
Vol. 53, No. 3 DUKE MATHEMATICAL JOURNAL (C) September 1986

MODULAR FORMS IN CHARACTERISTIC ’ ANDSPECIAL VALUES OF THEIR L-FUNCTIONS

AVNER ASH AND GLENN STEVENS

In this paper we specialize our results in [A-S] to G GL2 to obtain informa-
tion about congruences between classical holomorphic modular forms. In the
final section we indicate how the methods can be adapted to prove congruences
between special values of L-functions of modular forms of possibly different
weights.
We begin with a study of the q-expansions in characteristic > 0 of Hecke

eigenforms of weight k > 2 and level N prime to ’. By a theorem of Eichler and
Shimura this is equivalent to a study of the systems of eigenvalues of Hecke
operators acting on the group cohomology of FI(N ) (see [}2). Using the func-
torial properties of cohomology, we show (Theorems 3.4 and 3.5) that the systems
of Hecke eigenvalues (mod ’) occurring in the space, ,//t’ 2(1’1(N)), of modular
forms of level N and all weights > 2 coincide, up to twist, with those occurring
in the space, ,//t’2(I’(N)), of weight two forms of level N’. In particular, we see
that there are only finitely many systems of eigenvalues (mod ’) occurring in the
infinite dimensional space t’> 2(Ft(N)), a fact proved by Jochnowitz [J] for
prime N < 17.
Group cohomology has been used before in this theory. For example, a proof

of Theorem 3.4(a) was given by Hida [H1] who refers to much earlier but
unpublished work of Shimura [S1]. An account of Shimura’s work can also be
found in Ohta’s article [O]. Kuga, Parry, and Sah [K-P-S] have proved similar
statements and extended them to quaternionic groups. Haberland [Ha] has used
cohomological methods in his study of congruences of Cartan type. Apparently
new in our treatment is the use of the operator 0, a cohomological analog of
"twisting" of modular forms, and of the operator xI, (see the proof of 3.3(b)).
By taking the point of view of group cohomology we lose some structure. For

example, we do not see the algebra structure of the space of modular forms. Nor
do we see the Hodge decomposition of the cohomology groups. Notice also that
we obtain no information about weight one forms. Nevertheless, the functoriality
of group cohomology provides a powerful tool for studying congruences between
eigenforms. Moreover, as many authors have noted [M, Mz, St], group cohomol-
ogy is well suited for the study of p-adic properties of special values of
L-functions.

In {}4 we develop the theory of higher weight (k > 2) modular symbols, and
examine the special values of L-functions attached to them. In Theorem 4.5 and
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its corollary we show how the theory can be used to prove congruences modulo
between special values of L-functions of higher weight cusp forms over SL(2, Z)
and those of weight two cusp forms over FI(’).

1. Modular forms in characteristic f. For purposes of comparison and to
introduce notation which will be used later, we review the literature on modular
forms in characteristic f.
We assume throughout that f is a prime > 3.
Let N > 0 and F FI(N). The classical Hecke algebra o’= Z[Tn, (a)], where

n runs through the positive integers and a through (Z/NZ)*, acts on the space
’(F) of weight k holomorphic modular forms over F. This action respects the
decomposition of ’k(F) into cusp forms, 6ag(F), and Eisenstein series ok(F).
We will always assume k > 2. The gadic properties of the systems of eigenval-

ues of ’ occurring in Y’k(F) reflect the structure of the -adic Galois representa-
tion attached to 6ak(F) by Deligne [D]. The case of weight 2 is of special interest
because in this case the gadic representation is the Tate module of the gdivisible

group of the Jacobian of the modular curve X(N)/Q. Thus congruences modulo
f for systems of eigenvalues occurring in Y’2(F) are related to the structure of the
Galois module of gdivision points of the modular Jacobian. This point of view is
used by Doi and Ohta [D-O] to prove congruences between weight two cusp
forms.
An important principle, first observed by Shimura [S1] (see [O]), is that systems

of eigenvalues of occurring in Y’(F) are congruent modulo a prime

_
above f

to systems occurring in 6a2(F1) for another congruence group 1-’ of level Nf. This
principle offers the possibility of proving congruences between cusp forms of
higher weight by first reducing to weight 2. This idea has been developed by Hida
[H1, H2, H3] in his work on congruence primes, and also by Ribet [R1]. We view
our Theorem 3.5 as a generalization of Shimura’s principle.

Since each form f ’e(F) has a Fourier expansion we may view ’(F) as a
subspace of C[[q]], q e 2i. For a Dirichlet character e" (Z/NZ)* ---> C* let
’k(F, e) be the space of forms with character e. Let //’k(I’, e; Z[e]) /’k(F, e)
tq Z[e][[q]] where Z[e] is the ring generated over Z by the values of e. For a
Z[e]-algebra R let ’k(F, e; R)= /’k(F, e; Z[e])(R)z[e] R

___
R[[q]]. Similarly de-

fine 5ak(F, e; R) and dk(F, e; R). Using the description of the action of 9f’ on
’(F, e) in terms of q-expansions [$2] we see that ’ acts on the spaces
/’k(F, e; R), 5ak(F, e; R) and dk(F, e; R) for every Z[e]-algebra R.

The following theorem is due to Shimura (cf. [$2], Thm. 3.52).

THEOREM 1.1.
(i) ’(I’, e; C) =-t’(F, e).
(ii) Y’(F, e; C) Y’(F, e).
(iii) Ok(F, e; C) -= o(F, e).

Now let (9 be the ring of all algebraic integers and

_ __
(9 be a prime ideal

dividing g’. Fix an identification O/_ F. For a system of eigenvalues
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(I)" .-)(9 let 4): ’---)Fe be the reduction of (I) modulo h_. The following
corollary is an immediate consequence of the last theorem and Propositions 1.2.2
and 1.2.3 of [A-S].

COROLLARY 1.2. Let q" 9’ F be a system of eigenvalues. Then occurs in
,//4’,(I’, e; F) if and only if there is a dp: 9’--, (9 occurring in ,/k(F, e) such that
I, (I). m

The algebra t’(SL2(Z); F) F+ E,> 2./gk(SL2(Z); F)
_

F[[q]] has been
studied by Swinnerton-Dyer and Serre [Sel, Se2, Sw-D]. A useful tool in their
theory is the derivation (or "twist") 0: ,(SLz(Z);F)-)./[/[(SL2(Z);F) de-
fined by O(Y’.a.qn) 2na.q’. The operator 0 maps ’,(SL2(Z);F) to
#’k++I(SL2(Z); F) and intertwines the action of .f on these two spaces. For a
system of eigenvalues 4)" ’ and a nonnegative integer let (I)(): Af---)

be the "v-fold twist" of 4) defined by (I)(")(T.)= n"(}(T.) and (I)()((a))=
(I)((a)). If (I) is the system of eigenvalues associated to a nonzero eigenform
f /k(SL2(Z);) then (I) (1) is the system associated to Of.

The following theorem is due to Serre and Tate. It has been strengthened to
congruence groups of prime level < 17 by N. Jochnowitz [J].

THEOREM 1.3.
(a) There are only finitely_many systems of eigenvalues : o’--> Fe occurring in

the space g(SL2(Z); Fe) (R) F,.
(b) If p occurs in this space then there is a system occurring in

2<k<’+1

and an integer v > 0 such that

The first part of this theorem follows easily from Corollary 2.5. We will give a
cohomological proof of (b) for the groups FI(N) for arbitrary N > 1 in 3 (see
Corollary 3.6).
The next theorem was proved by Serre.

THEOREM 1.4.
(a) ([Sel], Thm. 11). 5e+I(SLE(Z); Fe) 5aE(Fo(); F,).
(b) [Se2]. For 2 < k < - 1

where to" (Z/’Z)* - O* is the unique character satisfying to(n) =- n (mod _) for
all n (Z/’Z)*. m
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Serre gives two proofs of (b). One uses the geometry of the modular
curve XI(’) in characteristic ’. The other proof involves multiplication by an
Eisenstein series and is similar to the proof of (a). Our Theorem 3.4(a),(b)
provides a cohomological analog.

[}2. Passing to cohomology. The goal of this section is Proposition 2.3 which
relates systems of Hecke eigenvalues occurring in spaces of modular forms
modulo

_
to systems occurring in certain cohomology groups.

We will use the terminology of Hecke pairs and associated Hecke algebras as
in [A-S]. Thus if F is a congruence subgroup of SL2(Z) and S is a subsemigroup
of GLE(Q) containing F, then (F, S) is a Hecke pair. The associated Hecke
algebra ’(F, S) can be defined as a double coset algebra as in [A-S] or,
equivalently, as the convolution algebra of Z-valued F bi-invariant functions on
S which vanish outside finitely many double cosets. This algebra acts on the right
on the cohomology groups H*(F, E) of any fight S-module E.
We want to compare systems of Hecke eigenvalues occurring in [/[k(FI(N)) to

systems occurring in ’2(F(N)). Thus we need to relate the Hecke algebra of
F(N) to the Hecke algebra of F(N’). For this purpose the notion of compati-
bility of Hecke pairs was introduced in [An, A-S]. Unfortunately, if we wish to
use this notion in the present situation we must exclude the Hecke operators T
for ’1 n. Preferring not to do this we make instead the following definition.

DEFINITION 2.1. A Hecke pair (F0, So) is said to be weakly compatible to a
Hecke pair ( F, S) if

(a) (ro, So) _c (r, s);
(b) the set S’ S \ FSo satisfies SS’ c_ S’ and S’SO c_ S’;
(c) r SoS  = r0.
Remark. If we replace (b) by the stronger condition S’ then we obtain

the notion of compatibility ([A-S] Definition 1.1.2). m

If (F0, So)
_

(F, S) are weakly compatible then there is a canonical algebra
homomorphism t: ’(F, S) ’(F0, S0). Viewing the Hecke algebras as con-
volution algebras this map is given by restriction of functions on S to functions
on So.
The following lemma is the basic tool which allows us to relate systems of

Hecke eigenvalues occurring in the cohomology of F to those occurring in F0.

LEMMA 2.2. Suppose (F0, S0)
_

(F, S) are weakly compatible Hecke pairs.
(a) Let E be a right S-module, F be a right So-module and " E F be an

So-morphism. If E Io c_ ker(O) for every o S \ FS0 then the composition

Hr(r, E) re.s Hr(o, E) - Hr(o, F)
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is Hecke equivariant; i.e. if Hr([’, E) and h g’(r, s) then

(,o res)(lh) (,o res(j))lt(h ).

(b) If F is a right So-module then the induced module Ind(F0, F; F) inherits a
natural right S-action. The Shapiro isomorphism

6a: Hr(F, Ind(Fo, F; F)) Hr(Fo, F)

is Hecke equivariant.

Proof The proof of (a) is a simple calculation with cocycles.
Now consider (b). The right semigroup action of S on Ind(Fo, F; F) is defined

as follows: for a S, f Ind(F0, F; F), and x F set

0
(flo)(x)

f(Y)l+
ifxt-1 So-iF,
if xo-1 7.-ly with So, y F.

The Shapiro isomorphism is the composition of restriction to F0 with the map on
cohomology induced by the So-morphism

Ind(Fo, r; ) -
f f(1).

Clearly, if S \ FSo then (flt)(1) 0. Thus the Hecke equivariance of Y’ is a
consequence of (a). m
For a nonnegative integer g let Vg be the right representation of GL2 on

SymS(A2). Thus for a commutative ring R, Vg(R) is the space of homogeneous
degree g polynomials in two variables over R. The action of an element
t GL2(R) on a polynomial P Vg(R) is given by

(PIt)(X, Y) P((X, Y)a-I).

TI-IEORM 2.3 (Shimura, [$2] Chapter 8). Let F be a congruence subgroup of
SL2(Z) inoo,utio : I ,e,
be nonnegative. Then there is an isomorphism of .(F, GLE(Q))-modules

n(r; 5(C)) _--(r) ,(r) e,(r)

where kanti(F) is the space of antiholomorphic weight k cusp forms over F. 1
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Now fix an integer N > 0 and a prime not dividing N. Let

r r(N),

M(Z), c 0(mod N)),
ro to(e) a r(N),

a
Sic =- O, d 0 (mod ’)},

rx r(Ne),

Sic 0, d 1 (mod ’)},
It is easy to see that the Hecke pairs (r1, $1)

_
(F0, So)

___
(Y, S) are pairwise

weakly compatible, and that the natural map t: ’(F, S)-o 9’(F, S) is an
isomorphism. These algebras are seen to be commutative as in [$2] Chapter 3.
The group Fo normalizes these Hecke pairs and the actions of Fo induced by
conjugation on the Hecke algebras are trivial.

S and for each r (Z/NZ)* fix rFor each integer n let o, o

(a / Fo(N) q I’(’) with d =r (mod N). Then with the standard action
of tv(I’, S) on ’k(F) ([$2], 8.3) we have for f /’k(F)

fl[ ronr] fl T

fl [F’rF] =fl(r).

The corresponding statement with (F, S) replaced by (1"1, S1) is also true. Hence
the classical Hecke algebra .tv= Z[Tn, (r)] acts on ’,(Ft) via the maps

e-, e(r, s) 2, e(r,, s)

r. [ronr] , [rl.rll

(r) [rrrl [FI’rFX].

If E is an arbitrary fight S-module (respectively S-module) we let act on
H*(F; E) (respectively H*(F1; E)) via these maps. Moreover the group l’o/r
(z//’z)* acts on H*(I’; E) as a group of Nebentype operators which commute
with the action of
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fr all 3t(Franr’_-OF’mdule}Hacdb) o

and an integer g let H(g) (h Hlh[y wg(d)h

DEVINITION 2.4.
(a) For M > 0 let

/(FI(M)) ’(FI(M), e; )

where e runs over all characters e" (Z/MZ)* 0".
(b) For k > 2, let ilk(F) (respectiv_ely fk(F)) be the set of systems of eig_,enval-

ues " . 0 (respectively : o,’ Fe) occurring in t’g(F)(respectively t’g(F)).
(c) For g > 0 let fl2(1’1, to g) (respectively f2(F1, tog)) be the set of systems of

eigenvalues " ,’’ 0 (respectively : 9a e) occurring in /’2(1’1) (’g) (respec-
tively 2(FI)’)).

By [A-S] Propositions 1.2.2 and 1.2.3 we have surjective reduction maps

u (r) a (r)

f2(F1, g) 2(I’1,

The map F F2 \ (0) given by (0,1), gives a bijection F \ F --F2 \ {0} which commutes with the right action of F. Thus we may identify the
right S-module Ind(F, F; Fe) with the module 1 of Fe-valued functions on Ff
which vanish at the origin. The action of S on I is given by

(flo)(a, b) f((a, b)o-x)
for o - S, f I, (a,b)

_
F].

For each integer g let Is be the S-submodule of I consisting of homogeneous
functions of degree g. Then Is depends only on g modulo ’- 1 and we have a
decomposition

t’-2

I-- Ig.
g--0

PROPOSITION 2.5. Let g > 0 and k g + 2. Let #: o, Fe be a system of
eigenvalues.

(a) occurs in Ha(F; Vs(e)) iff either (i) fit,(F) or (ii) g > 0 and
occurs in H(F; Vg(e)).

(b) occurs in Hx(F; I (R) e) iff (F1, tog).

Proof of 2.5(a). Let K be a number field large enough to contain all
eigenvalues of acting on t’,(I’). Let R __C_ K be the discrete valuation ring
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associated to the place below ,_ and let 2 R be a generator of the maximal
ideal. We may assume R/) g Fe contains the image of .

In the diagram

H(F; Vg(R/X))

0 -, H(r; Vg(R)),o H (r; ,,(R)) L Hi(r; V(C))

the vertical arrow is surjective (because g’> 3, cf. proof of Theorem 1.3.5 of
[A-S]) and the horizontal sequence is exact. Since the image of spans
Hi(r; Vg(C)) we see that occurs in H1(1’; Vg(R/))) iff there is a 9: 9’ R
occurring in Hi(F; Vg(R))to Hi(F; Vg(C)) such that . By 2.3 and 1.2
we see that there is a t’: 9f’ R occurring in H(F; Vg(C)) with iff

,(I’). On the other hand such a I, occurs in H(F; Vg(R))toritT OCCURS

in the kernel H(I’; Vg(R))x of multiplication by ,. To complete the proof of (a)
we will show

0
H(r; Z(R))x-= n(r;

if g=0
if g> 0.

The short exact sequence 0 Vg(R) Vg(R) Vg(R/)) --, 0 gives rise to

an exact sequence in cohomology

H(F; Vg(R)) --, g(r; -, Hi(F; Vg(R)) x O.

If g > 0, Vg(C) is a nontrivial irreducible F-module and hence has no nonzero
F-invadants. Thus H(F; Vg(R)) 0 and H(F; Vg(R/))) --- H(F; Vg(R))x as
desired. The case g 0 is trivial. 1

LEMMA 2.6. There is an isomorphism of 9g-modules

H(r; Z)-- HI(Fx; Fe)(’.

Proof Let (Fe),o be the rank one Fe-module on which Fo acts via 0g. Then
the induced module Ind(F0, I’; (Fe)o,) is isomorphic as an S-module to Ig. By
Lemma 2.2 the Shapiro isomorphism HI(I’’ Ig) --- n (Fo; (Fe),o) commutes with
5’. This latter group is isomorphic to Hi(F1, Fe) by [A-S] Lemma 1.1.5.
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Proof of 2.5(b). As in 2.5(a) we know 2(1’1, 6g) iff occurs in
Hl(I’l;e) (’g). By the lemma this is equivalent to the occurrence of (I) in

COROLLARY 2.7. The set [,Jk>2k(l’) is finite.
Proof. This is an immediate consequence of 2.5(a) and [A-S] Theorem 2.2 m

This result generalizes the first part of the theorem of Serre and Tate (1.3(a)).

3. Systems of Hecke eigenvalues.
for Vg(Fe).

To simplify the notation we will write Vg

LEMMA 3.1. For 0 < g < d there are F-invariant perfect pairings.
O) -,

(2) Ig I_g-) Fe.

Proof We leave it to the reader to verify that the following pairings are
nondegenerate and F-invariant.

(1) For P(X, Y) ,g=oaXg-Y, and Q(X, Y) ,g=ob,Xg-"r

g -1

(P, Q}v (g) (-1)"a,,bg
----0

This pairing is determined by the formula

((aX+ cY) g, (bX+ dY) g} v (det( ac b g

(2) For f Ie,, .1"2 - I_g

A), Z
xFe

Let ag: Vg ---) Ig be the F-morphism which sends a polynomial to its associated
function on Ff. For g < d let fig: Ig.--) e-l-g be the dual morphism to a_,_g.
Then fig is given explicitly by

fig(f) E f(r, s)(sX- rY)l-l-g.
(r,s)F

Remark. The maps ag and fig are specialcases of maps occurring in the main
diagrams of [A-S]. For example, if we let (h: Vg -) Fe be defined_by (h(P) P(0,1),
then a_ is the map a() of [A-S] (1.3.2). If " (Fe)og-) Ve_l_g, is given by
(r) =SrXe-l-g then fig is the map fl() of [A-S] (1.3.3). m
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For an integer v > 0 we define the "g-fold twist" of an FeS-module (M, rM) to
be the module (M(v), rm() ) whose underlying space is M(,)= M and whose
S-action is given by

rm()(o)m det(o-1)rm(a)m

foroSandmM.
Let 0 V+ be the polynomial

o(x, r) xer- xr’= xr I-I (x- at’).

For o S a simple calculation shows 0o det(o-1)0. Hence multiplication by 0
induces an S-morphism

0
V(1) /+1

for every g > 0.

LEMMA 3.2.
(a) If 0 < g < the sequence

0--) Vg’- Ig’- . l_g( g) 0

is an exact sequence of S-modules.
(b) The map

is an isomorphism of S-modules.
(c) For g > the sequence

0 Vg_t,_l(1) g--) Ig -’-) 0

is an exact sequence of S-modules.

Proof For arbitrary g > 0_it is easy to verify that as,/3g are S-morphisms.
Moreover, a polynomial P Vg (g > 0) is in the kernel of as iff P vanishes at
every point of pI(Fe) iff P is divisible by 0. Thus in each of the three cases
(a), (b), (c) ker(as) is as claimed.

Suppose 0 < g < d. The last paragraph shows ae_l_ is injective, and there-
fore its dual/3 is surjective.
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Now let Q Vg. We will show g Otg(Q) 0. For P V:_l_g we have

(p, pgO Og(Q))v= (o:_l_g(p), Olg(Q)), E P(x)Q(x) 0

since ER(x)= 0 for any homogeneous polynomial R of degree Y-1. Thus
Image(ag)

___
ker(flg). Counting dimensions shows that this inclusion is in fact an

equality, proving (a).
Next suppose g > :. To show_ag is surjective it suffices to show that for each

[a, b] in PI(Fe) there is a P Vg such that
(i) P([a, b]) : 0
(ii) P([r, s]) 0 for [a, b] 4: [r, s].

Since F acts transitively on P(Fe) we may take [a, b] [1, 0]. In this case we let
P(X, Y) Xg-e+ 1r-re- i" X aY). This completes the proof of the lemma, mXa= 1,

For each integer v > 0 and FeS-module E we have an isomorphism of abelian
groups H*(F; E) -= H*(F; E(v)). The action of 0’ on these groups is related by
the formula

t(nr) nVtn

where t. (respectively t)) is the endomorphism of H*(F; E) (respectively
H*(F; E(v))) induced by the Hecke operator T..
We define an action of 9g’ on the v-fold twist Fe(v) of the trivial S-module F

by

(T,,, r) ndeg(Tn)r

where

deg(T)
n

din
(N, d)-I

is the number of fight F-cosets in the double coset FonF. Then we have an
isomorphism of oCte-modules H(F; Fe(v)) -= Fe(v ).

LEMM 3.3. We have the following isomorphisms of ore-modules.

(a) H(F; Ig) -= { ore(:- 1) otherwise.ifg=- 0 (mod :- 1)

(b) H(F; g) ,Fe(u) where v ranges over all nonnegative integers such that
(i) (g’ + 1)v < g, and
(ii) (:+ 1)v-- g (mod g’- :).
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Proof (a) Since F acts transitively on Ff \ (0) the F-invariants in I are the
functions which are constant on Ff\ (0). Thus H(F; Io)_--Fe as abelian
groups. The action of g is easily verified to be as claimed.

(b) L. E. Dickson [Di] has shown that the ring of F-invariants in Sym*(V) is
generated by

and

0 XY- XY

r (X2Y XY2)/O E (S’-iyi)-1
i=0

We have already observed o0 det(o)0 for o S- 1. One also easily verifies
ot t,. Thus

H(r; )= v,0"v =-

where the first sum is over ,,/ satisfying (’+ 1) + tt(’ 2

sum is over v satisfying (i), (ii) of the lemma.
and the last

The long exact cohomology sequences obtained from Lemma 3.2 together with
the last lemma and Lemma 2.6 yield the following theorem.

THEOREM 3.4.
(a) If 0 < g < there is an exact sequence of 9g-modules

(b) There is an isomorphism of -modules

H(I’; fie) -= H(F1; F)
(c) For g > there is an exact sequence of ogre-modules

H(r; ,) - H(r; g_e_(1)) o g,(r; ) - g,(r,; ,),
_

o.

It is now an easy matter using 2.6 to derive conclusions about systems of
Hecke eigenvalues occurring in the_spaces /k(F) and /2(F1)(’g). If is a set
of systems of eigenvalues " g’ Fe and > 0 let

THEOREM 3.5. Let g > 0 and k g + 2. Recall that k(r, )(a) stands for the
set of systems of Hecke eigenvalues occurring in the space of modular forms in
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characteristic d’ for the group F with weight k, character 60 and twisted by the ath
power of the determinant. If 60 ( resp. a) is omitted from the notation, the trivial
character (resp. zeroth power) is implied. (Cf. Definition 2.4).

(a) For 2 < k < ’+ 2, 2(F1, 60g) /(F) u ,+3_k(F)(g).

(b) 2(rl, 60) e+E(F)
(c) If k > d’+ 2, and do 2(F1, 60g), then either do k(F) or dO occurs in

n(F; Vg(e)) (see, 3.3).
(d) For k > 2, f(F)

___
Uo<<s/(e+l)(F, 60g-)().

Proof. Statements (a), (b), and (c) follow from Theorem 3.4(a), (b), and (c)
using Proposition 2.5. Now consider (d). By Proposition 2.5(a) it suffices to show
that if occurs in HI(F; Vg(,)) then is a member of the right hand side of
(d). We will prove this by induction on g. If g < ’ it follows from (a) and (b).
We therefore suppose g > ’ and that the statement holds for all g’ < g. By
Theorem 3.4(c) occurs either in Hi(F; Vg_e_(e)) or in HI(F; )(os). In the
first case the induction hypothesis gives the desired result. In the second case
Lemma 2.6 together with Proposition 2.5 completes the proof, m

In particular this shows that, up to twisting, the set of weight 2 systems for F
is the same as the set of weight > 2 systems for F. Moreover from (a) and (d) we
obtain the following strengthening of Jochnowitz’s theorem (Theorem 1.3) to
arbitrary level.

COROLLARY 3.6. For every k > + 2

U U (’).
v=O 2<r<’+1

[}4. Special values of L-functions. In this section we examine the basic
properties of special values of L-functions, A(, X), attached to compactly
supported cohomology classes Hc(F; E) and primitive Dirichlet characters
X- We show how this theory can be used to prove congruences modulo h_ between
the algebraic parts of special values of L-functions of higher weight cusp forms
over SL(2, Z) and those of weight two cusp forms over F(g’).

Let div(Pl(Q)) be the group of divisors supported on the rational cusps,
pl(Q) Q u {i }, of the upper half plane, and let -0 c be the subgroup of
divisors of degree zero. The natural action of GL(2, Q) on pl(Q) induces an
action on 0@ which preserves 0.

Let E be a ZF-module where F F(N).

DEFINITION 4.1. We will refer to Homr(o; E) as the group of E-valued
modular symbols over F.

For the remainder of this section R will denote a commutative ring with
identity in which the order of every torsion element of F is invertible. If E is an
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RF-module then the next proposition shows

Homr(.@o; E) -=/c(r; e).

More precisely the next proposition compares two long exact cohomology
sequences. One of these is the cohomology sequence of the short exact sequence
of RF-modules

0 - E Homz(; E) - Homz(0; E) 0.

The other is the long exact cohomology sequence of the pair (F \ t71; O(F \ 17I))
where H is the Borel-Serre completion of the upper half plane, H.

PROPOSITIOn 4.2. Let E be an RF-module and ff be the associated local
coefficients system on F \ H. For each integer > 0 we have the following com-
mutative diagram:

--)Hi-1 (r; Hom(.o; E)) - H’(r; E) -,H’(r; Hom(.; E)) -
--, --, H (O(r\fi); --,

where the vertical arrows are isomorphisms. If, moreover, E is an S-module then all
maps in this diagram are 9e-morphisms (S and 9 as in section 2).

Proof. Since the boundary components of H are in one-one correspondence
with the points of pl(Q) we have H0(O(ITl); Z) . This isomorphis.m respects
the GL(2, Q)-action. The boundary map.Hl(H., O(I-I); Z) --) H0(O(H); Z) -= .
gives rise to a GL(2, Q)-isomorphism H(H, (H); Z) --- 0. We therefore have
the following commutative RF-diagram:

0 -H(II;/) -H( O (ITI);/) - H’(ITt, 0 (I71);/) - 0

0 E ---) Hom(; E) --) Hom(0; E) ---) 0

The diagram of the proposition follows by passing to the long exact cohomology
sequences of the above short exact sequences and using the isomorphisms

Hi(r; HJ(; E)) --- H’+J(F\ H;/)H’(F; HJ(O(I); E)) --- \

H’(F; HJ(, 0(171); E)) --- H/+J(F \ H;/).
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If E is also an S-module then all maps of the above diagram are S-morphisms,
and thus the diagram of the proposition is -equivariant. m

((1 ,)} Let X be aLet U_ GL(2) be the standard unipotent subgroup, o
primitive Dirichlet character of conductor m, and let R be a Z[x]-algebra.

DEVlNITION 4.3. Let E be an RFU(Z[1/m])-module and Homr(o; E)
be an E-valued modular symbol over F. The special value of the L-function of
twisted by X is

m-1

A(,X) E (r)
r=O

(r, m)=l

1 -rim t (ira}
0 1 rn

If fl" E - E’ is a morphism of RFU(Z[1/rn])-modules then we clearly have

X)) X)-

Now let k g + 2 > 2 and f k(I’) be a weight k cusp form over F. Let

to(f) f(z)(zX + Y)g dz.

This is a Vg(C)-valued,, holomorphic differential 1-form on the upper half plane.
For 3’ |a b} GL(2, Q) with det(3’) > 0 we let (fl3’)(z)= det(3’)(cz +
d)-kf(3"z) and write 3’* for pullback of differential forms under the map
3’: H + H. Then a straightforward calculation shows

3’*w(f) 3,0 to(fl3’)-

Integration of to(f) gives rise to a compactly supported cohomology class on
I" \ H whose associated modular symbol f Homr(0; Vg(C)), is given by

y((x}- (y})= to(f) Vg(C),

where the integral is over the geodesic in H joining y to x.
Suppose the Fourier expansion of f is given by

f(z) _, ane 2rinz.
n>l

The L-function of f twisted by a primitive Dirichlet character X is defined by the
Dirichlet series

L(f X, s) , a,x(n)n -s

n>l
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for Re(s) > (k + 1)/2 and extends to an entire function on the complex plane.
For an integer (0 < u < g) let

A(f, X, u + 1) (-1)"u!
’r(.)L(f X, ’ + 1)

where

m-1

E  (r)e
r=0

(r, m)=l

is the Gauss sum of .. The following proposition is well known (cf. [Ra]).

PROPOSITION 4.4. If X is a primitive Dirichlet character then

g

We now specialize to the case N 1, so that F SL(2, Z). Let ’> 3 be a
prime and 1’ I’l(g’). Let f 5"(F) be a nonzero weight k (necessarily > 12)
cusp form over F and suppose f is a Hecke eigenform. Let Kf be the field
generated by the Hecke eigenvalues. Let R

___
K/ be the discrete valuation ring

determined by a place above and let R be a generator of the maximal
ideal. As in section 1 let

_ ___
(9 be a prime ideal above X in the ring (9 of all

algebraic integers and fix an identification (.0/_ -_- Fe. In particular this fixes an
inclusion R/X -, Fe.

TI-IEORM 4.5. Let k < + 2 and let f be a weight k eigencuspform for SL(2, Z)
whose eigenvalues are not congruent modulo

_
to those of the weight k Eisenstein

series. Then there are complex numbers f, ff C* and an -eigenvector
/J Hcl(l"l; e) such that

(a) The -eigenvalues of are congruent modulo

_
to those off;

(b) A(f, X, 1)/fgn(x) R[X], and A(f, X, 1)/) A(, X) (mod _) for
every primitive Dirichlet character X whose conductor is prime to ; and

(c) for each choice of sgn + 1, A(, X) is not identically zero as a function of
X with X( 1) sgn.

Proof Let y Homr(0; Vg(C)) be the modular symbol associated to f. By
a theorem of Manin [M1], there are complex numbers fy+- C* and modular
symbols Homr(0; Vg(R)) such that

f7 +
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Moreover satisfy the symmetry relations"

f+({-x}- {-y})= ___f({x}- {y})

for x, y pl(Q), where the + signs agree on both sides of this equation. Since
Homr(o; Vg(R)) is torsion free_ we may assume that_ after reducing f+- modulo
h we obtain nonzero_symbols_ f Homr(0; Vg(Fe)).

Let q: Vg(Fe) Fe be defined by q(P) q,(0, 1). Then q is an Sl-morphism
and therefore induces an 9fZ-morphism

," Homr(o; Vg(e)) ---) Homrl(.@o; ).

Let + q,(f) Homr,(0; Fe) and set + + -. Then

A(i, x, 1)/a"x) [A(, X)(0,1)]/agn(x)

by 4.4. But this last expression is A(gn(x), X)(0,1) A(sgn(x), X) A(, X)
(modulo k_) proving (a) and (b).
To prove (c) consider the diagram

0 Homr(; Vg(e)) Homr(.o; Vg()) HI(F; Vg(e))

Hmrl(o; e) Hi(F1; ’)

where the rightmost vertical map is induced by the inclusion of Theorem 3.4(a).
Fix a choice of sign, sgn + 1. It suffices to show that there is a character X

such that A(sgn, X) : 0. By Theorem 2.1 of [Stl] this will follow if we can show
that the image of sgn in _HI(II; d) is nonzero. Thus the proof of_ (c) will be
complete if we show that g" is not in the image of Homr(; Vg(F)).

Let Foo U(Z)

__
F be the unipotent subgroup of F which fixes the o-cusp.

Since d> g the Fo-invariants in Vg(F) are given by

Moreover, because F acts transitively on Pl(Q), the map

Homr(; Vg(e)) Vg()r=

/ /((ic})

is an isomorphism. Thus Homr(; Vg(Fe)) is one-dimensional and is spanned by



866 A. ASH AND G. STEVENS

the unique element r/ satisfying /((io))= Xg. A straightforward calculation
shows that for each prime p,

r/Tp= (pg+l+ 1)’0.

But pg+l + 1 is the eigenvalue of T acting on the weight k Eisenstein series. By
hypothesis this is different (modu_lo _) from the eigenvalue of T acting on f for
at least one prime p. Hence sgn is not a multiple of the image of r/ in
Homr(ff0; Vg(F)). This completes the proof of (c).

Remark. The condition that f not satisfy an Eisenstein congruence modulo

_
is known to be fulfilled for fixed f and : sufficiently large. In fact Ribet, [R2]
Lemma 4.6, shows that f is not congruent even to a twist of an Eisenstein series
if > k + 1 and Y does not divide the numerator of the kth Bernoulli number, m

COROLLARY 4.6. Let k < + 2. Let f k(SL2(Z)) be an eigenform with
system of eigenvalues dp. (9, and assume tI)(T) (p-i + 1)(mod _) for at
least one prime p. Suppose there is only one normalized eigenform fl 5:2(I’1(:))
whose system of eigenvalues 1: 5g’ (9 satisfies the congruence d9 =- dp (modulo
h_). (The existence of at least one such fl is guaranteed by Theorem 3.5(a).) Then
there exist periods f + C* such thatfl

A(f, x,a) A(fl, x,1)
;gn(x) sgn(x)

fx
(mod _)

for every primitive Dirichlet character X of conductor prime to . As in (c) of the
theorem we may assume this congruence is nontrivial as a function of X of either
sign.

Proof Let fl C* and 1-+ Homrl(o; (9) be chosen so that

We will find a--- (.0_x such that a+l + (mod k_) where Homrx(0; F:)
is the modular symbol provided by the theorem. We then obtain the corollary by
setting f + (a +.: -)

Let Hom (.0x be lifting of . Then for either choice of sign +
we can write (-+rlin( 0;the f3rm) any

(+= a+l+ + n -+

where a -+ Q and r/+ Homr(0; Q) is a sum of oZ-eigensymbols other than

The uniqueness of fl assures the existence of an h ’(R) (g x_ such that
l(h) 1 and 9(h)= 0 (mode_) for any system of eigenvalues xt,
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2(1’1, tOk-2) different from (I)1. For n sufficiently large we then have h

Homrl(0; Ox)_ and hn,1 +" 0 (mod ). Thus a +-. h" h"(+" hnrl
Homrx(0; Ox) and a+’l+- h +" (mod _), which was to be proved.

For example let f A be the unique normalized weight 12 cusp form over
SL(2, Z). Let f ql--l, >t(1 qn)2(1 qtt,)2 be the unique normalized weight
two newform over F0(ll). Then f= fl (modll) and there is a congruence
between the special values of L-functions of these forms modulo any prime
dividing 11. If instead we take fx to be the unique normalized weight two
newform over Ft(13) with Nebentypus character 01 then f fl (modulo _) for
a prime

_
above 13 and again we have a congruence between the special values

of their L-functions.
Doi and Ohta [D-O] have calculated "congruence primes" for the space of

weight two cusp forms over F0(’ ), g’ < 223. Their tables reveal that for ’< 233
the "congruence primes" are all less than g’; in fact the product of the "con-
gruence primes" is less than ’. This suggests that the uniqueness of the form ft
in the corollary may be a common phenomenon, if not a general one.
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