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Abstract

A “metastable solution” to a differential equation typically refers to a family of solutions for which nearby
initial data converges to the family much faster than evolution along the family. Metastable families have
been observed both experimentally and numerically in various contexts; they are believed to be particularly
relevant for organizing the dynamics of fluid flows. In this work we propose a candidate metastable family
for the Burgers equation with periodic boundary conditions. Our choice of family is motivated by our
numerical experiments. We furthermore explain the metastable behavior of the family without reference to
the Cole-Hopf transformation, but rather by linearizing the Burgers equation about the family and analyzing
the spectrum of the resulting operator. We hope this may make the analysis more readily transferable to
more realistic systems like the Navier—Stokes equations. Our analysis is motivated by ideas from singular
perturbation theory and Melnikov theory.

1 Introduction

In the study of differential equations one often is interested in understanding the long-term asymptotic behavior
of solutions; the long term behavior could include, for example, convergence to a periodic orbit or a steady-state.
One typical approach is to prove the existence of a particular solution and then to argue that nearby initial
data converge to that solution; in the case of a steady-state or periodic orbit, such arguments often involve

computations of the linear spectrum.

In this work we address a slightly different question, which arises when the asymptotic state only emerges after a
“long” time; in this case, it may be that the intermediate transient behavior of the system is physically relevant.
In other words, we are not interested in what the asymptotic state is, but how a wide class of initial data approach
it. To address this question we analyze what are known as “metastable” solutions. The term metastable solution
often refers to a family of profiles with the following properties: (1) the asymptotic behavior of the system is not
contained within the family; (2) a profile in the family evolves within the family towards an asymptotic state
of the system; (3) “nearby” initial data remain near the family for all forward times; and (4) the timescale on
which nearby initial data approach the family is much faster than the evolution within the family towards the

asymptotic state. Property (4) is what makes metastable solutions of physical interest.

Metastable solution families are of particular interest in fluid dynamics. For example, in the Navier—Stokes

equation with periodic boundary conditions
Oyl = VAU — @ - ViU + Vp, V.-u=0, 1eR? v«
w(z,y,t) = d(z + 2m,y,t), and uU(x,y,t) =u(z,y+ 2m,t), (1.1)

which describes two-dimensional viscous fluid flows, vortex pairs known as “dipoles” were numerically observed
[10, 17]; the dipoles emerge quickly and persist for long times before eventually converging to the trivial state.



The metastable states described in [10, 17] are characterized in terms of their vorticity w, defined as w := V x 4.
In [17] a second metastable family known as “bar” states—solutions with constant vorticity in one spatial direction
and periodic vorticity in the other—were observed; which of the two candidate metastable families dominates the

dynamics depends on the initial data.

A related context in which metastability has been observed and studied is Burgers equation. Although the
Burgers equation is unphysical, it is nevertheless relevant to fluid dynamics since it is, in some sense, the
one-dimensional simplified analog of the Navier-Stokes equation. Thus, one often uses the Burgers equation
as a test case for Navier—Stokes: one hopes that by first observing and analyzing some phenomenon in the
Burgers equation, that insight can be translated into an understanding of related phenomena in Navier—Stokes.
Metastable solutions in Burgers equation were observed numerically in the viscous Burgers equation on an

unbounded domain [7] in the so-called “scaling variables”
9 1
Orw = vigw + iﬁg(fuz) — Wwg welR, v«l. (1.2)

The scaling variables

, T=In(t+1), and wu(zt)=

\/117+tw (\/%,ln(l + t))

have been defined so that a diffusion wave—a strictly positive triangular profile which approaches zero for |z| —
oo—is a steady state solution to (1.2) (otherwise, all solutions to Burgers equation in the unscaled variables
dyu = vd%u — uu, approach the zero solution). In [7] the authors observe that “diffusive N-waves”—profiles with
a negative triangular region immediately followed by a positive triangular region so that the profile resembles a

lopsided backwards “N”—quickly emerge before the solution converges to a diffusion wave.

Burgers equation is much more amenable to analysis than the Navier-Stokes equation and there has been a
fair amount of theoretical work to explain the observations of [7]. Already in [7], the authors used the Cole-
Hopf transformation to derive an analytical expression for the diffusive N-waves. In [1], the authors provide
a more dynamical systems motivated explanation of metastability. First they constructed a center-manifold
for (1.2) consisting of the diffusion waves, denoted A,;(§), which is parametrized by the solution mass. Each
of these diffusion waves represents the long-time asymptotic state of all integrable solutions with initial mass
M and they are also fixed points in the scaling variables. Through each of these fixed points there is a one-
dimensional manifold, parameterized by 7, consisting of exactly the diffusive N-waves. Then, using the Cole-Hopf
transformation, the authors show that solutions converge toward the manifold of N-waves on a time scale of
order 7 = O(|Inv||), that solutions remain near wy (&, 7) for all future times, and that that evolution along
wn (&, 7) towards Aps(€) is on a time scale of the order 7 = O(1/v). In particular, convergence to the family is
faster than the subsequent evolution along the family. We emphasize that their analysis makes strong use of the

Cole-Hopf transformation.

In [2] the authors proposed an explanation of the metastability of the bar-states of (1.1) as follows. They first
propose as candidates for the metastable family the exact solutions of the Navier-Stokes equations with vorticity
distribution

—vt

Wl(z,y,t) = e " cos(z)?,

which is again parametrized by time. Solutions in this family converge to the long-time limit (which is the zero
solution in this case) on the viscous time scale t ~ % In order to understand the convergence of nearby initial

data to the metastable family, the authors linearize the vorticity formulation of (1.1)

Oiw = vAw — 4 - Vw, i = (—0,A 'w, 0, A7 w). (1.3)

! Alternatively, the bar state could be @’ (x,y,t) = e~ “*sin(z), or the solution could instead be periodic in the y direction and
constant in the z direction.



about w®(z,y,t). The linearization results in a nonlocal time-dependent linear operator
L(t) = vA —ae " sinzd, (1 + A™H).

Using hypercoercivity techniques motivated by the work of Villani [14] and Gallagher, Gallay, and Nier [6],
the authors show that solutions to a modified operator £*(t) = vA — ae™"'sinzd,, which differs from L(t)
by removing the non-local, but relatively compact, term, decay with rate at least e~V¥t. Additionally, they
provide numerical evidence that the real part of the least negative eigenvalue for the nonlocal operator L(t) is
proportional to 4/v. These arguments, in combination with the fact that the rate of decay of solutions to (1.3)
to zero is given by the much slower viscous time scale provides a mathematical explanation for the metastable
behavior of the family of bar states.

What is notable is that the mechanism for metastability as well as the relevant time scales are different in each
case [1] versus [2]. Thus, the goal of this work is to re-visit the Burgers equation, albeit with periodic boundary
conditions so that the boundary conditions are more similar to those of (1.1), in order to devise a mathematical
explanation for metastability which is more easily transferable to Navier—Stokes. To that end, we intentionally
avoid the Cole-Hopf transformation and instead use spectral analysis from the linearization about the candidate
metastable family. We find that the convergence to the metastable family does not depend, to leading order, on v,
even though our analysis depends on the presence of the viscosity term in the equation and thus the calculations
below do not apply to the inviscid equation. This is in contrast to the results from [2] for the Navier—Stokes
equation in which the rate of approach toward the metastable solutions occurs at a v dependent rate, albeit a

much faster rate than the v dependent time of approach toward the final asymptotic state.

From a technical perspective, the linearization about the metastable states leads to a singularly perturbed
eigenvalue problem, in which the perturbation parameter is the viscosity v. Our strategy is to construct the
eigenfunction-eigenvalue pairs in each of two spatial scaling regimes (denoted the “slow” and “fast” scales) and
then to glue the eigenfunction pieces together in an appropriate “overlap” region (see Figure 3 for a schematic
representation). We show, in fact, that the eigenvalues are given, to leading order, by the slow-scale eigenvalues;
the rigorous “gluing” of the fast and slow solutions is done with the aid of a Melnikov-like computation which
gives the first order correction of the eigenvalues. The use of such Melnikov-like computations for piecing together
solutions has a long tradition, generally called Lin’s method [8], which has been applied to the construction of
eigenfunctions in, for example, [12]. The idea of piecing together slow and fast eigenfunctions in a singularly

perturbed eigenvalue problem follows, for example, from [5].

It is worth noting another context in which singularly perturbed eigenvalue problems have arisen in connection
with a slightly different type of metastability, including in variants of Burger’s equation. In [13, 15] metastability
refers to the very slow motion of internal layers in nearly steady states of reaction diffusion equations and diffu-
sively perturbed conservation laws. While different in details and physical context, the notion of metastability
in these papers is similar in spirit to our discussion in that it also describes the slow motion along a family
of solutions (in this cases, solutions in which the internal layer occurs at different positions) before the system
reaches its final state. The motion of those internal layers is explained by an exponentially small shift in the
zero eigenvalue of the operator describing the equation linearized about a stationary state. In contrast, in our
problem, the zero eigenvalue is unchanged, regardless of which member of the family of metastable solutions
we linearize around, but the remaining eigenvalues (or at least the four additional eigenvalues that we compute

here) undergo exponentially small shifts.

Another recent study of metastability in the Navier—-Stokes equation, which is similar to our work in context, but
very different in methods is the study of the inviscid limit of the Navier-Stokes equations in the neighborhood
of the Couette flow, by Bedrossian, Masmoudi and Vicol [4] (see also [3]). In this paper the authors prove
an enhanced stability of the Couette flow by using carefully chosen energy functionals. They prove that for
times less than (’)(Rel/ %), the system approaches the Couette flow in a way governed by the inviscid limit (i.e.

the Euler equations) while for time scales longer than this viscosity effects dominate; here Re is the Reynold’s



number of the flow. Since our results show that our metastable family attracts nearby solutions at a rate which
is, to leading order, independent of the viscosity, we believe that they are analogous to the initial phase of the
evolution analyzed in [4] in which inviscid effects dominate. It would be interesting to see if the transition to

viscosity dominated evolution could be observed in this Burgers equation context as well.

2 Set-up and statement of main results

In this section we discuss our candidate family of metastable solutions, denoted W (x,t; v, g, c), to the viscous

Burgers equation with periodic boundary conditions

Oy =v0%u — uu, v«l,zeR, teRt
u(zx,0) =ug(x) ug € H;er([(), 2m))
u(x + 2m,t) =u(x,t). (2.1)

We also present numerical and analytical justification for our choice. The analytical justification given in Sec-
tion 2.2 relies, again, heavily on the Cole-Hopf transformation. Thus, although it provides powerful evidence
for the behavior of solutions near W (x,t; v, xo, ¢), the result provides no insight into techniques one might use
to analyze Navier-Stokes. Thus we provide an alternative explanation which relies on information about the
spectrum of the linear operator obtained from linearizing (2.1) about the metastable family W (x, t; v, z, ¢); the
statement and discussion of these results can be found in Sections 2.4 and 2.5. In what follows we make the
technical assumption that the primitive of ug(z) attains a unique global maximum on [0, 27). We remark that
this assumption is generic since if the primitive of ug(x) does not attain a global maximum on [0, 27) then for all
€ > 0 there exists a function v(z) with [v|g1 =< € such that the primitive of ug(z) + v(z) does attain a global

maximum, where

bl = [ [ + @2 o

per

is the usual periodic H' norm.

2.1 Family of metastable solutions

It is well known, using the Cole-Hopf transformation, that

u(z,t) = —QVM (2.2)

U(z,1)

is a solution to Burgers on the real line if ¢ (x, t) satisfies the heat equation
Qﬁt =Vw$w v«l, xe R, teRT. (23)

A family of periodic solutions to (2.3) can be constructed by placing heat sources on the real line spaced 27

apart centered at x = 7(2n — 1)

1 —(z + 7 — 2n7)?
’(/)W({I},t;l/) = exp [ ] . (2.4)
Varvt 7% 4ut

Then every function in the family

WV 1 Znez(® + T — 2nm) exp [—(ﬂ¢++t27”f>2]
T (2.5)
w — = _
w t (z+7—2nm)
Yinez OXP [T]



is 2m-periodic and hence a solution to (2.1). We have denoted solutions (2.5) by Wy to indicate the fact that one
can find them in, for example, the classic text by G.B. Whitham [16, §4.6]. Using formula (2.5) one can check
that Woy(nm,t;v) = 0 and that Wy is an odd function about nw, for n € Z.

The family of solutions (2.5) is parametrized by t. We can extend the family to include two additional parameters
as follows. Firstly, we can replace « by & — x, effectively shifting the origin of the z-axis. Next, suppose u(x,t)

is a solution to (2.1). Then u.(z,t) := ¢ + u(x — ct, t) solves (2.1) as well since
Ostte = Optl — €Oyt = V021Ue — (Ue — €)OplUe — COxU = VO2Ue — Ue(Ue) -

Thus we define an extension of (2.5) by W (z, t; v, xg,¢) := ¢ + Wy(xz — x9 — ct, t;v). We remark that if ¢ (z,t) is
periodic,
f —2v0,¥(x, t)dx =0

and thus, since
us

W(z,t;v, o, c)dx = 27c,

—Tr
W (z,t; v, xo,c) can not be obtained via the Cole-Hopf transformation of a periodic function unless ¢ = 0.

We will need the following estimates of W, and its derivatives.
Proposition 2.1 Fizxv >0, 0 < ¢ < 1. Then there erists 0 < C(eg) < o0 such that

sup |Wo(z, t;v) — % | — mtanh (”)]‘ < Gl€0) au

|| <7 2vt t

1 72 T C(eo)
sup |0, Wo(z, t:v) — = |1 — Z—sech? (7) < —1/vt
e o(tv) t[ vt \2ut 2

1 2
sup |0:Wo(z,t;v) — = | —z + 7 tanh ks + T2 cech? (22 <
t v v

|| <

e /vt (2.6)

for all 0 < vt < €.

We remark that since Wy(,t;v) is periodic, these L™ estimates can be converted into LD, estimates for any
1<p<oo.

Proof. Due to the fact that Wy(z,¢;v) is an odd function centered about x = 0, we prove the estimates for
€ [0, 7]. Define

9 Znez nexp I:f(:n+2;t2n7r) ]

Sz, tiv) :=—1+ > o [W]
so that
Wo(z, t;v, —m) :% — %S(m,t;u)
0:Wo(z, t; v, —m) :% - %Sx(m,t; v)
oWo(z, t;v, —m) = — t% + %S(Lt;l/) - %St(x,t;z/).

Thus it remains to estimate S(z,¢; v) and its derivatives. We factor exp[—(z+m)?2/4vt] out of both the numerator

and denominator, define

exp [—wn[(nu—tl)w—z]] S =0

exp[w] . n<0

vt

exp, (z;t,v) := exp [—w[—nx + n’r — nr]/vt] = ) (2.7)



and rearrange to get

_ — €Xp [ 2vt ] + exp [2ut] + €xp [ 21/t ] Zn¢0,1(2n - 1) eXpn(.T; t7 V)
exp[ 2t ] + exp [ZVt] +exp [ 21/?] Zn;&m exp,, (v;t,v)

= tanh (2 t) + R(z;v,t)

v
where

€Xp [72717;151;] Zn;éo,l [27’l —1—tanh (%)] eXpn('x; t, V)
€xp [72717;1&1:] ZneZ XDy, (l‘, t7 V)

R(z;v,t) :=

Define r := exp [—7r2/ut]; we have that 0 < r < 1 for all 0 < vt < 9. Then, using (2.7), we see that for all
€ [0, 7]
exp,, (z;t,v) < rln! Vn #0,1,2

—Tx —m(4m — 3x) -2
exp [2%] exps(x;t, V) = exp [2%] < exp [2ut =712,

and

Using the fact that the denominator of R greater than or equal to one since it is a sum of positive terms and

the leading term

—Tx T
= >
exp [ St ] exp; (x; v, t) = exp [2 t] 1 vz € [0, 7],

we find

IR (z;v,t)| <4r'/? + exp [m] 2 2(|n| + 1)r
20
r2-r)
2°

(1—=r)

Thus, there exists 0 < C(eo) < 0 such that |R(z;v,t)| < C(eo)e ™ /2t for all 0 < vt < o and z € [0,7]. The

same transformations and estimates give

<4rt? g4 2

s T Cl(eo) _15 T Cl(eo) _14
Sy(z,t;v) — ﬂsech2 (ﬂ)‘ < (to)e Yvt and |Si(x, t;v) + ﬁsech2 (ﬂ)‘ < §2O)e 1wt

after potentially making C'(eg) larger. [

2.2 Solutions via the Cole-Hopf transformation

Based on our numerical simulations (see Section 2.3), we anticipate that solutions to (2.1) rapidly approach a
profile in the family W (x,t; v, zg,c), and that the specific member in the family that the solution approaches
depends on the initial data ug(z). In Section 2.1 we discussed the Cole-Hopf transformation but did not take the
initial data into account; we address the initial value problem now and show how the initial data can be used to

determine which specific profile W (z, t; v, 2o, ¢) the solution is expected to approach.

A solution u(z,t) given by the Cole-Hopf transformation (2.2) will satisfy the Burgers equation on the real line

with initial data ug(x) provided (x,t) satisfies the initial value problem

VYt =Vga v«l, zeR, teRT
T

W(x,0) = ho(x) =ew @) F(riug) = —J uo(s)ds. (2.8)

0



Solutions to (2.8) can be expressed as a convolution with the heat kernel G; : R — R*

Y(z,t) :J, Yo(y)Gi(x — y)dy = \/WJ 25 [ F(yiuo)— 3¢ (z—y) ]dy.

As was argued in [11], if one additionally assumes that Sg” up(s)ds = 0 then 1o (z) is 2m-periodic, and hence so
are Y(z,t) and

u§ M (z,t;v,u) 1= —2v

vet) _ 18— wew |5 (-5 + P |dy
(1) ggoexp B (_%w(y;uw)]dy '

Thus u§H (2,t;v,up) is a solution to the periodic problem (2.1) with initial data u§ (z,t;v,ug) = ug(z). We

H~

assume that F'(y; ug) has a single global maximum in the interval y € [—m, 7) located at y = yo

y
Yo = argmax (J uo(s)ds> .
ye[—m, 7] 0

CH can be estimated as

Then the solution ug

u§ ™ (x,t; v, u9) = % [ac —yo — 7 — wtanh (W) +0 <ﬁ + 1)] , (2.9)

vt

which can be seen by using, for example, Laplace’s method; since the goal of this work is to get away from
the Cole-Hopf transformation, we leave the details to the reader. Comparison of (2.9) with (2.6) indicates that
solutions to (2.1) will asymptotically approach Wy(z,t; v, x¢), and that zq is close to yo + 7, where yo depends
on the initial data. If Sgw up(s)ds = ¢ # 0 then

CH

uCH (z,t; 0,09, ¢) = ¢+ ug

(x — ct, t;v,up).

2.3 Numerical results

The discussion in Sections 2.1 and 2.2 indicates that W (z, t; v, zg, ¢) should be our candidate metastable solution.
Numerical simulations indicate the same result. We numerically computed solutions to (2.1) in Python using

Gudonov’s scheme for conservative PDEs. Letting h = dx and k = dt, the CFL condition is

k= min{mx[zlw,AW}

for A < 1. We used A = 0.5. The initial condition u(z,0) was given by

m
u(z,0) = ag + Z [a; sin(jz) + b, cos(jz)],
j=1
where m is the number of modes and the coefficients a; were randomly generated. Due to the symmetry of the
modes for j = 1, the mean of u(x,0), denoted u(x,0), is given by ag; furthermore, due to the periodic boundary

conditions the mean of any solution is preserved since

d g g 1
au = J upde = J [VUgy — vty |de = |:yu$ — 2u2]

—Tr —T

s

=0.

—r
The time series for a solution with ag = 0 is shown in Figure 1. We find that u(z, t) rapidly approaches a solution
Wo(z,t;v,x0), defined in (2.5); for all future times, the solution converges to zero in a manner resembling the
behavior of Wy(z,t; v, z9). When ag # 0 we find that the solution centers around ag moves to the left for ag < 0
and to the right for ag > 0. Although we show only one sample time series here, we ran multiple experiments
with different initial conditions; our results indicate that the evolution of a wide class of initial data evolve in a

qualitatively similar fashion to that shown in Figure 1.
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Figure 1: A numerically computed solution to (2.1) with v = 0.008 and random initial data. Solution computed
in Python using Gudonov’s method with h = 2w /350, CFL constant A = 0.5, m = 20 modes for the random initial
y,0)dy ~ —2.53. We find that u(x,t) rapidly approaches
a solution Wo(z,t;v,x0) and then converges to 0 in a manner consistent with the time evolution of Wy. Our

computations are consistent with the discussion in Sections 2.1 and 2.2, which indicates that xo should be near

data, u(x,t) = ao = 0, and yo := argmax,;_, - §* u(

yo+m = 0.611. The scale for (a-d) is not the same as for all other figures. Numerical experiments with different

initial data evolved in a qualitatively similar fashion to that shown here.

2.4 Statement of the main results

Our main result concerns the spectrum of the linearization of the viscous Burgers equation about one of the
solutions W (x, to; v, o, co) = co + Wo(x — 29 — coto, to; ). We show that if we fix the time, we can compute the
spectrum of the resulting linearized operator and we find that nearby solutions approach one of the solutions
W, ta; V, Ty €x) (With [to — ts], |co — cx|, |20 — x| < 1) at a much faster rate than the solutions W (z,t; v, g, ¢)
themselves evolve, justifying our identification of W (x,t; v, 2o, c) as the metastable states of the system. The

linearization about W (x, t; v, zg, ¢) in the moving frame z — zo — ct — x takes the form

(Wo(z, t;v)v)q, (2.10)

Vg = VUgg —
and the resulting eigenvalue problem is

[‘(Va t)d) :Agba ‘C(Vv t)¢ = V¢a:a: - (WO(xat7 V)¢)ac7 (211)



where L£(v,t) is considered as an operator L(v,t) : H2,, ([-m, 7)) — L2,,.([—m, 7)) for every fixed v and t. We

per per

use the standard inner product on L2 ([—7, 7))

{u, vy := JW u(z)v(x)de

—T

and norm HuHLfM = (u,u). Motivated by the discussion of the solutions W (z,t;v, z¢,c) and u“H (z,t;v, ug, c)
above we define the small parameter €2 := 2vt. Then our main result is as follows.

Theorem 1 There exists g > 0 such that for all v, t such that 0 < € < ey with € = /2uvt, the spectrum
for (2.11) consists entirely of ordered eigenvalues with A\g = 0 and the remaining eigenvalues contained on the

negative real-axis. In particular,
M=—-1/t+0 (61/26_1/62> , A ==2/t+0 (6_26_1/62> ,
Ao =—3/t+0 (6—7/%—1/62) L M=—4/t+ 0 (6_66_1/62> . (2.12)

and \j < Mg for all j > 4.

Denoting the eigenfunction associated with A, by ¢, (x — x¢ — ct; t,v) we also show
Theorem 2 Fiz vy « 1 and let u(z,to;v) = Wz, to;v, z0,co) + vo(x;to, xo,co;v) be a solution to (2.1), with
[voler:. =7 < 0. Then there exists Ty, ty, Cx such that vy (T;te, Ty, Cx; V) 1= ug(x,to; V) — W(Z, ts;V, Ty, Cx)

per

is orthogonal to the first three eigenfunctions for (2.11)

Ui (T3 b, T, €5 V), P (X — Ty — Calus by, )y = 0 for j=0,1,2.

W(to, o, co)

uc

£

/ WAt cx,

c

Figure 2: ug is a solution to (2.1) which at a fized time t is known to be close to a solution W (z,to; v, xo, co).
We show that by adjusting the parameters (co,to,xo) slightly we can also write ug = W(x,ty;v, T4, %) +

Vs (T Ly, Ty, Cx; V) where vy is orthogonal to the first three eigenfunctions for (2.11).

See Figure 2. We remark that the discussion in Section 2.2 indicates that the condition u(x, to; v) = W(x, to; v, o, co)+
vo(@; o, T, co; v) with [v]y: =~ « 1 holds for most initial data provided that v, 1/t « 1.

2.5 Justification of W as a family of metastable solutions

Finally, we discuss why the combination of Theorems 1 and 2 justifies our identification of the states W as a
metastable family. If we attempt to analyze the dynamics of solutions near the Whitham solutions the resulting
linear equation is non-autonomous. However, for parabolic non-autonomous partial differential equations, the
method of “freezing” the coefficients provides good approximations to the evolution, at least over short time
intervals. Since we know that over long-times, all solutions will tend toward this zero solution, this “frozen”
time evolution should give us a reasonable picture of what happens near the Whitham solutions over times of

o(1).



If we think of the spectral picture of the linearized equation (2.10)
Oru = L, t*)u = vug, — (Wou), ,

(where Wy is now evaluated at a fixed time t*), then at first glance it looks as if the solutions don’t tend toward
the Whitham family at all, since due to the zero eigenvalue of L(v,t*) the linear evolution is not contractive.
However, the point of Theorem 2 is that by choosing the parameters, ¢, o and ¢ty of Wy appropriately, the
perturbation of the Whitham solution will actually be orthogonal to the eigenfunctions ¢g, ¢1 and ¢o. Thus, we
expect that the linear evolution will result in the perturbation decaying toward the family of Whitham solutions

with a rate governed by fourth eigenvalue, which according to Theorem 1 satisfies

3

Ag%—tf*.

Thus, if we write ¢t = t* + 7, and denote the perturbation of the Whitham solution as p(7), then the size of the
perturbation will decay like

_ 3
Ip(r)l[L2 ~ 75"

If not rewrite

1 1 o3I+ E) kT
t*+7)3  @)PA+r5)3  (F)pB (%)
so we have
Ip(r)lee ~ 5
Since the evolution along the family behaves like 1/t, as can be seen from equation (2.6)
Wo(z,t;v,) = % [x — mtanh (%) +0 (efl/vt)] 7

solutions approach the family at a rate that is much faster than the evolution along the family justifying our

characterization of these states as metastable.

3 Eigenvalue problem

In this section we prove Theorems 1 and 2. Without loss of generality we let ¢ = 0 and xg = 0 (otherwise make
the substitution y = x —xo — ct). If we consider the eigenvalue equation for the linear operator (2.11) with A = 0

we have )

020 — ;(Wo(ffab‘; v)¢0)z = 0.
Integrating this equation twice we find
¢
[WW (@, t; )]
is an exact eigenfunction for (2.11) with A = 0, where the function "V (x,t; /) was defined in (2.4). To find the
rest of the spectrum we define the transformation

do(z;t,v) = exp [i f Wo(s,t;y)ds] - (3.1)

~

d(x;t,v) = exp [;V J ’ W (s, t; V)ds] dlz;t,v) = o(x;t,v). (3.2)

_¢
YWz, t;v)
Without loss of generality we choose C =1 A straightforward computation shows that A is an eigenvalue

for (2.11) with associated eigenvector ¢(z;t,v) if, and only if, A is an eigenvalue for the self-adjoint problem
(3.3)

E(u, t)% :)\QNS, z(u, t)q~5 = u(;NSm — % [(?IWO(x,t; v) + %WOQ(:EJ; V):| qNS (3.3)
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with associated eigenfunction é given by (3.2), where we again consider Z(u, t) as an operator

‘C( ) HZ@T([ )) - Lper([_ﬂ—vﬂ_))

for every fixed v and t. In particular, since the transformation ¢ — ¢~> is bounded with bounded inverse, the spectra
of £ and £ are identical. Owing to Sturm-Liouville theory for periodic self-adjoint scalar eigenvalue problems
(c.f. [9, Thm 2.1, 2.14]), the elgenvalues for (3.3) are ordered A\g > A1 = Ay > A3 = Ay > .... Furthermore,
the eigenfunctions (/)gn 1 and ¢2n have exactly 2n zeros in x € [xg — 7, z¢ + 7); since the transformation (3.2)
is strictly positive, the eigenfunctions ¢o,—1 and ¢o, for (2.11) have exactly 2n zeros in = € [zg — m, 29 + )
as well. From (3.1) we see that ¢g(x;t,) > 0 has no zeros in « € [—m,7) since W is continuous; hence, all
other eigenvalues A; are contained on the negative real axis. The following Proposition completes the proof of
Theorem 1.

Proposition 3.1 Let € := v/2vt. There exists 0 < ey < 1 such that for all € < €q the next four eigenvalues for
(8.3) after \g = 0 are

M=—1/t+0 (61/26_1/62) , A ==2/t+0 (6_26_1/62) ,
AB:—&ﬁ+O(6”%*M),A4:—@&+0(5%4ﬁj. (3.4)

Furthermore, defining Is(€) := [€%/2,2m — €3/2], I1(€) := [—€>/2,€3/2], there exists a 0 < C(eg) < o0 such that the

following estimates of the first two associated eigenfunctions hold for all € < €

3 sup, ’e("”*”y/%g&(m;t, v)+ 1‘ < C(eg)e?? o xeli(e)
1 -
sup, %e”z/gg sech (ZF )c/)l(x t,v) — [sechQ( Z) (1 + 2 252 + 27r2) — %] < O(e)e®? + xelf(e)
(3.5a)
_e_pl@—m)?2 3 (. :
~ sup, |=5-¢ pa(z;t,v) + 1) < Cleo)e o xeli(e)
d)g : , o~ ‘ (35b)
sup, |5=e™ /%€ ¢y(z;t,v) — [sinh (Z£) + Z¥sech (:—?)]‘ < Cleg)e : zelf(e)

See Figure 3 for a representation of Is(e) and Iy(e). We will prove Proposition 3.1 in Sections 3.2-3.4 by
computing the associated eigenfunctions ¢;(z;t,v) and showing that ¢1 2(z;t,v) have two zeros in z € [—m, )
and ¢34 (z;t, v) have four zeros in « € [—m, 7). The intervals I5 y come up naturally in the proof of Proposition 3.1
and we will discuss them in more detail in Section 3.1. Estimates (3.5) can then be transformed into estimates
on the eigenfunctions for (2.11) via (3.2) since, using the same types of computations as were used to derive (2.6)

we can derive analogous estimates on the transformation function (")~!, namely

exp [—(I ) ](ww(x t;v) —1‘ < Oleg)eM/Ve o xwe I (e)

Qexp[ 262] exp[ 252] (VW (z, t;v)) ' sech (Z2)| < (e0)e V< ze I¢(e)

sup,,

sup,

Thus, the following Proposition is an immediate corollary to Proposition 3.1 and the fact that ¢o(x;t,v) =

/(" (2, 0)%,
Proposition 3.2 Lety =x —xg — ct and € := +/2vt. There exists 0 < ¢g « 1 and 0 < C(ep) < 00 such that for

11



0 sech? (%) da é + O(2e= V)
SOS/Q x2sech? (%) dz % + 0(656—1/\/2)
503/2 zsech? (£) dz 272(1)2 + O(eSe=1/VF)
83/2 sech’ (:1) dz %L: + 0(626*1/\&)
o atsech! () dr CEEE L O(Sen V)
Jo atsech! () do GRS L O VY
63/2 2 . 3/
€2
§o tanh® (ZF)dz O(e3/2)
583/2 ztanh (2F) dz O(e?)
< zsech? (Z2) tanh (Z£) dx O(t
0 ¢ .

Table 1: FEstimates on the integrals which arise in the computation of |¢;| and the

inner-products (3.8). Integrals and expansions computed using Mathematica.

all € < e the first three eigenfunctions for (2.11) are

, sup, |0 (y;t,v)| < “Elem Ve - yeL(o) 00
0 - 5 .ba
sub, |\ 42 exp [~ | do(y:1.0) — secl (22)| < Cleo)e® = ye Iy(0)
sup, ‘ i (yit,v) + 1‘ < Cleg)e'/? . yel(e)
¢1 : 2 2
sup, \/%exp [—5’?] o1(y;t,v) — [sech2 (Z%) (1 + 2 + 26;2) — %] < O(e)e®? + yels(e)
(3.6b)
sup,, % [yiw] 2(y;t,v) + 1’ < Cleg)e oy e I(e)
®2 (3.6¢)

sup,, \/ggbg(y;t,u) — [tanh (Z¥) + Z¥sech? (%)]’ < Cleg)e : yelf(e)

We remark that in going from Proposition 3.1 to Proposition 3.2 we have introduced a scaling constant which

ensures that all eigenfunctions in (3.6) have been normalized so that ||¢;|| = 1, which one can check by us-
ing
az? az?  a’zt 3
exp [62] =1+ = + 9 + O(e’) Vaelg(e)

and the integrals in Table 1. We observe that even though the eigenfunctions (3.5) for (3.3) are exponentially
small for o € I¢(e) relative to x € I;(e), undoing transformation (3.2), which is exponentially localized in z € Iy (e),

the behavior of eigenfunctions (3.6) for (2.11) in = € I¢(e) becomes relevant.
Using Proposition 3.2 we prove Theorem 2.
Proof. (of Theorem 2)

vy is given by

v*(x;t*,x*,c*; V) = W(fﬂ,to; v, 1'0,00) + ’UO(x;th‘TOaCO; V) - W(x7t*7 I/,Z*,C*)

12



We will apply the Implicit Function Theorem to

<U*(I;t*7x*a Cys I/), ¢o($ — Ly — Cyly;ly, V)>

F(v0; Ty, by, Cy5 V) 1= QUg (T3 gy Ty Cos V), 1 (T — Ty — Cylys Ty, V)

s (T s, T, Co; V), P2(T — Ty — Calyity, 1))

<WO($ —x0 — coto, to; V) — Wo(r — Ty — Cats, t4; V), Po(T — Ty — Caty; by, V)>

= | Wo(z — o — coto, to; V) — Wo(x — s — Catu, bts; V), 91(x — Ty — Calus ts, V)

(Wo(z — 20 — coto, to; ) — Wo(m — g — Catu, ta; V), P2(T — 4 — Catsi by, v))

{co — Cx, Po(T — Ty — Cylty;ty, V) (o2, to; To, Co3 V), Go(T — Ty — Cytyi by, V)
T {eo = xs d1(x — T4 — Calui tu, v)) | T | Cvo(@, o5 o, co3 V), P1(2 — Tse — Calui b, V)
(o = Cs, P2(T — Ty — Calsits, V) (vo(@,to; o, co3 V), P2(T — Ty — Caluitu, V)

near (vo; Ty, ts,cx) = (0; 29,0, o), where the inner product (v, w) is the normal periodic L? inner product. Due

to Cauchy-Schwartz

¢ill < llvollm;

per’

<v0(x;t0,a:o,co; V),(b](l' — Ty — C*t*;t*al/)> < HUOHL2

per

Thus, F(vg; xg, to, co; ) = 0 for vg = 0. Next we show that the matrix

dF dF dF
dxy dey dity

(4,:ts,c%3v0)=(20,t0,¢030)

is invertible. We use the facts that

d
- Wol@ — 20 — coto, to;v) = Wo(@ — @x — Catis tai 1), 65 (2 = Tu = Cauitas VD] (4 11 )= (oostorcn)
*

= {[0.W0] (x — xo — coto, to; v), dj(x — 2o — cotos to, v))

d
d7t*<WO(x — 20 — coto, to; V) — WolT — Ty — Catu, i 1V), 05 (T — Tue — Calui b, V)>‘(3*7,5*70*):(%7,50700)
= co{[0:Wo] (x — 20 — coto, to; V), ¢j(x — x0 — cotos to, v))
—{[0:Wo] (x — 20 — coto, to; V), ¢ (x — 20 — cotos to, v))
d

E<WO($ — xg — coto, to; V) - Wo(l“ — Ty — Cala, ta; V), (153(1' — Ty — Calyity, l/)>‘(fc*,t*,c*):(ro,to,c())

= to{[0:Wo] (& — xo — coto, to; ), ¢ (x — xo — coto; to, ).

Since 0, Wo(z,t;v), ¢o(x;2vt), and ¢1(x; 2vt) are even functions, and 0, Wy(x, t;v) and ¢o(x;2vt) are odd func-

tions centered about x = nm, n € Z, we have that

(Y, to; v); ¢o(ys to, v))
(y, to;v), d1(ys to, v))
1 (Y, to; v), d2(ys to, v))
yito,v))

=

17¢2

—~

where y := x — x¢ — cotp. In fact,

13



since, integrating the eigenfunction equation (2.11) from y = —7 to m and using periodicity we get

us

0= )\n ¢n(y,t07y)dy,

where A, = 0 only for n = 0. Furthermore, using

ax2 (1,1:2 (1,21'4
exXp |:€2:| :1+€T+W+O(€S) VJTGIf(G),

the asymptotic expansions for the derivatives of Wy(x,t; V), equations (2.6),

2
. T 2 (L L
0:Wo(z, t;v) = [1 QVtS ech (ZVt) +0 (te )]
) 1 ™ nlx 2 —1/vt
6tW0(:E,t,u)—t—2 [ :E+7rtanh( > +ﬂ sech (2 t) +O(t (3.7)

and the integrals in Table 1, we get that

@Mﬂ%%%@ﬂﬂw&-—— “ﬂLfCMﬂw

o2 9 (63)]

3e2
3e? 362 473
ol to,v)) =\ S [1 + O] = 23y [55 1+ 0(e)]
qawummwxmmmw»=fivzgb+0(”ﬂ
7T3
ol (i), enloiton)) = = oz | 5 + 010 (3.9)

Finally, using the fact that ve H ;er and integrating by parts we have

d
dr <U0(xat0;I0aCO;V)7¢j('r — Ty — c*t*;t*,l/)> = <U0(137t055170550; V)aaxﬁbj(l' — Ty — Cyly; by, V)>
*

={02v0(, to; To, Co; V), 05 (T — Ty — Catyits, V)

<[0zvol 2

per

< [vollm;

per

and similarly for the ¢, and t, derivatives. Thus

dF dF dF

dﬂf* dC* dt*

(T ts,cx;5v0)=(T0,t0,c0;0)

1), ¢0(y)) {to[0:Wol (y) — L, do(y))  <co[0Wol (y) = [0:Wo] (y), do(v))
= | W0l (y),01(y))  <to[0=Wol (y) = 1, ¢1(y)) Lo [0=Wo] (y) — [0:Wo] (), d1(y))

1), d2(y))  <to[02Wo] (y) — L, d2(y))  {co[02Wo] (y) — [0:Wo] (y), d2(y))
% %[l——?;;fuo@)] W[ o@)] gyEDo@)
= EVEDroE)] WVERHOE@N] R0

o ; AR

which is invertible since det(A(e)) = ”—g 8 O (e)] which, for all e sufficiently small, is not equal to zero.
0

[1+
We observe, in particular, that det(A(e)) = O(1), which implies that the difference ||vy — vl is small for all
€« 1. ]

Thus it remains to prove Proposition 3.1, which we do in the remainder of this section.
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3.1 Overview and formal asymptotics

In this section we give a formal asymptotic analysis argument to provide intuition for our proof of Proposition 3.1
and the form of the eigenfunctions (3.5). The rigorous proof makes up the majority of this work and is given
in Sections 3.2-3.4. We focus on the n = 1, 2 cases since all of the technical difficulties arise in these cases.
Let z € [—m,7); then, using estimates (2.6), the definition €2 := 2vt, and formally dropping the higher order
O(e~'/¥*) terms, the eigenfunction problem (3.3) is

2

e2am$n - [1 - :—Qsech2 (:—f) + ;2 (a: — mtanh (m))Q] <$n = QtAnggn. (3.9)

€2

Let Xn = 2t\,; rescaling space as ¢ := /e (which, for reasons which will become clear shortly, we call the “slow

scale”) regularizes the problem, so that (3.9) becomes

2
Occhn — [1 - :—jsechz (Wf> n (g - gtanh <ﬂf)> 1 bn = Ann. (3.10)

The functions tanh(-) and sech(-) have highly localized derivatives with
sech (y) = O(e7™¥) and tanh(+y)=+1+ O(e™?) for |y| ~ .

Thus, for |¢| € [/, 7/e], the terms Lsech(n(/e) and L[+1 — tanh(r(/e)] are O(2e~Y/V<). Then formally taking
the limit € — 0 of (3.10) results in the limiting eigenvalue problem

Occhn — [14 (C + 7/€)%1n =Andn, for ¢ <0 and
Occthn — [14 (€ — 7/€)%1n =Andn, for ¢ > 0.

We re-center the problem by defining & := { — m/e and the fact that (En(ac —27) = gn(x) to get
deetn — [1 + €%16n =Antn (3.11)

for € € [—7/e + /€, /e — \/€] (which corresponds with x € I,(€) in Proposition 3.1). Equation (3.11) has explicit
eigenvalues \,, = —2n with associated eigenfunctions

~

2
On(€) =Hp-1(§)e™¢ /2
where H,,(§) are the physicist’s Hermite polynomials, the first few of which are
Ho(y) =1, Hi(y) =2y, Ha(y)=2(2y" -1), Hs(y) =4y(2y” - 3).

The slow variables, however, do not capture the behavior of the eigenfunctions for |{| « 4/e where the terms
Lsech(mw¢/e) and 1[+1 — tanh(7w{/e)] are non-negligible. On the other hand, introducing the faster space scale
2 := x/€% (which we henceforth refer to as the “fast scale”), equation (3.3) becomes

Ounon — [¢2 + 7% — 2n2sech? (12) + €*2? — 2me?z tanh (7z)] Fn = €N on. (3.12)

Hence, for z € [—1/4/€, 1/4/€] (which corresponds with x € I;(e) in Proposition 3.1), the terms €2z are O(e%/?).

Again formally taking the limit € — 0 results in the limiting eigenvalue problem
022 + m2[2sech?(12) — 1]y, =0. (3.13)
Equation (3.13) has two linearly independent solutions

P(z) =sech(wrz) and Q(z) = sinh(7z) + wzsech(wz).
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We set qgg(z,xn) = (z), anticipating that the fast eigenfunction does not depend, to leading order, on the
eigenvalues Xn As we will show below, however, the matching occurs on the terms which exponentially grow
like €™#; thus, since sech(rwz) is exponentially decaying, for $1 we need to include the O(€?) correction so that
&1 (2 An) = P(2) + €Pi(2; A) where

~

Ao 2
Pi(z; M) = = cosh(mz) + (ZQ + c> sech(7z)

solves

02 Py (2 M) + w2 [2sech®(72) — 1] Py (23 An) = [1 +Ap — 272 tanh(wz)] P(zA).
Py (z) now includes the exponentially growing term cosh(nz). The fast variables are complementary to the slow
variables in the sense that now they do not capture the behavior of the eigenfunctions for |z| » 1/4/€ where the

2

terms €2z and €*z2 are non-negligible.

Our decomposition of the interval [ 32,21 — 3/2] = I (€) U I;(€) now becomes clear. For = € I,(¢), we expect
the slow-variable elgenfunctlonb d) to give a good approximation to qf), whereas for € Iy(e) we expect the
fast-variable eigenfunctions gZ) to give a good approximation. See Figure 3.

We formally construct eigenfunctions (En(m) for (3.9) by pasting a slow and a fast solution together; due to
symmetry considerations, we glue QAS,L((x — ) /€) with ¢y (z/€; :\n) for n odd and to ds(z; Xn) for n even. The
formal asymptotic analysis procedure is as follows. We add the formal eigenfunctions for (3.10) and (3.12)
with relative scaling C,,. We determine C,, by requiring (;Aﬁn((x —m)/e) = Cngn(a:/g) in the overlap region

€32, 3/2. we define the overlap function

|z ~
B 1= dn(e — 7/€) = Cpn(1/4/€). We consider x € [0,7]; the analysis for € [—,0] is completely analogous

by symmetry. The resulting eigenfunctions are of the form

We then subtract the overlap at the matching point x = €

~ 2 2 5

(Eg(x;t,u) :mT e~ (z=m)?/2¢" +Cgsmh( )—I—Cg 2sech( )—(52

We define the spatial variable
T ¢
n:= a2 ﬁ =
which captures the behavior of an in the overlap region. Then, for 0 < n = O(1), the matching conditions
Cron(x/€) = G (x/€?) are

2
—72/2¢? _nm/\J€, —en? /2 _ ﬂ 2 67 ( m™/\/€ —7”7/\/?)
e e e & (1—!— TN - Cl27r2 e +e
(m + ev/en) o /262 /e g—en® /2 _1 (eﬂn/ﬁ _ e*m/\/g) + 0, = 2
2 \/767”7/\[ + e~ /e’

which to leading order becomes

2
o /2€ /e _ _ Cl%eﬂn/«ﬁ and e m/26 g/ _ CQ%GWU/\E
€

and is satisfied by C7 = i -m*/2¢% and Cy= 2T */2¢ with overlap

_ v ™ .2 2 2
¢1 . 2/2€2 eﬂ'm/e and by = —e 7 /2€ eﬂ'z/e
€

We emphasize that the matching for both eigenfunctions was done using the coefficients in front of the exponen-
tially growing terms e”"/V€ and is why we needed to include the first order correction term in 51 (z). Putting
everything together, and subtracting the overlap we get

~ 2
¢1(w;5t,v) e~ (@m)?/2E _ omm?/2e { i [1 + 22 +e C] sech ( ) — 2cosh (W;C)} — /2 g/
€2 €2 €

(bg(l’;t,l/) =

a |

[(ZL‘ - 7r)e_(w_7r)2/262 +2me™™ /%€ sinh (%) - 7re_”2/2626”/62] .
€
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The analysis for « € [—,0] is completely analogous and the results can be extended to € R by periodicity.
The asymptotic results agree with (3.5). A schematic of the resulting eigenfunctions 51 through (54 is shown in

Figure 3.

¢ slow solution I (e) I(e) ¢z slow solution I5(e) ING

¢1 fast solution

(a) ¢1(x;€) where ngﬁl({) ~ e €2 and (b) ¢2(z;€) where $2(§) ~ 56752/2 and
$1(z; M) ~ P(2) + €Pi(z; —2) B2z 02) ~ Q(z)
53 slow solution If(e) I(e) $4 slow solution If(E) Is(ejn
[T
-2 f : Jﬂ' mw

é1 fast solution ¢- fast solution

(c) ¢3(x; €) where ¢3(£) ~ (262 — 1)6752/2 and (d) Ga(a;€) where ¢a(€) ~ £(26% — 3)6752/2 and
31( %) ~ P(2) + 2Py (2 =6) Gl 2) ~ Q)

Figure 3: Figenfunctions for (3.3) constructed by gluing a slow solution $n to a fast solution (Ej. Due to symmetry
constderations, we glue qgn to qvﬁl formn odd and to ng forn even. Figures not drawn to scale; in fact, the magnitude

of (Zj is exponentially small relative to the magnitude of (En

We make a few observations. First, to leading order, the eigenvalues A\, = 3\”/275 = —n/t are given by the
slow eigenvalue problem (3.10). Secondly, the contribution to ¢, (z) from the fast eigenfunctions qzn(z/GZ)
is exponentially smaller than the contribution from the slow eigenfunctions QASn(:z:/e) However, as we have
already remarked, undoing transformation (3.2), which is exponentially localized in « € If(e), the behavior of
eigenfunctions (3.6) for (2.11) in « € I¢(e) becomes relevant. Thus it is essential that we carefully construct the

eigenfunctions in both the slow and the fast variables.

In Sections 3.2-3.4 we make the above formal arguments rigorous by computing the eigenfunctions for (3.3).
In Sections 3.2 and 3.3 we rigorously compute the eigenfunction in each of the spatial regimes, I5(e) and I¢(e)
respectively, using the spatial scaling motivated by the arguments above. We then rigorously match these

solutions at the overlap point z = +¢32 in Section 3.4.

3.2 Slow variables

In this section we compute the eigenfunctions for (3.3) for x € I;(e). Motivated by the formal asymptotic analysis
in Section 3.1 we define the slow variable £ := (x — w)/e. We call the eigenfunctions in these coordinates ¢, (£);
they are defined for & € [~7/e + €'/2,1/e — /2] =: f’s(e) and satisfy

Ocen — | We(&: ) + W& )| 0 = A (3.14)
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(c) ¢1(x;e€) (d) d2(x;e)

Figure 4: (4a) The function in (3.2) used to compute the eigenfunctions for (2.11) from the eigenfunctions for
(3.3): ¢j(z;€) = [ (a,t; 7/)]715]'(1';6). Additionally, by comparing the formula for the transformation (3.2) to
the formula for eigenfunction ¢o(z) (3.1), we get [W (z,t;v)] 7% = [ww(m,t;u)]flczo(m;e); thus, Figure 4a also
represents the un-transformed eigenfunction ggo(x;e). (4b) Eigenfunction ¢o(z;€) = [" (z,t;1)]72, which we
explicitly found in (3.1). (4c) and (4d) The eigenfunctions ¢1(z;€) and ¢p2(x;€), respectively. Due to the fact
that [" (z,t;v)] 7" is exponentially localized at the origin, the behavior of the fast solutions $]~ (z; €) is magnified,

making the behavior and influence of the fast solutions (;vﬁj (#; €) visible. Figures not drawn to scale.

where for any t € R

W (& e) 1=£W0(6§ +m ) = [ = ?%Ezzgp?(;;;)] ,

ﬁé@xw:twumﬂ@5+w¢w>=l14ﬂ2<2%zﬁé®n@w><Z;%n65M¢@)2>]

GT ZnGZ &T)n (5’ 6) ZnEZ &Ton (f? 6)
-2 — 2] =0
and exp,,(&;¢€) :z{ exp[—2nm(nm — €) /€] n = (3.15)
exp[2nm(—nm +€€)/€?] : n<0

The form of exp,, (; €) follows from the same type of computations as for (2.7) in Proposition 2.1

o [—(ef +2m — 2n7r)2] - [—(e§ —on(n— 1))2] - [—52] o [—QW(—ef(n 1)+ (n— 1)2)} |

2¢2 2¢2 €2

factoring out the dominant mode exp[—¢?2/2] from the numerator and denominator and shifting n. We remark
that even though We(&;€) is determined by an appropriate transformation of 0, Wy(z,t;v), it is also true that
0:W (& €) = We(€; €); hence our notation.

Motivated by the formal analysis we re-write (3.14) as
Oeedn — [1+ €+ N(€:9)| dn = (=20 + R0)d

with A, 1= An+2n and N(€; €) 1= W, (& €)+W2(&; €)— (1+£2), which is equivalent to the first order system

~

aéﬁn = An(&)ﬁn +ﬁn(ﬁn7£; 67Kn) (316)

where U, := (@n,izn)T with ¥, := a§$n,
0 1 0

-An = y and '&\[’I’L((valznvg; €a//§n) = N N R
1+ -2 0 (Vo) +82) b

>
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Lemma 3.3 Fiz¢; > 0. There exists 0 < 6’(?1) < o0 such that for all e <€ and € € fs(e),
C(e
<O explr/eexpl o — )2/ exple?] (3.172)
CA*(g )
€2

‘/\7(5;6)’

<

exp[—2m/+/€]. (3.17b)

Proof. Define r := exp[—27(7 — €|¢|)/€?]. Then, due to (3.15), 0 < &xp,, (£;€) < rI*! with 7 < exp[—27/y/€] < 1;
furthermore, since expy(&;€) = 1 for all § and €, 3}, _, €xp,, (§;€) = 1. Thus there exists 0 < C(&1) < oo such that

for all € < &
‘/\7(5; e)‘ :)Wm(g;e) L) - (1 +€2)‘

_ ﬁ (ZneZ TL&T)” (57 6) ) ? _ 4771-2 ZneZ n2e/XT)n(£; 6) _ % ZneZ ne/XT)n (57 6)
€ ZnEZ e/ﬁ)n (5’ 6) 62 ZneZ ﬁ)n (57 6) € ZneZ e/ﬁ)n (57 6)

2
2
<47;r 2 (Z |n|r|”|> + Z n2rinl 4 el¢| Z |n|r™
€ neZ nez neZ
47 2r > 2r(1+7) 2r
Gl l2 () T el —r>2]
GG O ol am? e explone/]
:CSl) exp[—7?/e?] exp[—(m — €£)?/e*] exp[€?]
<A expl2m/va),
using the fact that e|¢| < 7 — €3/2. ]

For n € {1,2,3,4} the leading-order evolution equation 65‘7” = /Tn(ﬁ)f/n has the two linearly independent
solutions ‘77” (&), 7 € {1,2}, where

R —£%/2 R —£20rfi
Vl,l(f) _ e 2 V172(€) ::% ﬁi e (f) 2
—Ee= /2 [—ﬁfe% erfi(§) + 2] et /2
~ —£2/2 ~ 1— —€% orfi £2/2
G T B EO]E 2
(1—€2)e <P —€+ VA — e erfi(€) | 2
. 262 — 1)e=€/2 ~ 26 + /(1 — 2¢2)e~erfi /2
NCT R o)t | [ V-3 S
£(5 — 262)e 12 [4-2€2 + ym(262 - B)ge S exfi(g) | e/
~ 262 — 3)e=¢"/2 _ 2 —2¢2 262 — 3)e=S erfi(¢) | €/2
O B 226t vigest -a)e-Canig)]
(—2¢* + 962 — 3)e 2 [26(62 — ) + /(26 + 9% = )€ erfi(g) | €712

as can be verified by explicit computation. We solve (3.16) for & € I,(€) := [—7/e + /e, m/e — \/e]. We expect
N . . . _52/2 . . . .

@n (&) is close to the formal eigenfunction H,_1(&)e ; thus, owing to symmetry considerations, we assume
that U, (0) € span {‘7”1(0)} We then parametrize the corresponding solution to (3.16) at the matching point
x = +€%?2, which corresponds with & = F(7/e — 1/€) =: F&.

Proposition 3.4 Define for every € the norm |[u(-)|e = sup,; () [u(§)]; also define

o 1 ~ v 1 ~ v 1 ~ v 1 ~
A1 = 76531\17 AQ = 76531\2, A3 = 76531\3, and A4 = —7e€gA4.
50 50 50 50
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Then there exist constants €y,p1,p2 > 0 such that for all 0 < ¢ < € the set of all solutions to (3.16) with
[u()]e < 1, Un(0) = d Vo1 (0) and |dn],|An| < 72 are given by

$1(&e k) = dy 1+ O(e 22"/ Velne + |1u\1|) e €2

D& e k) = —di [14+ 0@ 2>V lne + |Ry|)] e8P

bo (66, R9) = dy 1+ O(e 2 2" Velne + |]\2|)' ge=S2

Do (€6, Ko) = — do |1+ O(e2e™2Velne + |Ro))] (€2 — 1)e €772,

$3(&5e,A3) = ds 1+ O(e2e 2/Velne + |]\3|) (262 — 1)e ¢/

Ja(6 e, R) = — ds [1+ O(e72e727Ve e + |y )| £(262 — )e€/2

pa(& e, R) = dy 1+ O(e 22"/ Velne + |1u\4|)7 £(2¢% — 3)6—52/2

Ja(€ e ) = = da [L+ O( 22V Ine + | )] (261 - 962 + 3)e €2 (319)

¢ : ?[14‘0(62)]]\1 o1 : —\{f[ 1+ O(e )]A

(52 : \/?» [1 + 0(62)] Ay 72;2 : *\/?% [1 + 0(52)] Ay
e YIco@lh b Y [so@) i
$4 : 31767T [1 + 0(62)] /u\g ’(ZJ\4 : —% [1 + 0(62)] /vxg. (319)
Furthermore,
G1(—E) = (&), da(—&) = —da(&),  Ba(=E) = G3(&),  ba(=&) = — (&)
Di(=&) = —hi(&0),  a(—&) = a(&0),  a(=&) = —a(&),  da(=&) = Pals).

We remark that the definition of A,, implies that the eigenvalues for (3.3) are exponentially close to the eigenvalues
for (3.11). This is consistent with our numerical simulations; we will show why this is a valid assumption in
Section 3.4. Note further that (3.18) shows that the eigenfunctions ¢?n are close to the formal eigenfunctions
Hn,l(g)e*g/2 as expected from the formal calculations in Section 3.1.

Proof. All solutions to (3.16) with initial data U, (0) = Jnf/nl(()) satisfy the fixed point equation

. < _ ) e o )
O (€) =V J Ws (1), N (O (), 75 € R ) + a6 L Wa(7), Nos (T (1), 75 €, )yl
(3.20)
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N — € erfi(€) + 2| €872 . —£2/2
Wia(6) ==y [t Crt€) 2] a9 = |
— /e~ 2erfi(€) e—E2/2
N 1— 2 e erfi /2 . 1— £2)e—€/2
() = [ 1€ VT Car0)] RCES R R |
[1 - ﬁge_gzerﬁ(f)] s’ /2 —ge 82
_ 262 — 4 5— 262)¢e erfi €%/2 N 5 _ 9¢2)e—E2/2
%ﬁ%}[g + VA m%euﬁe Frate) = | €020
[25 + /(1 — 262)e erﬁ(g)] &7/ (1— 262)e= €72
_ 26(€2 — 4) + /(=264 + 962 — 3)e S erfi(€)]eS 2 264 — 9¢2 + 3)e €712
By L [BE€ -0+ VAL 08B Pl g (a6t ok
262 - 2+ y7E(3 — 262)eE erfi(g) | /2 £(28% = 3)e¢/2
are two linearly independent solutions to the associated adjoint equation W,’L = —ﬁ:(&)ﬁfm which have been

normalized so that <‘A/n7i,l//l\/n,j>Rz = 4;;. Equation (3.20) is linear and defined for ¢ € R; thus solutions exist
and are bounded on any finite interval. However, they may not be uniformly bounded in € since the interval
of integration IAS (e) grows like 1/e. Our first goal, therefore, is to show that the constant bounding the higher
order terms in (3.18) does not grow with I (¢). Motivated by the formal analysis we use the ansatz qASn(g) =
H,_1(&)e €/24,(¢) and @n(f) = d% [Hn,l(f)e_fz/Q] U, (&) to solve (3.20). We focus on n = 1, 2, since all of the
technical difficulties arise in these cases; the n = 3, 4 cases can be proven completely analogously. The resulting

evolution equations for #,, and v,, are

0
3 2 [ ~ ~ o
+ ?erﬁ(f) J e " (N(T; €) + A1> a1(r5 e, Ap)dr
0
= ﬁl,u (alv €, 6’1\17 Kl) (321&)
o ~ 3 2 A~ ~ o
01(& e, M) =dy — \/7% e " erfi(T) (N(T; €) + A1> Uy (r;e,Ap)dr
0
1 2 [/~ ~ o
_ & _ -7 o
% [26 ﬁferﬁ(f)] Jo e ( (15€) + A1) Uy (r;e, Ay)dr
= Fro(fnse,di, Ay) (3.21b)

v ~ 3 2 A~ ~ v
U2(& e, A9) =do + J T [1 — e T erﬁ(r)] <N(T; €) + Ag) Us(T; €, Ao)dr
0
1 2

_ g [ & _ ﬁﬁerﬁ(f)] L’f 72T (./(\/(T; €) + /A\2> T (T; 57]\2)(17—

= ﬁZ,u(az; €, &\272{2) (321C)

All terms in (3.21a)-(3.21c) are well defined for all £ since for £ small we have

< 2 53 § 2 53
J e T dr =¢ — > +0(&) and J 2T dr = > + O(&%).
0 3 0 3
For 15(§) we fix & > 1 and make the ansatz
P65 e, Ag) L <&

(&€, As) = , y y
2 Bl Aa) + (1 - 026, 8a)| ¢ 11> &
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where ¥y is defined for |¢] < & and 75 is defined for |£| > & and

172(5;6,]X2) =c?2(1 - +(0 §Z)J [1 —/rTe” erﬁ(T)] (N(T €) + Ag) (T'e,]&z)dr

+ [5652 — /(€% — 1)erﬁ(§)] Jg 27T (/\7(7; €) + //ig) T (1€, Ag)dr

0

A~

51 &2 ¢ _ .
Da(&6,Ag) = — e + Ll 7[1 = /e Terfi(r)] (

3 N
~ @ 1_ I [5652 —/m(€% - l)erﬁ(ﬁ)] Ll 2T (./\/(7'; €) + Ag) Uo (156, Ao)dr
= ]?271,(172;6,82,/12). (321(1)

Now #5(€) is clearly uniformly bounded with
Ba(€ie o) = da(1 =€) + O(e 2> VIne + |Aa]) for €] <&

and .7?271, is well-defined for all £ > &;. Define Zse(p) ={u € CO(]/';(G)) : Julle < p}. Our goal is to show there
exists p1, P2, €p € 1 small enough such that

Fuj(@e,dn, 8n) : De(pr) x {e <@} x {ldnl, |An] < P2} = De(pr)  with j € {u, v},

whence @, (¢, Ay,) and 9, (&; €, Ay ) will be uniformly bounded in (). Using (3.17a) to bound the nonlinearity
when multiplied by an exponentially small integrand ~ e~ and (3.17b) to bound the nonlinearity when multi-
plied by an algebraic integrand ~ e’Tgerﬁ(T), and Claim 3.5 below, there exists a 0 < C3(€1) < oo such that for
all u; € ’Zss(p) and € < €,

R . o )
| P (@i e, di, e Ky) e <lda| + \FP[ < (2 D -anivs + e eﬁ/ﬁAl) f e " erfi(r)dr
€ 0
é(é\l) —71'2/62 EO —(71'—67')2/62 _&-2 v 50 _7_2
+ 2 ¢ erfi(&p) e dr + {oe 0 Ajerfi(&) e T dr
0 0

<|C?1| + VrpCa(@) [ (C(El)e%/ﬁ + 1@”2/6262”/\&]\1) Ine+ ——= C( ) e 2TV L K ]
€ €

2 €2

It is now straightforward to show that there exist constants p;, p2 > 0 and 0 < €y < €; such that ]?n(ﬂn, €, Jn, e—& /u\n) €
D.(p1) for all @, € De(py), |dyl, |A | < p1, and € < &. We remark that the coefficients in A; is O(1) as a conse-
quence of our choice of scaling of Al.

A completely analogous argument holds for ]?Lv, j'\—gyu, and ]?2,1,, with the following modification

(i) For ]?271, we use the function space D.(p) := {u € CO([¢1, &) : ule < p}-
(ii) For _7?2’“, in order to get the specific form of the O(e~2e~2"/VeIne + |Az|) we need

Jf T [1 - ﬁT@fﬁerﬁ(T)] dr %652 [1 - \/Ege*gerﬁ(f)] Jg 27 dr
0 0

argmax
fEIAS (e)

= argmax
EEfs (e)

= ifo

In other words, we need to keep the minus signs and still show that the argmax occurs at the end of the

interval fs(e). But this is true for all € small enough by using the asymptotic expansions shown in Table 2

to get
lim ‘ T [1 - ﬁTe_TQerﬁ(T)] = hm [1 In (1> +0 (1)] — —®
§— Jo £—w 2 f
. 1 2 3 _ 72 ™
E11_)11;105 [BE - ﬁferﬁ(f)] L e T dr = E151010‘3 & [—{ + O(l/{Q)] — —00,

and noting that the expressions are bounded on any bounded interval.
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erfi(¢) eQﬁ[l—FQ%—kO
+

(e dr e k1= k0 (&)
§Er2edr VT _ e [2 +%&+0 (5%)]
§Srie " dr W _ L 244 +0 (5%)]

§s e dr Vr _ -8 [2 +&+0 (5%)]
V7 e erfi(r)dr ~n (1) = 3@ (3) + 0 (&)
§E7[1 = Are " exfi(r)]dr b (1) + 30O (=) + 0 (&)
[ — Vare T erfi(r)]dr —5+im () + O (-3 + 0 (&)
ST - yare erfi(r)ldr S B (1) + By (<3) + 0 (&)

Table 2: The asymptotic behavior of all terms in (3.20) for &€ » 1 and n €
{1,2,3,4}. The integrals and asymptotic expansions were computed using Mathemat-
ica. YO (x) is the digamma function, where ©(1/2) = —y — In(4), ¥ (=1/2) =
2 — vy —In(4), »P(=3/2) = § — v —In4), »V(-5/2) = £ — v —In(4), and

~v = lim,—o (Z;”:l % —In n) is the Euler-Mascheroni constant.

(iii) A similar issue as (ii) arises in ‘//—:'271]; a completely analogous argument gives the desired result.

Using the uniform bounds on @,, we get estimates (3.18). Plugging these estimates back into (3.21), again using
Claim 3.5 and the asymptotic expansions shown in Table 2, we can explicitly integrate the terms multiplying A,,
to leading order at & = & since d,, is a constant. We obtain (3.19).
The symmetries then follow from the symmetry of the nonlinear term N (&;€) which is an even function in £
since W (x;e€) is odd and W, (x;€) is even in x, as we noted in Section 2.1. Hence, for all even functions @, (£),
]?n (Up;-) is even. Thus 4, (§) and 0, (§) are even and the symmetries for $n and 1, follow from the symmetries
of Hn(f)e*52/2. ]
It remains to prove the following claim.
Claim 3.5 Fiz €1 as in Lemma 3.3. Then there exists 0 < 6’2(&) < oo such that

o

o =N ~
J e*T2erﬁ(T)dT < Cy(€1)Ine  and erﬁ(fg)f e T dr < Cg(?l)eeﬁ/ege*z”/ﬁ
0 0

and, moreover, such that

o - . e
erﬁ(go)J- e T/ dr < Cy(@))ee™ /e TIVE,
0

Proof. The claim follows from the asymptotic expansions in Table 2, the facts that

fo 2,2 ° 2, 2 *° 2
J 67(71'767') /e dr <J 67(77767') /e dr :f e T dr = \/E

0 —00 —00

due to symmetry, and the small argument approximation Sa/g e dr = /e[1+ O (e)]. ]

3.3 Fast variables

In this section we compute the eigenfunctions for (3.3) for z € If(e) := [—¢%/2,¢%/2]. Motivated by the formal

asymptotic analysis in Section 3.1 we define the fast variable z := x/e2. We call the eigenfunctions in these
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coordinates ¢, (z); they are defined for z € [—1/+/€, 1/1/e] =: ff (e) and satisfy
Ouston = | Waz16) + W2(25 )| 6 = Db (3.22)
where for any ¢t € Rt

I\/[//(z;e) =tWo (2, t; 1),
WZ(Z; €) :=te? [0, Wo] (?2,t; 1),

We remark that even though 171//2 (z;€) is obtained through an appropriate transformation of 0, Wy(z,t;v), it is
also true that W,(z;€) = 0, W (z;¢€); hence our notation.

Motivated by the formal analysis we re-write (3.22) as
Oy — |:’7T2 — 271%sech®(72) + /\v/(z, e)] bn = ENndr
with N(z;€) 1= Wa(z1€) + W2(2;€) — 2[1 — 2sech?(7z)], which is equivalent to the first order system
0-Up = An(2)Un + Nou(Un, 21€, A) (3.23)

where [7” = ((Zn, Jn)T with Jn = é’zczn, S\n = —2n + /Kn from Section 3.2,

. 0 1 Gy 2 0
A, = , and Nn((bnvwnvZ;evAn) =

72[1 — 2sech®(72)] 0 ( V(ze) + 62Xn) On
Lemma 3.6 Define /\Vfalg(z; €) := €2[1 — 2rz tanh(n2)] + €*22 and ./\vfexp(z; €) :i= N(z¢) —/\v/a1g(z; €). Then there
exists & > 0 and 0 < C(&1) < o0 such that for all € < & and z € ff(e),

< C(&)e Ve

‘MXP(’Z; €)

Thus, for all € < €7, N (z; €) is exponentially close to Avﬁalg(z; €). In particular, there exists a constant 0 < 4 (&) <
oo such that for all e < & and z € ff(e)

)/\7(256) < Ci(&)e?
Proof. The result follows from the definitions of W and W, in terms of W and estimates (2.6). n
The leading order evolution equation 0,V = .Z(z)‘v/ has the two linearly independent solutions XV/J(z), je{1,2},
where
o —sech(mz) o 1 sinh(7z) + mzsech(nz)
Vi(z) = and Va(2) = ’
™

wsech(7z) tanh(7z) 7| cosh(mz) + sech(rz) — mzsech(rz) tanh(mz)|

as can be verified by explicit computation. Observe that the leading order terms no longer depends on n. Due
to symmetry considerations we construct purely even or purely odd eigenfunctions; thus we assume that either
U,,(0) € span {171 (O)} or span {172(0)} We then parametrize the corresponding solution to (3.16) at the matching
point z = +¢%2, which corresponds with z = +1/4/e =: £2p.

Proposition 3.7 Define for every e the norm |u(:)|. = SUP_c 7, (o |u(2)|. Then for each for n € N there exist
constants €g,p1,p2 > 0 such that for all 0 < € < ¢ the set of all solutions to (3.23) with Xn = —2n + ZAXn, and
which satisfy |u(-)|e < P1, with |dp|, |[An| < po and Uy, (0) = d,V1(0) are given by

. 2,2 2 2 .
d1(z5€, \pn) =dp, [—sechQ(wz) (1 + 24 n€2> n% + On (92 + 62|An|)] cosh(rz),
2 0 ™
e ) 2z 22 ne?\ | né 2 23
P1(256, Ap) =dpm [sech (2) <1 — — coth(7z) + — t 2) + =+ On(¥? + € |An|)] sinh(7z) (3.24a)
™ 7r ™

24



and for U, (0) = d,V2(0) are given by

o ~ v 1 ~

b2(z;€, An) =dn2— [1 + Op(e+ 63/2|An|)] [sinh(7z) + mzsech(nz)],
™

. ~ v 1 ~

Pa(z5€, An) :dn§ [1 + Oy e+ 63/2|An|)] [cosh(7z) + sech(mz) — wzsech(nz) tanh(7z)]. (3.24b)

Furthermore, ¢1(—z) = ¢1(2), 1(—2) = —1(2), ¢2(—2) = —p2(2), and Pa(—2) = 12(2).

We remark that for all 0 < N < oo, it is possible to choose ¢y and ps small enough (where py was chosen in the
proof of Proposition 3.4) such that |/A\n| < po whenever A, < po for all n < N. We also remark that, unlike in
the analogous proposition for the slow variables, Proposition 3.7, where we computed a different eigenfunction
associated with each eigenvalue \,, ¥ —2n, here we have only two functions (Zl and qvﬁg, which now take A\, as a

parameter. This difference is in accord with the formal analysis which indicates that, at least to leading order,

we expect that the fast eigenfunctions to solve the eigenvalue-independent equation
.. + m2[2sech?(7z) — 1]¢ = 0.

Proof. The argument is completely analogous to Proposition 3.4 so we abbreviate the proof. The symmetries
follow from the same argument as in Proposition 3.4. For the other claims we set up the fixed point equation on
the space of bounded functions

B(p) = fu e () : Jul < p).
using the Variation of Parameters formula, the normalized adjoint eigenfunctions

1 [ = cosh(rz) + sech(wz) — wzsech(rz) tanh(7z)]

“or

— wsech(7z) tanh(72)
and Wy(z) :=

sinh(7z) + mzsech(nz) sech(rz)

I//I?l (Z) :

and the ansatz

~ ~

~ ~ ~ ~ 1
D1(z5€, A\p) =cosh(mz)Ui (256, \n),  d2(2;€,An) =5 [sinh(7z) + wzsech(wz)] Ua(z; €, An),
T

~

~ ~ ~ ~ ~ 1
W1(z;€, A\p) =msinh(72)01 (256, \n), Wa(z;€, Ap) =5 [cosh(mz) + sech(mz) — wzsech(wz) tanh(72)] D2(z; €, Ay).

We emphasize that 4 exponentially grows in z, rather than exponentially decaying as the linear eigenfunction
sech(mz) might suggest. This ansatz is motivated by the formal asymptotic analysis. Owing to Claim 3.8 below
the following expressions are well defined and bounded on any bounded interval

u1(z; €, Xn) =— Jlsech2(7rz)
1 ? - ~ ~
+ o [ — sechz(ﬂz)f [sinh(77) cosh(nwT) + 77] (N(T; €) + 62)\n> Uy (156, A\p)dT
n 0

z

+ [tanh(7z) + mzsech? (7z)] J
0
= }v'l,u(ﬂl; e,dy,—2n + A,) (3.25a)

(/\7(7’; €) + 623\71) U1(T5€, Xn)dT]

U1(z5€, Xn) —d;sech? (7z)

+ 2i [sech2 (72) J

T 0

z

[sinh(7T) cosh(mT) + 77] (/\7(7; €) + e2in) U1 (75 €, Ap)dr

1 e AN
+ [Coth(ﬂz) — mzsech?(mz) + cosh(2) sinh(ﬂ'z)] L ( (15€) + 62/\”) U1 (75 €, )\n)dT]

= »/\_:.1,1) (1\21; €, C\Z/h —2n+ Kﬂ) (325b)
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~ ~ ~

1 1 s 2 . 2% \ > (.
+ 277[ cosh(m2) sinh(n2) + 72 L [sinh(77) + 7wrsech(nT)] (N(T, €)+€ )\n) Uo (75 €, A )dT

z

+ | sech(wr) [sinh(7T) + wrsech(rT)] (/\7(7; €) + E2Xn) Ua(T; €, S\n)dT]

(=)

~

= Fou(lins €, dy, —2n + A,,) (3.25¢)

1 tanh(mwz) Jz . 2 (7 NS
+ — h + h N ; + 2)\77, 5 7)‘n d
27 [coshz(ﬂ'z) + 1 —mztanh(mwz) Jo [sinhy(r) + wrsech(m=)] ( (Ti€) +e )uz(T € An)dr

~

+ LZ sech(77) [sinh(77) + wrsech(n7)] (/V(T; €) + egj\n) Uo (75 €, /\n)dT]

= Fou(lini €, da, —2n + A,,). (3.25d)

Thus (qvﬁn, Jn) satisfies (3.23) if, and only if, 4, and ¥, satisfy (3.25). Using Lemma 3.6 and Claim 3.8 below we
find that for all %, € D, (p), z € ff () there exists 0 < Cy(&,) < oo such that

| Fi (s €, dy, —2n + M)

b P (& 232, 2 N
< — —
<l + o (CrE)2 +(=2n + Ry))

sech?(72) f

0

X [sinh(r7) cosh(n7) + 7] dT + [tanh(nz) + mesech® (n2)] f dr
0

€

<|d| + 2= (Cr@)e + € (=2n +R,)) Caf@) (Ve + 1)

It is now straightforward to show that there exists constants p1, po > 0 and 0 < & < € such that fl,u(ﬁn; €, dy, /v\n) €
156(51) for all %, € ’56(51), |c\l/n\, \/v\n| < p1, and € < &. A completely analogous argument holds for _7?1’1“ .\F/'Q’u,

and fg,v. Using this uniform bound on %, in (3.25) and again Claim 3.8 we get the expansions?

. ~ - 3/217 o 2 ~ 1 ~

Ui(z;€,—2n + Ay) =d, I:*SeChQ(TFZ) + Op(e+ 6‘3/2\/&”\)] , Uz(z5€6,—2n + Ay,) =dn2— [1 + Op(e+ 63/2|An|)] ,
T

(2 A b 2 3/218 (o A v 1 3/2| 8

T (26, —2n + An) =dur [fsech (12) + On(e + € |An|)] L (s -2+ Ry) =dug [1 + On(e+e |An|)] .

We observe that the leading order terms for % (z) and ¥1(z) at the matching point z = +z, are the O(e) terms

since sech?(m29) = O(e~2™/V¥). Thus we compute the next order terms by plugging the expansion for #; (z) back
into (3.25a) and integrating explicitly using the form of Nalg and

J [sinh(77) cosh(nT) 4+ w7] sech?(x7)dr = 2 tanh(7z)
0

z
f [sinh(77) cosh(nT) 4+ 7] sech? (n7)277 tanh(nw7)d7 = 72? tanh?(72)
0

f [sinh(77) cosh(n7) + 77] sech? (w7)72dT
0

9¢(3
=33 <6772Li2(—e_2”) + 3Lig(—e?™%) — 27323 — 67222 In(1 + e~ 2™%) 4 37°23 tanh(72) + Ci)>
™
# 1
J sech?(w7)dr = = tanh(nz)
0 ™
# 1
J sech?(77)277 tanh(n7)dr = = (tanh(mz) — mzsech? (72))
0 ™
4 1 2
sech?(w7)r2dr = - (Lig(—e_%z) — 7?22 = 2mzIn(1 + e 2™%) + n?2% tanh(72) + ;)
0 T
where ((z) is the Riemann zeta function. We get (3.24). ]
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z—0 z — 00

Lis(-e™)  —f2m() - ntP + 520G 14 0

Lig(me ) S0y ) 4 220 0 et 4 O )

tn(e”** + 1) In(2) = 72 + 25 + O(=°) e 1+ O]
cosh(rz) 1+ # + 0(z%) %em (1 +0 (e—zm))
sinfy(r) mi+ I+ 0() L (140 (e72))
tanh(mz) Tz — % +0(2%) 140 (e2)
sech(rz) 1-— # + 0(z%) e (24 O (e727%))
() Lo e (210
coth(mz) L+ 224 0% 1+ 0 (e72)

Table 3: The asymptotic behavior of relevant functions for the integrals in (8.25).
Lin(z) is the polylogarithm function and ((z) is the Riemann zeta function. Ezpan-

sions computed using Mathematica.

It remains to prove the following claim.
Claim 3.8 All integrals in (3.25) are well defined and bounded on any bounded interval. Furthermore, there
exists € > 0 such that the mazimum of each of the following integrals for |z| < zp occurs at z = 2z := £1/4/€

for all e < &

(i) max, <., |[tanh(7z) + 7rzsech2(7rz)] §odr| = 20 + O(zge=2m20)

[COth(TFZ) — mzsech? (7z2) + %] 5o dT‘ = 20 + O(28e2m0)

(”) Max|z|<zo cosh(mz) sinh(7z

(iii) max,,|<s, |§; tanh(r7)d7| = 20 — 22 + O(e=270)

and so that the following integrals are bounded uniformly in zgy
(iv) |sech®(mz) §; [sinh(77) cosh(rr) + w7] d7|
(v)
(vi)

Proof. To show that the integrals are well defined we need to check that they are finite for all z bounded.

cosh(mz) Si:ilh(ﬂ'z)-kﬂ'z S(Z) [Sinhz (7TT) +7T tanh(ﬂ-T)] dT‘

tanh(mz) §o [sinh?(77) + 77 tanh(7z)] dT‘

cosh?(mz)+1—mztanh(7z)

This is clear for (i), (iii) and (iv) since each of these expressions at z = 0 equals zero. For (vi) we observe that
cosh?(7z) + 1 — mz tanh(7z) is never zero since cosh?(0) +1 — 0 - tanh(0) = 2 > 0 and at 7z = 2

[cosh2 (72) + 1 — w2 tanh(nz)| =7 |2 cosh(rz) sinh(7z) — tanh(rz) — 7TZS€Ch2(7TZ)]

TZz=2 Tz=2

a4
dz
zg [sinh(47z) — 47z] sech? (rz) >0

TZz=2

since sinh(z) —z > 0 for all 2 > 0 (this can be seen since sinh(0) = 0 and & sinh(z) = cosh(z) > 1). Thus it

remains to consider (ii) and (v), which may develop a singularity at z = 0.

(ii) We explicitly evaluate the integral to obtain fo(z) := [coth(rz) — mzsech? (12) + sech(rz)esch(mz)] 2. Using

2The notation @, refers to the fact that the constant may depend on n.
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the asymptotic expansions in Table 3 we get

lim f>(2) = lim [2 + O(ZQ)] = ;

z—0 z—0

(v) We explicitly integrate to obtain

1 z 9
= inh tanh d
f5(2) cosh(r=) sinh(m2) + 72 L [sm (77) + 77 tan (71'7')] T
1 sinh(272) 2 7w  Lig(—e 27%) 722 9
= - - = 7 1 Tz 1
cosh(mz) sinh(wz) + 7z [ 4 2 24 o + 9 + zln(e +1)

where Lig(z) is the polylogarithm function. Using the expansions in Table 3 we find

1 27223
3

+ 0| = i 1 [w

55 n 0(22) 3 + 0(7;4):| =0.

lim f5(z) = lim
z—0 f5( ) 2—0 27z + 0(2’3)
Away from z = 0 we use the fact that each of the six expressions is even; thus, without loss of generality,
we assume z > 0. For (i)-(iii) we first show that the maximum occurs at z = 2y and then use the large
argument asymptotic expansion of the integral to evaluate the maximum. For (iv) - (vi) we explicitly compute
the expression in the limit z — o0 and it is bounded; thus, since we’ve already shown that each expression is

bounded for z = 0 and they are continuous, they are bounded for all z > 0.

(i) We explicitly evaluate the integral to obtain fi(z) := [tanh(rz) + mzsech? (72)] z. Then

lim M

z—0  Z

=1

so that fi(z) ~ z as z — o0; thus, since zg = 1/4/€ =0, o0, there exists €; such that

max f1(2) = fi(20) = 20 (1 + O(20e”*"*))

0<z<zp

for all € < &, where f1(z9) was determined using the asymptotic expansions in Table 3.
(i) Follows exactly as (i).

(iii) The fact that the maximum occurs at z = 2y is clear since tanh(7z) is monotone increasing. We integrate
explicitly and use the asymptotic expansion for In(1 + e~270) for z5 » 1 shown in Table 3 to get the asymptotic

expansion.
(iv) We explicitly integrate to obtain

i cosh?(mz) — 1 nz?

Fa(z) —soch?(n2) f

[sinh(77) cosh(nT) 4+ w7] d7T = sech®nz [

0 2 2
1 1
_ — [=1 2.2 h2 .
5 27r[ + 7°2%] sech®rz
It is now clear that lim,_, f4(2) = 0.
(v) Using the expansions in Table 3 and f5(z) defined above, we find
467271'2 6271',2 1 1
li = i 1 = i e B —2mz _ .
s f(2) P O(ze=272) [ & o )] P O(ze=272) [27r +0le )] 27
(vi) Follows exactly as (v). n

At the matching point z = 1/4/€, we will need the following improved estimates on 51 and 1;1, which can be
obtained by substituting (3.24) back into (3.25) one more time.
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Proposition 3.9 Let ¢g,p1,p02 > 0 be as in Proposition 3.7. Then the set of all solutions to (3.23) with Ao =
—2n 4 A, [u(2)]ec < P, |dnl, |An| < P and U, (0) = d,V1(0) are given at the matching point zg = 1/+/€ by

2 3 ~
[ne NPT €2|An|)] cosh(20),

~ ~

o1(205 €, An) —d,

2 272
D1 (20: € ) =dp [:’; - % + O 4 & An|)] sinh(720) (3.26)

3.4 Gluing

Using the approximations to the eigenfunctions in the slow and fast variables, from Propositions 3.4 and 3.7

respectively, we show that there exists a unique global eigenfunction for (3.3)
~ ~ 1 1 9 ~
AnGn = V0pzpn — 3 O Wol(z, t;v) + $WO (x,t;0) | dn (3.27)
which can be constructed by gluing a fast elgenfunctlon to a slow elgenfunctlon at the overlap point = = €%/2.
Due to symmetry considerations, we glue qzﬁn to ¢71 for n odd and to d)g for n even. The matching conditions can

be understood as follows. We need both that the functions gbn and gbn are the same at the matching point as

well as their slopes

d%n((l’ - 77)/67 )
dz

A, (/%)
dzx

= %@n((m —m)/e-)  and - éq[n(x/g; ).

Since (3.27) is linear, any scalar multiple of $n(§ ;€) and g\gn (z;€) is an eigenfunction in the appropriate scaling
regime; thus, instead of matching the slopes directly we impose the condition that the ratio of the fast eigenfunc-

tion and its derivatives is equal to the ratio of the slow eigenfunction and its derivative at the matching point:

fn,l(j\n; 6) = 2

dolle=m)/eie ) imod(n,znmw/&e@n)] —0 (32

EQ/Z/)\n((LE - W)/E;E,]\l) 625m0d(n,2)+1(x/€2;€7xl)

r=€3/2
where
/):1 =2+ 506_53A17 /):2 =—4+ 68’6_{8]\2, X3 =—6+ 636_5‘%/‘3, and X4 = —8+ 556—53A4_

The factor €2 in front regularizes the problem and can be thought of as taking the z, rather than x, derivatives.
We observe that (3.28a) has no explicit dependence on the magnitude of the eigenfunctions. Using the Implicit
Function Theorem we will show that there exists a unique fixed point to (3.28a) near € = A,, = 0. For this A,,,
we ensure that the magnitude of the slow and fast eigenfunction at the same at the matching point by showing
that there exists a unique C), such that

J2(Cos Rn(€)3€) i= [ Du((@ = m) €5 €, K) = CuBumonn 2)+1(2/e% €, ) |

=0 (3.28b)

r=€3/2

which we will again show is true using the Implicit Function Theorem. We start with condition (3.28a). Using
the expansions (3.18) and (3.24) at the matching point z = ¢%/2 (equivalently, £ = (=7 + €¥/2)/e and z = 1/,/e)
with coefficients in front of A, given by (3.19) we get

1= 34 + O 22 Ve mme + IR )| [1 4 O(2)]

1 o
—fra(Ars€) = - -
T [1 + %Al + O(e2e~2m/Velne + €2|A1|)]

|1+ 02 + Lo e ™72 8y ) | |14 O(e27/F) |
T
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+O(e2e2Velne + | K,)) | [1 + O(¥/?)]

| —
B
=
=
Y
U
Il
| —
—
I
ooﬂ mﬂ

[ —
=
+
><

1+0(e+ 7e—(—7r+€3/2) 126 | R, | ] [1 n (’)( —2ﬂ/ﬁ)]
L+ 0(e+ dem(omeet2/26 R, | ] [1+0( e 2fr/«f)]

+ O(e=2e=2m/Ve In e + €2|A,)) ] [14 O(e3/2)]
)
)

L o 1= 3 Ay + O 22 Vemme + |4]) | [1 4+ O(e2)]
—J3,1(A3z5€) = -
" [1+ %8s + O(2e2rVe e+ 2/ a]) | [1 + O[]

|1+ 0(82 4 Femm™22 1 fyg)) | |14 O(e27/V9)|
[14+0(2 + Lemmreiac iy )|

ifn + O(e2e77/Velne + €2|Ay)) ] [1+0(¥?)]
[ + HER + O(e2e=2Velne + 2[Ry | [1+ O(e2)]

1 —(—m+e¥?2)2 /262 1 —27/\/e
_[1+(9(6+62\/ge |A|][1+of )]
s e R o)
It is clear that f, 1(0;0) = 0 and
dfn,l =~ 0
dA;j 1(A,:0=(0:0)

so that the hypotheses of the Implicit Function Theorem are satisfied. Expanding the unique function An(e) in
orders of € we find
A =0(?), A =0(), As3=0(?), and Ay = 0O(e).
Next we solve (3.28b) using the expansions for A, () and obtain the expressions
Clé
72

e_“/\/gflyg(Cl, (’)(63/2); €) 1= [1 + (’)(63/2)] e~ /2% o me/2 [1 —¢/2+ O(e 3/2)] [; + (’)(6_2“/\/5)]

Ve Q)= - 32| =26 ez _ C2 Lo Lo
e f22(C2,0(€);€) := — [1+ O(e)] [ 1+ 0O(e )] e e 5o [1+0(e)] [2 +0 7
7'('2 2 2 3C € 1
IV fu2(Ca, O(¥2):€) i= T |1+ O()| |2+ O(¥2) | 72 =2 - S5 14 0(¢)] [2 + O(e—%/ﬁ)]
IV £y (O, O(6):€) 1= = [1+ O(e)] -2+ 0@ |em2e SyoE|teo(Leeve)],

El Y b 63 - 2 \/E

We define
2 2 4 % 9

271'26‘1 _ €2€7T /2¢> 5/201, 74,”26*'«2 — ee™ /2¢ 66/202, 4%03 _ 6467T /2¢> 6/2037 and *87‘(404 _ 63671' /2€2 6/264
and

£ (A 2w

m@mﬁmwﬁm(eﬁﬁe%mw%>

. i ]

Foa(Coje) imeem= 2 g, 2( - ”2/262636/202,0(6);6)
€

Fs2(Caie) =22 g ( e ey, (9(63/2);6>

g A 8 .
f4,2(C4;€) —3e(m— 3/2)? /26 fa2 <_7;6_71—2/2626_6/20470(6);6) .
€
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Now it is clear that f, 5 (1;0) = 0 and

dfn2

dCy l(¢0=(1:0)
so that the hypotheses of the Implicit Function Theorem are again satisfied. Expanding the unique function
Ch(€) in orders of € we find Cy,(e) = 1+ O(e), and, in particular, Cy(€) = 1 + ¢/2 + O(€/2).
Putting everything together, and recalling the definitions € := v/2vt, I(e) := [¥/2,2m—€3/2], I}(e) := [—€%/2,€%/2],
we get that

#0

A %(2+O®e% ) —1/t + O(eV2e 1<),
Mf%(4+0%e%m) —m+0(2fwﬁ,
As %(6+0§&%m3)-4ﬁ+0(%%*ﬁy
M= ;(8+O§e%m):~m+o(4fwﬁ

are eigenvalues for (3.27) with associated eigenfunctions

3 sup, ele=m?/2¢ G, (x;t,v) + 1‘ < C(eg)e?? o xeli(e)
1 -
SUp, |gore™ 2 sech () (et v) — [sech® () (14 5 + 55 ) = 5 || < Cleo)e®® = weIy(0
(3.29a)
5 sup, ‘ e(ac )% /26 ¢2(x t,v) + 1‘ (e0)e o xely(e) (3.29b)
2 - .
sup, |s=e™ 2 go(a;t,v) — [sinh (Z2) + Zsech (6—2)]‘ <Cleg)e : xels(e)
@ @=mP2 G (e ) 3/2 .
. sup,, ‘Q(z_ﬁ)z_eze od3(z;t,v) + 1| < Cleo)e o x e Ii(e) (3,200
sup,, %6”2/26 sech (Z%) bs(x;t,v) — sech? (Z2)| < Je : xelf(e)
e (z—m)?/2€2 )
5 SUPy | o2t —3e2] © bula;t,v) + 1‘ Cleg)e : wx e I(e) (3.290)
sup, %eﬂ/%?csch (g) (54(x; t,v) — ‘ C(eo)e : xelf(e)

which are expansions (2.12) and (3.5). Proposition 3.1 now follows from following proposition and Sturm-Liouville
theory for periodic boundary conditions (c.f. [9, Thms 2.1, 2.14]), which states that the eigenvalues are strictly
ordered A9 > A1 = A2 > A3 = Ay > ... and that an eigenfunction with exactly 2n crossings of zero in x € [—m, )
is the eigenfunction associated either with Ag, 1 or with Ag,.

Proposition 3.10 Fiz ¢g <« 1 such that the eigenfunctions (Ej (z;€) are given as in (3.29) for all 0 < € < €.
Then 51(x; €) and (752(:10; €) have exactly two zeros in the interval x € [—m, ) and the eigenfunctions 53(36; €) and

b4 (z;€) have exzactly four zeros in the interval x € [€/2,21 — €¥/2) for all 0 < € < €.

Proof. The n = 2,4 cases are clear since sinh(mx/e) = 0 at x = 0 € Iy(¢), =" has a single zero at x = 7 € I,(e),
and 2 ("C;”)2 — 3 has two zeros at x = 7 + em € I;(e), and by making ¢, potentially smaller so that
—140O(€p) < 0. The result for n = 1,3 is then a direct consequence of Sturm-Liouville theory since A\g > A; > Ay
and Ao > A3 > 4. ]
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4 Discussion

In this work we have proposed a candidate metastable family for Burgers equation with periodic boundary
conditions, which we denote W. The metastable family is parametrized by three parameters: the spatial location
xg, time tg, and mean c¢y. Our choice of metastable family was motivated by our numerical experiments, one
example of which is shown in Figure 1. We furthermore proposed an explanation for the metastable behavior
of W based on the spectrum of the operator £ which results from linearizing the Burgers equation about W.
In particular, we showed that by appropriately varying the parameters g, tg, and cg, perturbations to W can
be made orthogonal to the first three eigenfunctions for £; we furthermore showed why this means that initial
data “near” the metastable family converges to the family much faster than the evolution along the family.
These results are summarized in Theorems 1 and 2. From a technical perspective, we derived the first five
eigenvalues for £ using Sturm-Liouville theory and ideas from singular perturbation theory. In particular, we
show that there are two relevant space regimes, which we call the “slow” and “fast” space scales; we construct the
eigenfunctions in each regime separately and then rigorously glue the functions together using a Melnikov-like

computation.

It is worth reiterating that our results show that the spectrum for £ is, to leading-order, independent of the
viscosity v; this result is particularly interesting since our analysis is not valid for the inviscid equation. Further-
more, our results are in contrast to [2], in which the authors proposed a metastable family for the Navier—Stokes
equation with periodic boundary conditions, denoted w®, and provided numerical evidence and analytical argu-
ments which indicate that the real part of the least negative eigenvalue for the operator obtained from linearizing
the Navier-Stokes equation about w’ is proportional to /v; in other words, the metastable behavior of w® does
depend on the viscosity. On the other hand, in [4], Bedrossian, Masmoudi and Vicol show that the solution
behavior for the Navier—Stokes equation in a neighborhood of the Couette flow depends on the time-regime:
for small enough time scales the solution behavior is governed by the inviscid limit of Navier—Stokes, whereas
viscid effects dominate after long enough times. Thus, our results raise the question about whether there is
an even earlier time regime for the Navier—Stokes with periodic boundary conditions than that studied in [2],
and a potentially different metastable family, in which convergence to a metastable family is independent of the

viscosity.
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