˇ

ε3

px´πqr2px´πq2´3ε2s
epx´πq

2
{2ε2

rφ4px; t, νq ` 1

ˇ

ˇ

ˇ

ˇ

ď Cpε0qε : x P Ispεq

supy

ˇ

ˇ

ˇ

ε4

4π3 e
π2
{2ε2csch

`

πx
ε2

˘

rφ4px; t, νq ´ 1
ˇ

ˇ

ˇ
ď Cpε0qε : x P If pεq

,

/

.

/

-

(3.29d)

which are expansions (2.12) and (3.5). Proposition 3.1 now follows from following proposition and Sturm-Liouville

theory for periodic boundary conditions (c.f. [9, Thms 2.1, 2.14]), which states that the eigenvalues are strictly

ordered λ0 ą λ1 ě λ2 ą λ3 ě λ4 ą . . . and that an eigenfunction with exactly 2n crossings of zero in x P r´π, πq

is the eigenfunction associated either with λ2n´1 or with λ2n.

Proposition 3.10 Fix ε0 ! 1 such that the eigenfunctions rφjpx; εq are given as in (3.29) for all 0 ď ε ď ε0.

Then rφ1px; εq and rφ2px; εq have exactly two zeros in the interval x P r´π, πq and the eigenfunctions rφ3px; εq and
rφ4px; εq have exactly four zeros in the interval x P rε3{2, 2π ´ ε3{2q for all 0 ď ε ď ε0.

Proof. The n “ 2, 4 cases are clear since sinhpπx{εq “ 0 at x “ 0 P If pεq,
x´π
ε has a single zero at x “ π P Ispεq,

and 2
`

x´π
ε

˘2
´ 3 has two zeros at x “ π ˘ ε

a

3{2 P Ispεq, and by making ε0 potentially smaller so that

´1`Opε0q ă 0. The result for n “ 1, 3 is then a direct consequence of Sturm-Liouville theory since λ0 ą λ1 ą λ2

and λ2 ą λ3 ą λ4.
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4 Discussion

In this work we have proposed a candidate metastable family for Burgers equation with periodic boundary

conditions, which we denote W . The metastable family is parametrized by three parameters: the spatial location

x0, time t0, and mean c0. Our choice of metastable family was motivated by our numerical experiments, one

example of which is shown in Figure 1. We furthermore proposed an explanation for the metastable behavior

of W based on the spectrum of the operator L which results from linearizing the Burgers equation about W .

In particular, we showed that by appropriately varying the parameters x0, t0, and c0, perturbations to W can

be made orthogonal to the first three eigenfunctions for L; we furthermore showed why this means that initial

data “near” the metastable family converges to the family much faster than the evolution along the family.

These results are summarized in Theorems 1 and 2. From a technical perspective, we derived the first five

eigenvalues for L using Sturm-Liouville theory and ideas from singular perturbation theory. In particular, we

show that there are two relevant space regimes, which we call the “slow” and “fast” space scales; we construct the

eigenfunctions in each regime separately and then rigorously glue the functions together using a Melnikov-like

computation.

It is worth reiterating that our results show that the spectrum for L is, to leading-order, independent of the

viscosity ν; this result is particularly interesting since our analysis is not valid for the inviscid equation. Further-

more, our results are in contrast to [2], in which the authors proposed a metastable family for the Navier–Stokes

equation with periodic boundary conditions, denoted ωb, and provided numerical evidence and analytical argu-

ments which indicate that the real part of the least negative eigenvalue for the operator obtained from linearizing

the Navier–Stokes equation about ωb is proportional to
?
ν; in other words, the metastable behavior of ωb does

depend on the viscosity. On the other hand, in [4], Bedrossian, Masmoudi and Vicol show that the solution

behavior for the Navier–Stokes equation in a neighborhood of the Couette flow depends on the time-regime:

for small enough time scales the solution behavior is governed by the inviscid limit of Navier–Stokes, whereas

viscid effects dominate after long enough times. Thus, our results raise the question about whether there is

an even earlier time regime for the Navier–Stokes with periodic boundary conditions than that studied in [2],

and a potentially different metastable family, in which convergence to a metastable family is independent of the

viscosity.
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