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Abstract The paper considers a problem of construction of asymptotically efficient esti-
mators for functionals defined on a class of spectral densities, and bounding the minimax
mean square risks. We define the concepts of H- and IK-efficiency of estimators, based on
the variants of Hajek-Ibragimov-Khas’minskii convolution theorem and Hajek-Le Cam lo-
cal asymptotic minimax theorem, respectively, and show that the simple “plug-in” statistic
@ (I7), where I = Iy () is the periodogram of the underlying stationary Gaussian process
X (t) with an unknown spectral density (1), A € R, is H- and IK-asymptotically efficient
estimator for a linear functional & (@), while for a nonlinear smooth functional ®(6) an
H- and IK-asymptotically efficient estimator is the statistic <I>(§T), where é\r is a suitable
sequence of the so-called “undersmoothed” kernel estimators of the unknown spectral den-
sity 6(X). Exact asymptotic bounds for minimax mean square risks of estimators of linear
functionals are also obtained.
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1 Introduction
1.1 The Problem and Objectives

The problem of efficient nonparametric estimation of different kind of functionals for var-
ious statistical models has been extensively discussed in the literature (see, for instance,
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Ibragimov and Khas’minskii [21], Pfanzagl [34], Taniguchi and Kakizawa [39], Kutoyants
[26], and references therein).

This paper is concerned with the problem of efficient nonparametric estimation of spec-
tral functionals for continuous-time stationary Gaussian models.

The problem. Suppose we observe a realization Xy = {X (), 0 <t < T} of a zero
mean real-valued mean square continuous stationary Gaussian process X (t) with an un-
known spectral density function 6(1), A € R. We assume that 6 (1) belongs to a given class
®© C L? =LP(R) (p > 1) of spectral densities possessing some smoothness properties. Let
@ (-) be some known functional, the domain of definition of which contains @. The distribu-
tion of the process X (¢) is completely determined by the spectral density, and we consider
6(X) as an infinite-dimensional “parameter” on which the distribution of X (¢) depends. The
problem is to estimate the value ®(0) of the functional ®(-) at an unknown point 6 € @
on the basis of an observation X7, and investigate the asymptotic (as 7 — o0) properties
of the suggested estimators. The main objective is construction of asymptotically efficient
estimators for @ (0).

This problem for discrete-time stationary Gaussian processes has been considered in a
number of articles. We cite merely the papers Millar [31], Ibragimov and Khas’minskii
[19, 23], Ginovyan [8, 14], and Dahlhaus and Wefelmeyer [5].

Notice that in Millar [31] and Dahlhaus and Wefelmeyer [5] were considered efficiency
concept based on a nonparametric version of Hajek convolution theorem, while in Ibragi-
mov and Khas’minskii [19, 23] and Ginovyan [8] the efficiency is based on a nonparametric
version of Hajek-Le Cam local asymptotic minimax theorem. In Ginovyan [14] were con-
sidered both efficiency concepts in the class of spectral densities possessing singularities.

For continuous-time processes the problem was partially studied in Ginovyan [9-11],
where efficient nonparametric estimators for linear functionals were constructed and asymp-
totic upper bounds for minimax mean square risks of these estimators were obtained.

The objective of the present paper is construction of asymptotically efficient nonparamet-
ric estimators for linear and some nonlinear smooth spectral functionals and bounding the
minimax mean square risks of suggested estimators in the case where the underlying model
is a continuous-time stationary processes with possibly unbounded or vanishing spectral
density function. For construction of asymptotically efficient estimators we use a general
powerful method developed by Ibragimov and Khas’minskii [19, 23] (see, also, Goldstein
and Khas’minskii [15]). Our plan will be as follows:

— We define the concept of local asymptotic normality (LAN) in the spirit of Ibragimov and
Khas’minskii [23], and derive conditions under which the underlying family of Gaussian
distributions is LAN at a point 6 € ©.

— Using LAN we state variants of Hijek-Le Cam local asymptotic minimax theorem and
Hajek-Ibragimov-Khas’minskii convolution theorem.

— We define the concepts of H- and IK-efficiency of estimators, based on the variants of
Hijek-Ibragimov-Khas’minskii convolution theorem and Hijek-Le Cam local asymptotic
minimax theorem, respectively, and prove that the simple “plug-in” statistic ®(/7), where
It = I7(A) is the periodogram of the underlying stationary Gaussian process X (¢) with
an unknown spectral density (1), A € R, is H- and IK-asymptotically efficient estimator
for a linear functional ®(0), while for a nonlinear smooth functional ® () an H - and IK-
asymptotically efficient estimator is the statistic @ (@r), where 0y is a suitable sequence
of the so-called “undersmoothed” kernel estimators of the unknown spectral density 6 (1).

— We obtain exact asymptotic bounds for minimax mean square risks of estimators of linear
functionals.
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1.2 The Model

Statistical analysis of Gaussian stationary processes usually requires two type of condi-
tions imposed on the spectral density 6(1). The first type of these conditions controls the
singularities (zeros and poles) of function (L), and describes the dependence structure
of the underlying process X (¢), while the second type conditions requires smoothness of
spectral density 6(1). Much of statistical inferences (parametric and non-parametric) is
concerned with the so-called short-memory stationary models, in which case the spectral
density 6(A) of the model X (¢) is assumed to be separated from zero and infinity, that is,
0 < C; <6(1) < C, < oo with some constants C and C,. However, the data in many fields
of science (e.g. in economics, engineering, finance, hydrology, etc.) occur in the form of
a realization of a stationary process X () with possibly unbounded (long-memory model)
or vanishing (anti-persistent model) spectral density (see, for instance, Beran [1]). So, it is
important to consider a model that will include all these cases.

To specify our model we need the following definition (see, e.g., Hunt, Muckenhoupt and
Wheeden [20], Bottcher and Karlovich [3], Sect. 2.1, Stein [37], Sect. 5.1).

Definition 1.1 (Muckenhoupt condition (A;)) We say that a nonnegative locally integrable
function f (1) (A € R) satisfies the Muckenhoupt condition (A;) (or has Muckenhoupt type
singularities), if

where the supremum is over all intervals J, and |J| stands for the length of an interval J.
The class of functions f (1) satisfying condition (A,) we denote by A,.

Remark 1.1 Tt is clear that the spectral densities of short-memory processes belong to A,.
The class A, also contains spectral densities possessing singularities. In particular, it is
known (see, e.g., Bottcher and Karlovich [3], Sect. 2.1) that if A;, 2, € R, k = 1, n, then
functions of the form

FO =] = rel

k=1

belong to A; ifand only if —1 <o < 1 forall k =1, n.

Remark 1.2 Condition (A,) controls the singularities of the spectral density 6(A), and de-
scribe the dependence structure of the underlying process X (¢) (see Ibragimov and Rozanov
[24], Chap. 6).

Holder classes Given numbers 0 < o < 1, p > 1, and r € Ny, where Ny stands for the
set of nonnegative integers. We put 8 =r + «, and denote by H,(8) the Holder class of
functions, that is, the class of functions (1) € L? := L”(R), which have r-th derivatives in
L? and satisfy

WO C+u) =P Oll, < Clul®,

where ||i]|, denotes the L”-norm of a function /, and C is a positive constant. Also, by
X ,(B) we denote the set of all spectral densities which belong to the class H,(B).
The assumption on the observed process X (¢) is the following.
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Assumption 1.1 X (¢) (r € R) is a zero mean real-valued mean square continuous stationary
Gaussian process with a spectral density 6 () satisfying Muckenhoupt condition (.4;) and
belonging to a Holder class H,(8). Thus, 6(1) e @ C A, NX ,(B), where0 <a <1,p > 1,
B=r+aoandreN,.

The rest of the paper is organized as follows. In Sect. 2 we state some preliminary re-
sults: LAN, variants of Hajek-Ibragimov-Khas’minskii convolution theorem and Héjek-Le
Cam local asymptotic minimax theorem, and define the concepts of H- and IK-efficiency of
estimators. In Sect. 3 we state the main results of the paper: construction of asymptotically
efficient estimators for linear and nonlinear smooth spectral functionals, and bounding the
minimax mean square risks. Section 4 is devoted to the proofs of results stated in Sect. 3.

Throughout the paper the letters C, Cy, C(-), ¢ and ¢, are used to denote positive con-
stants.

2 Preliminary Results

In this section we establish local asymptotic normality of families of distributions generated
by a continuous-time stationary Gaussian process, then state variants of Hajek-Ibragimov-
Khas’minskii convolution theorem and Hajek-Le Cam local asymptotic minimax theorem,
and define the concepts of H - and IK-efficiency of estimators.

2.1 Local Asymptotic Normality

The notion of local asymptotic normality (LAN) of families of distributions, introduced by
Le Cam in 1960 (see Le Cam [27]), plays an important role in asymptotic estimation the-
ory. Le Cam, Héjek, Ibragimov and Khas’minskii and others have shown (see, for instance,
Héjek [17, 18], Ibragimov and Khas’minskii [21, 23], Le Cam [27, 28], Kutoyants [26], and
references therein) that many important properties of statistical estimators (characterization
of limiting distributions, lower bounds on the accuracy, asymptotic efficiency, etc.) follow
in fact from LAN condition.

The importance of LAN concept for nonparametric estimation problems has been em-
phasized by Levit [29, 30], Ibragimov and Khas minskii [21, 23], Millar [31], Kutoyants
[26], and others. The LAN for families of distributions generated by discrete-time station-
ary Gaussian processes has been studied by Davies [6], Dzhaparidze [7], Ginovyan [12], for
continuous-time processes sufficient conditions for LAN were obtained in Solev and Zerbet
[36].

Following Ibragimov and Khas’minskii [23], where a definition of LAN concept for the
case where the underlying parametric set is a subset of a normed space or a smooth infinite-
dimensional manifold was suggested, we define LAN for our model.

Definition 2.1 Let P7, be the probability distribution of the observation X7 = {X(#),0 <
t < T} with spectral density 6(A). A family of distributions {Pr 4,6 € @} is called locally
asymptotically normal (LAN) at a point §; € ® in the direction L? := L?(R) with norming
factors A7 := A7 (6y), if there exist a linear manifold H := H(6y) C L* with closure H =
L? and a family {Ar} of linear operators Ay : L> — L? that satisfy:

(1) forany h € H, ||Arh|, — 0as T — oo, where | - ||, denotes the L?-norm;
(2) for any h € H there is a natural 7' (k) such that 6y + A7h € © forall T > T (h);
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(3) forany h € H and T > T (h) the representation

d]P)T,Q()+ATh
dPr g,

1
In (X7) = Ar(h, 6) — §I|h||§+¢(T,h,90) 2.1

is valid, where Ay (h) = Ay (h,6p) is a random linear function on H asymptotically
(as T — o0) N(O, ||h||§)—normally distributed for any » € H and ¢(T, h, 6y) — 0 as
T — oo in Py g,—probability.

Note that the presence of LAN property depends on the point 6y, the space L> and the
family of operators {Ar}. The choice of H = H(6,) may be rather arbitrary. We need only
that H = L.

Definition 2.2 (Condition (7)) We say that a pair of functions (f, g) satisfies condition
(M), if feX,(B)forl <p<2and B> 1/p,and g € L9, where q is the conjugate of p:
1/p+1/q=1.

The parametric set @ we will always assume to be a subset of the space L” (p > 1)
consisting of spectral densities satisfying Muckenhoupt condition (A;) and belonging to
the Holder class X ,(B). Define H = H(9) to be the linear manifold consisting of bounded
functions /(1) such that the pair (6, h6~') satisfies the condition (). We also define Ay :
L?> — L? by Aph =[T~'/26] - h, that is, Ay is the operator of multiplication by function
T~'26()). The next theorem, which contains sufficient conditions for LAN, can be proved
using the arguments of the proof of Theorem 1 in Ginovyan [12] (cf. Solev and Zerbet [36]).

Theorem 2.1 Let ®, H and At be defined as above. Then the family of distributions
{Prg,0 € O} satisfies LAN condition at any point § € © in the direction L* with norm-
ing factors Ar and

T2 ([ I
= [

— 1]h(x) dx, (2.2)
4 J_o

where

1 T . 2
IrQ) = h—TV X (w)e " du
0

(2.3)

is the periodogram of the process X (t).
2.2 Characterization of Limiting Distribution. H -Efficiency

We now consider the problem of estimating the value ®(0) of a known functional ®(-) at
an unknown point 6 € © on the basis of an observation X7, which has distribution Pr 4.
We assume that the family {Pr, 6 € O} satisfies the LAN condition at a point ) = f € @
in the direction L? with norming factors Ay. We also assume the functional ®(#) to be
Fréchet differentiable at f € L? with derivative ®'(f) := ®'(f; 1), that is, there exists a
linear continuous functional <I>/f (L > R:

o= [ Srpman ver 2.4)
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such that for f, g € L? we have

|@(g) — () — (g — l=0lg — fll2) as llg— fll2—0. (2.5)

Furthermore, we assume that the derivative ®'(f) satisfies the condition: uniformly for
fe®

0<®'(f)fll2 <o0. (2.6)

We need a version of Héjek-Ibragimov-Khas’minskii convolution theorem for regular esti-
mators.

Recall that (see, e.g., Ibragimov and Khas’minskii [21], Sect. 2.9) an estimator @T =
CIA)T(XT) of ®(0) is called H-regular at 6, € O, if for any h € H there exists not depending
on h a proper limit distribution function F of the normed difference 7'/ 2($T — ®(6y)),
where 6, = 6y + Arh, in the sense of weak convergence

LIT' (B — @6)[Pre,) = F asT — co.

The next theorem follows from Theorem 3.1 in Ibragimov and Khas’minskii [23], and The-
orem 2.1.

Theorem 2.2 Let &ST be a H-regular estimator of ®(0) at f € ©. Assume that the pair
(f, D'(f)) satisfies (2.6). Then under the assumptions of Theorem 2.1 the limit distribution
F of TI/Z@T — ®(f)) is a convolution of a probability distribution G and a centered
normal distribution with variance o := 4w | ®'(f) f ||%:

F=N(0,0%)%G. 2.7)

By a well-known lemma of Anderson (see, e.g., Ibragimov and Khas’minskii [21],
Sect. 2.10), the distribution F in (2.7) is less concentrated in symmetric intervals than the
normal distribution N (0, o). This justifies the following definition of H-efficiency (cf. Mil-
lar [31], Dahlhaus and Wefelmeyer [5], Kutoyants [25], Sect. 2.1, Ginovyan [14]).

Definition 2.3 Let the family {P7 4, 6 € ©} be LAN at a point f € ©. An estimator 6T of
® () is called H-asymptotically efficient at f (in the class of H-regular estimators) with
asymptotic variance 0% := 47 | ®'(f) f 1|3, if

L{T'?(®r — 6)|[Prs,} = N(0,0%) asT — oo,
that is, the distribution G in (2.7) is degenerate.

Remark 2.1 This efficiency concept is a nonparametric version of Héjek-efficiency, and
admits the same intuitive interpretation: the asymptotic distribution of any regular estimator
5T of ®(0) is always “more spread out” than the centered normal distribution with variance
47 || @' (f) f1I3 (cf. Hajek [17], Millar [31]).

Remark 2.2 We also have the following characterization of H-regular and H-asympto-
tically efficient estimators (cf. Dahlhaus and Wefelmeyer [5], Taniguchi and Kakizawa [39],
Chap. 6, Ginovyan [14]): if the family {P7 4,60 € ®} is LAN at f € ©, then an estimator
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D7 of d(f) is H -regular and H-asymptotically efficient at f with asymptotic variance
47 || f'(f)1I3 if and only if it admits the following stochastic approximation:

T'2[®r — d(F)] = Ar(fO'(f)) =0p(1) asT — o0, (2.8)
where A7 (f®'(f)) is defined by (2.2) with & = f®'(f).
2.3 A Lower Bound for the Asymptotic Minimax Risk. IK-Efficiency

Denote by ®; the set of all estimators of ®(0) constructed on the basis of an observa-
tion X7, and let W denote the set of all loss functions w : R — R, which are symmetric and
non-decreasing on R™ := (0, 00), and satisfy w(x) >0, w(0) =0.

The next theorem, which is a consequence of Theorem 4.1 in Ibragimov and Khas’m-
inskii [23], and Theorem 2.1, contains a minimax lower bound for risks of all possible
estimators @7 of ®(-) in the neighborhood of a point f € O (cf. Has’minskii and Ibragimov
[19], Ginovyan [14]).

Theorem 2.3 Assume that the pair (f, ®'(f)) satisfies (2.6). Then under the assumptions
of Theorem 2.1, for all w e W

liminf lim inf  sup Eg{w(T1/2($T—q>(f)))}zEw(s), (2.9)
320 T>0G, @ |0—f],<8

where & is a centered normal random variable with variance 4 || <I>/(f)f||%.

Basing on Theorem 2.3, we define the notion of asymptotically efficient estimators in
the spirit of Ibragimov and Khas’minskii (IK-efficiency) (see Ibragimov and Khas’minskii
[19, 23]).

Definition 2.4 Let the family {P7 4,6 € ©} be LAN at a point f € ®. An estimator 51
of ®(0) is called IK-asymptotically efficient at f for the loss function w(x) € W, with
asymptotic variance o> = 47 | <I>’(f)f||%, if

liminf lim  sup Ey{w(T'"?(®r — @(f)))} =Ew(®), (2.10)

820 T—>00 g f,<5

where £ is as in Theorem 2.3.

Remark 2.3 An estimator ﬁ;T of ®(0) satisfying (2.10) is also called locally asymptotically
minimax (LAM) estimator (see, e.g., Levit [29], Kutoyants [25], Sect. 2.1).

Remark 2.4 Both definitions of efficiency—H - and IK-efficiency—roughly speaking, re-
quire from an asymptotically efficient estimator @ the local uniformity of the convergence
of the normed difference T1/2(®7 — ®(f)) to the centered normal random variable & with
variance 47 ||®'(f) f ||§, and for bounded loss functions w(-) they are rather close. An at-
traction of the definition of IK-efficiency over that of H-efficiency is that it compares all the
estimators constructed on the basis of an observation Xy, rather than only the regular esti-
mators, while an attraction of the definition of H -efficiency over that of IK-efficiency is that
it is concerned with limiting distributions, rather than limits of expectations (cf. Beran [2],
Kutoyants [25], Sect. 2.1). For detailed discussion of definitions and relationships of various
efficiency concepts we refer to Ibragimov and Khas’ minskii [21], Chap. 2.
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3 Main Results

In this section we state the main results of the paper: we construct asymptotically efficient
estimators for linear and nonlinear smooth spectral functionals, and obtain exact asymptotic
bounds for minimax mean square risks of estimators of linear functionals.

3.1 Asymptotically Efficient Estimators

For construction of asymptotically efficient estimators we use a general method developed
by Ibragimov and Khas’minskii (see, e.g., Ibragimov and Khas’minskii [19, 23], Goldstein
and Khas’minskii [15], and references therein).

First consider the relatively simple case where the estimand functional ®(f), f € @, is
linear and continuous in L”(R), p > 1. It is well-known (see, e.g., Riesz and Nagy [35])
that ®(f) admits the representation

®(f) 2/ FM)g)da, (3.1

o]

where g(A) € L, 1/p 4+ 1/g = 1. As an estimator for ®(f) we consider the averaged
periodogram statistic, that is, the simple “plug-in” statistic:

[o9)

r = 0(Iy) = / Ir(Mg)dh, 3.2)

—00

where I7 () is the periodogram of X (¢) defined by (2.3).
Let W, denote the subset of loss functions w € W which for some constants C; > 0 and
C; > 0 satisfy the condition w(x) < C; exp{C;|x|}.

Theorem 3.1 Let ®(f) and $T be defined by (3.1) and (3.2). Assume that the pair of
functions (f, g) satisfies the conditions (H) and 0 < || fgll2 < oo uniformly for f € ©.
Then the statistic @t is:

(a) H-regular and H-asymptotically efficient estimator of ®(f) with asymptotic variance

4| feli3
(b) IK-asymptotically efficient estimator of ®(f) for w(x) € W, with asymptotic variance

47| fgll3

Example 3.1 (Estimation of unknown covariance function) Let g(1) = e/**, then

O(f) = /oo e fF) dr=ru).

o0

Thus, in this special case our problem becomes to the estimation of the covariance function
i(u) :=E[X (r +u) X (¢)] of the process X (¢). By Theorem 3.1 the simple “plug-in” statistic
@7 = ®(I7), which coincides with the empirical covariance function 77 (), u € [0, T:

. o 1 T—u
o :/ " (V) dh = —/ XX+ u)dt :==Tr(u),
—00 T 0

is H- and IK-asymptotically efficient estimator for r (1) with asymptotic variance

ol =4dx / F2(0) cos®(ur) da.

@ Springer



Efficient Estimation of Spectral Functionals 241

The problem of asymptotically efficient estimation becomes somewhat more complicated
for non-linear functionals. In this case the simple “plug-in” statistic ®(/7) is not necessary
a consistent estimator for the functional @ ( f), and hence instead of the periodogram /7 (1),
we need to use a suitable sequence of consistent estimators fT of f (cf. [5, 14, 19, 39]). On
the other hand, if fT is a sequence of consistent estimators for f, the estimators q)(J?T), in
general, will converge to ®(f) too slowly to be asymptotically efficient (cf. [14, 19]).

We consider a sequence {ﬁ} of the so-called “undersmoothed” kernel estimators of the
unknown spectral density f(A), and derive conditions under which the “plug-in” statistic
CI>(]"}) is asymptotically efficient estimator for ®( f).

Remark 3.1 By “undersmoothed” kernel estimator f} of f we mean the following (cf.
[15, 16]): the bandwidth used in the kernel estimator ﬁ is not optimal for the estimation of
[; rather, we take advantage of the smooth, integral nature of the derivative of the estimand
functional and undersmooth it. By choosing a small bandwidth, that is, by undersmoothing,
the bias term becomes negligible and the behavior of the estimator is determined by a ran-
dom term, which, with an appropriate normalization, obeys central limit theorem. A similar
approach was applied in [5, 14, 38] for discrete-time processes, and in [15, 16] for efficient
estimation of smooth functionals defined on a set of probability density functions.

We assume that f € X ,(8), and as an estimator for unknown spectral density f we take
the statistic (cf. [5, 33, 38]):

fro) = / Wr O — ) Ir () dps, (3.3)

where I7(}) is the periodogram of X (¢) defined by (2.3). For the kernel W7 (1) we set down
the following assumptions.

Assumption 3.1 Wy (L) = My W (MrA), where My = O(T%), and by := M;l is the band-
width. The choice of the number « (0 < o < 1) will depend on the a priori knowledge about
f and &.

Assumption 3.2 W (A) is bounded, even, nonnegative function with W(A) =0 for |1| > 1
and

1 1
/W(A)d)»:l, /AkW(A)dA=O, k=1,2,...,r,
—1 —1

where r = [B] is the integer part of S.

We assume the functional ®(-) to be Fréchet differentiable in L? with derivative
D' (f) := P'(f; 1) satisfying (2.6) and a Holder condition: there exist constants C > 0 and
8 (0 < 8 < 1) such that for any fi, f> € L?,

19" (f1) = @' (I < Cllfi = fall3- (34

Theorem 3.2 Let the spectral density f(-) and the functional ®(-) be such that:

(1) the pair (f, ®'([f)) satisfies the conditions (H) and (2.6) uniformly for f € O,
(i) ®(-) satisfies the condition (3.4) with § > (28 — 1)~
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242 M.S. Ginovyan

Let the estimator fT for f be defined by (3.3) with the kernel Wr Q) satisfying Assump-

tions 3.1 and 3.2 with ﬁ <a< ai—l Then the “plug-in” statistic & (fr) is:

(a) H-regular and H-asymptotically efficient estimator of ®(f) with asymptotic variance
4 || () f1I35

(b) IK-asymptotically efficient estimator of ®(f) for w(x) € W, with asymptotic variance
|| ' () f I3

Example 3.2 Consider the problem of estimation of the integrated squared spectral density
functional ®(f):

) =fI3= / Ay da. 3.5

In this case ®'(f) =21, and it follows from Theorems 3.2 that the “plug-in” statistic

dr=d(fr) =/ [Frn] da,

where f;(k) is as in (3.3), is H- and /K-asymptotically efficient estimator for functional
(3.5) with asymptotic variance o = 167 || £2|3.

Remark 3.2 The discrete-time analogs of Theorems 3.1 and 3.2 were proved in Ginovyan
[14]. For short-memory discrete-time models H-asymptotically efficient estimators were
constructed by Dahlhaus and Wefelmeyer [5], and Millar [31], while IK-asymptotically
efficient estimators were constructed by Ibragimov and Khas’minskii [19, 23]), and Gi-
novyan [8].

3.2 Exact Asymptotic Bounds for the Minimax Mean Square Risk

We return to the problem of estimation of a linear, L?-continuous functional ®(f). If
1 < p <2 the functional ®(f) is continuous in L?, and so we can apply Theorem 3.1
to construct an asymptotically efficient estimator for ®(f). If p > 2 we no longer have an
efficient estimator, and it becomes of interest to estimate the rate of decrease (as 7 — o0)
of the minimax risk

_inf sup E {w(®r — ()},

re®r rcy
where X is a given class of spectral densities and ®1 is the set of all estimators of ®(f)
constructed on the basis of an observation Xr. It is clear that the bounds will depend on
the number p and the smoothness properties of functions from X. Below we obtain exact
asymptotic bounds for the minimax mean square risk:

AL := sup inf sup E;|®r—d(f) (3.6)
I®l=1®7 re¥,p)

More precisely, we prove that A2 =< T~ (a > 0), where the number a is determined by the

parameters p and §. (Here and below the notation ar < by means that the ratio ar /by is
asymptotically (as 7 — oo) bounded away from 0 and co.)

@ Springer



Efficient Estimation of Spectral Functionals 243

Theorem 3.3 Let ®(f) be a linear LP-continuous functional, and let AzT be as in (3.6).
The following assertions hold:

2p
(A) If p>2and B> 1/p, then AL = T~ 77202,
either p = 2 an <Il/porl<p=<2lan < , then = 1P
(B) Ifeith 2 and 1 1 2 and 1/2, then A% < T—2%F
© If1§p§2andﬁz1/2,thenAszT’l.

Remark 3.3 A similar result for probability density functionals was proved in Ibragimov and
Has’minskii [22]. For discrete-time processes asymptotically exact bounds were obtained in
Ginovyan [13]. For continuous-time processes asymptotically upper bounds were obtained
in Ginovyan [10].

4 Proofs
4.1 Auxiliary Results

In this subsection we present some preliminary results that we use in the proofs of theorems.
Denote by 14 (1) the Dirichlet singular integral defined for a function ¥ (1) € L?(R) (1 <
p < 00) by

mmzlfw SINAG =0 o) dx. @.1)
T J oo A—x

Note that ¥4 () is an entire analytic function of exponential type A. In the first lemma we

collect several properties of function ¥4 (). By C(h, ..., hi) we denote constants depend-
ing on parameters hq, ..., h.

Lemma 4.1 The following assertions hold:

(@) Let y (M) e Hy(B), p>1,8>0.Then |[Yall, <C(p)¥|, and
¥ — ¥all, <C(p, AP,

(b) Let (1) € L?, p = 1. Then |[Yally <2 AYP=Y4 ||yl ,, where p < q < o0.
(c) Letyy(A) e H,(B), where B=r+a,r €Ny, 0 <a < 1and p > 1. Then

Iy, <C<oo, j=1,r.
(d) Let y(1) eH,(B), p=1,8>0,q > pand p#1/p—1/q. Then
I¥ally < C - max{1; AVP=VI=FY,
Proofs of assertions (a)—(c) can be found in Nikol’skii [32], Sect. 8.10 (see also Butzer
and Nessel [4], Chap. 3), for the proof of assertion (d) we refer to Ibragimov and Has’minskii
[22].

The next lemma is the well-known Hardy-Littlewood type embedding theorem for the
classes H,(B) (see, e.g., Nikol’skii [32], Sect. 6.3).
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Lemma 4.2 Let (1) € H,(B) with 8 > 0 and p > 1. The following assertions hold:

(@ Ifp=1/pand p < p\ < p/(1—Bp),then y(X) eH, (B —1/p+1/p1).
(b) If B> 1/p, then ¥ ()) is continuous and ||} || < 00.

The proof of the next lemma is similar to that of Theorem 3 in [10].
Lemma 4.3 Let ®(f) and & be defined by (3.1) and (3.2). Assume that the pair of func-
tions (f, g) satisfies the conditions (H) and 0 < || fgll» < oo uniformly for f € ©. Then for
all w(x) € W, uniformly for f,
Jim B {w (T2 (7 — @())} = Ew (&), (42)
where & is a centered normal random variable with variance 4 || f g||§.
Lemma 4.4 Let f € X,(B), and ¥ (1) be a continuous even fuﬁction such that the pair
(f, ¥) satisfies the conditions (H) and 0 < || f¥ |, < co. Let fr()) be as in (3.3) with

kernel Wr (X)) satisfying Assumptions 3.1 and 3.2, where ﬁ < o < 1. Then the distribution
of the random variable

o= [y - o) 43)
as T — oo tends to the normal distribution N (0, o), where
o?=A4x / FEOOWEN) da. 4.4)

Proof 1t follows from Lemma 4.3 (see also the proof of Theorem 3 in [10]) that the distri-
bution of the random variable

fp e T2 / YOI () — F )] dA “5)

as T — oo tends to normal distribution N (0, o) with o2 as in (4.4). Therefore to complete
the proof it is enough to show that

&7 —nrl=o0p(1) asT — oo, (4.6)

By (3.3) we have
/ w(k)ﬁ(k)dA:/ W(A)[/ WT()\_M)IT(M)dM] dx
= / W(k)[/ Wr (L — w)[Ir (1) — f ()] du] di

4 / wm[ / Wr(h— M)f(u)du] dn. @.7)
By (4.3) and (4.7)
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S—— / wm[ f Wi G — I () —f(u)]du] dx

+T1/2/ wm[/ WT(k—M)f(M)dM—f()‘)]d)‘

=0V + 8 (say). (4.8)

Putting M7(A — p) =t and taking into account that by Assumption 3.1, W(t) =
MLT WT(MLT), from (4.8) we obtain

ny =T'7? / N WrW[Ir() — f)]da, 4.9)
where
\IJT(A):/:w(AJr MLT>W(t)dt. (4.10)
Thus, by (4.5), (4.9) and (4.10) we have
ny —&r =T‘/2/°° AM7, M[Ir () — F(W)]dn, (4.11)

where

]

AMr,2) =V¥r(}) — ¥ (2) =/

—00

1//<A+ L)W(r)dz —y. 4.12)
Mr

It follows from the properties of the kernel Wr(¢) and the dominated convergence theorem
that (cf. [38])

lim |A(My,2)| =0.
Mr—o00

Hence by (4.11) and Lemma 4.3 we have

o0
Eln® — &P =f A7 WP F20)dA— 0 as My — oo,

implying that
Y —&rl=0p(1) asT — oo. (4.13)

Next, applying Holder and Minkowski generalized inequalities we can show that

1Se1 < T2 19 Nl (L4 IW2 1) Enty (), (4.14)

where E, ,(f) is the best approximation of function f by entire analytic functions of ex-
ponential type A in the metric of L”. By Lemma 4.1(a), the assumption f € X ,(8) implies
E4 ,(f) <CA™P.Hence in view of (4.14)

Sr=0(T"’M;") = 0(T"***) - 0 (4.15)

as T — oo because by assumption o > ﬁ

@ Springer



246 M.S. Ginovyan

A combination of (4.8), (4.13) and (4.15) yields (4.6). This completes the proof of
Lemma 4.4. O

Lemma 4.5 Let f € X,(B), and let ]/C;()») be as in (3.3) with kernel Wr()\) satisfying

Assumptions 3.1 and 3.2 with ﬁ <a< ai_l’ 8 > 0, then

T2\ fr = fI57 =o0p() asT — co.
Proof Along the lines of the proof of Theorem 4 in [10] it can be shown that
E|fr) — fWP = 0(MrT™") + 0(M; ) 4.16)
uniformly in A. Using Fubini’s theorem from (4.16) we have
I fr = flla = 0p(M*T7"2) + 05 (M;"). @.17)

Hence taking into account that My = O(T*) from (4.17) we can write

T2\ fr — fIIL™ = 0p(THHE D) 4 0 (T3-eP1HD), 4.18)
The assumptions imply 1 + (¢ — $)(1+8) <0 and § — ¢B(1 + 8) < 0. Hence both terms
in (4.18) are 0op(1) as T — oo, and the result follows. O

4.2 Proofs of the Theorems

Proof of Theorem 3.1 Since in this case ®'(f) = g, it follows from (2.2), (3.1) and (3.2)
that
e o0
T'2[dr — ()] =T"? / [Ir () — fFM)]g()dr = Ar(fg). (4.19)
—00
So, the assertion (a) of the theorem follows from (4.19) and Remark 2.2, while the assertion
(b) follows from Lemma 4.3. Theorem 3.1 is proved. ]

Proof of Theorem 3.2 1t follows from (2.4), (2.5) and (3.4) that

(fr) — @(f) —/ (M (frn) — f(k))dk‘

<Ifr—flI sup |o'(f+6(Fr — 1)) — @' (H| <Clifr — FI'.
Therefore

T'[0(F) — ®()] = T / O (f: D[ ) — F]dn

+0p(T 2| fr — £1I'). (4.20)

Using the arguments of the proof of Lemma 4.4 with ¥ (1) = ®'(f; A) (cf. (4.6)), we con-
clude that as T — oo

T”zf (fi W[ fr) — fF)]dr= TW/ ' (f; M[Ir () — fFM)]dr + op(1).

—00
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Hence, by Lemma 4.5 and (4.20)

T2 [®(fr) — @(f)] =T / O (f; M[Ir () — FO)]dr+op(l).  (4.21)

By (2.2) and (4.21) we have
T”z[d)(f}) —®(f)] = Ar(fO'(f)) =0p(1) asT — oo. (4.22)
Comparing (2.8) and (4.22), we conclude that the statistic <I>(]";) is an H-regular and H-

asymptotically efficient estimator for ®(f) with asymptotic variance 47 || f ®'(f) ||%. The
assertion (b) of the theorem follows from (4.22) and Lemma 4.3. Theorem 3.2 is proved. [

Proof of Theorem 3.3 The corresponding upper bounds have been obtained in [10], where
the following proposition is proved. ]

Proposition 4.1 Under the conditions of Theorem 3.3

2pB
CT 752, for p=2, p>1/p.

A2 < CcT?, for p=2, p=1/p,
|l cr, for 1<p<2 B<1/2,
cT !, for 1<p<2 g=>1/2.

Therefore to complete the proof of Theorem 3.3 we need only to establish the corre-
sponding lower bounds for the risk A2, which are collected in the next theorem.

Theorem 4.1 Under the conditions of Theorem 3.3 the following assertions hold:

28
(A) If p=>2and B> 1/p, then AL > ¢ T~ 752052
(B) Ifeitherp>2and B<1/porl1<p<2andf <1/2, then A% > ¢ TP
T
(© Ifl<p<2andB>1/2, then A} > cT".

Proof We use Stein-Levit method (see, e.g., Ibragimov and Has’minskii [22] and [21],
Chap. 6). As an estimator of the linear functional ®(f) we take the statistic ®r 4, defined
by (see [10])

Bpa= / Ir()ga(h) dA, 4.23)

o]

where A = A(T) <T, A(T) > o0 as T — 00, ga(A) is the Dirichlet singular integral
corresponding to the function g() defined by (4.1), and I7(A) is the periodogram given by
(2.3). We set

= B) = {f € 5,(B); f(3) = ¢ >0}
and

ga(d)

(4.24)
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Let f(A) be some spectral density function from the class 2;(,8) such that f(A)ha(X) €
3 ,(B). Then for sufficiently large values of T the function

O =0rn(0) = fFOI(1+ha(), A=A(T)

is a spectral density from the class Z;(ﬁ).

Let Pr 4 be the distribution of X7 = {X(¢), 0 <t < T} with spectral density 6(1). By
Theorem 2.1 the family of Gaussian distributions {P7 4, & € X/ (B)} is locally asymptoti-
cally normal (LAN) at a point f in the direction of the space L?. Therefore, we can apply
Theorem 2.3 (see also Theorem 4.1 in [22]) for loss function w(x) = x2, to obtain

oo
sup infEy|®r — ®(6)* > z / 20 gz dn, (4.25)
fex () Br T J

where 67 is an arbitrary estimator of functional ®(8), constructed on the basis of Xy and ¢
is some positive constant.
Thus, to complete the proof of Theorem 4.1 we need to choose A = A(T) to satisty:

(1) the function f(A) ha(A) belongs to the class X, (8);
(2) the right-hand side of inequality (4.25) has the form 7~“, where the number a is speci-
fied by theorem.

We prove the assertions (A) and (B), the assertion (C) can be proved similarly.

We first prove part (A). Assume that (1) € X,(B), where p > 2 and g > 1/p. We show
that f(A)A(X) € X,(B), where h(A) = h(A) is as in (4.24). Let B = o 4 r, where r € Ny
and 0 < @ < 1. Applying Leibnitz formula to compute the derivative (fh4)", we find

Jo= [ (FR) P C+8) = (Fr)” O,
< CY IO+ P40 - FOORTPO] (4.26)
k=0
First consider the case where r > 1. We have
(FRD)C+8) = (FRD) O
=fCHOYC+8 =nP O] +RTOLFC+8) = £0O)]
and
FOCHORTOC+8) = FOORT0
= fOCHORTIC+8 = hO)+ RSO P +8) - FOO).
Hence applying Holder and Minkowski inequalities from (4.26) we obtain

I = ClFC+ORC+8) = FORY O],
+CY N FOC+RTOC+8) = FRORTO],
k=1

< Clfle B¢ +8) =P O,
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+CIRY oo FC+8) = FO,

+C YDA+ = OO
k=1

+C YISl fOC+8 = PO, (4.27)

k=1
Since f(A) €e H,(B), B =a +r, by Lemma 4.1(c), we get
If®l, <C<o0, k=1,2,...,r. (4.28)
Further, because » > 1 we have B > 1/p, and hence by Lemma 4.2(b) we obtain
[ flloo < C < o00. (4.29)

The function #(X) = h4(A) is an entire function of exponential type A. Hence by Bernstein
inequality (see, e.g., [4], Sect. 3.5)

IR, <26 Ak hall;, 1<s <oo, (4.30)

and by the inequality (see Lemma 4.1(b))

lhals <CAT ™5 |lhall;, t<s <o, 431)
we have
1
124 oo < 25 AX R lloo < 2XA T2 || B4, (4.32)

From the inequalities (4.30)—(4.32) for ¢; > g and k < r, we obtain

x+6
[P +8) =m0 O], = H / () dy

q1

: k+1 k
< min(3 a5 ], 2R,
< min(aAk+1+1/q—1/q1 Ihally, AkFl/a=1/q ||hA||q)~ (4.33)
Therefore, for g; > g and k <r
[AYC+8) =P, <8 APy, (4.34)
In view of (4.26)—(4.29), (4.32) and (4.34), from (4.27) we find for r > 1
5= (R0 C+8) = (fh)D O, < €8 AP, (4.35)
Now let r = 0. We have

Jo:=[[(fha)C+8) = (fh)O, < 1 lsollbal-+8) = haC)ll,
H1hallocllfC+8) = FOIl,
< C-{llhaC+8) = haO)llp + 8% Ihalloo}- (4.36)
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By the inequality (4.34) we have
[7aC+8) = ha()]], = € -5 APV NPy . (4.37)
Next, taking into account that 8 > 1/p, from (4.32) we get
Ihalloe < C - AT [lhall, < C - AV ], (4.38)
A combination of (4.36)—(4.38) yields
Jo=[(FRAC+8) = (fh) O], < C 8% AFIT1P |y, (439)
It follows from (4.24), (4.35) and (4.39) that forallr e Ny, p>2and > 1/p
L= (fh)?C+8) = (fh) O], = C- Mars°, (4.40)
where
Mg = T2 APV g3, (4.41)

Therefore, the assertion f(A)hs(X) € X,(B) will be fulfilled, if we can choose A to make
M4 1 given by (4.41), as small as needed. We set

in Ax
A=A Sm/\ . (4.42)

Since [ Si“i% d\ = Am,in view of (4.42) and the assumption f(A) > ¢ > 0, we can write

S ) 0 il
/ gi(k)fz(k)dA=A7/ S A% 26 da

2
[} 00 A

_2 [ sin® AL -2
>c-ATP s—di=mc- AP, (4.43)
o A

Choosing A = T?/(P=2+2PF) and taking into account that é =1- % from (4.41) and (4.43)
we find

T-1/2 . AB+1/a=1/p

Mar<C- = T T (4.44)

Al=2/p
By assumption p > 2, so from (4.40) and (4.44) we conclude f(A)ha (1) € Z,(B). Further,
for A =TP/(?=2+2p8) from (4.25) and (4.43) we find

»_ ¢ [T, 2 1412/ -,
Arz o | GOy dhz e TAT = T
-0

This completes the proof of the assertion (A).

Now we proceed to prove the assertion (B). Let f(A) € £,(8), where now p > 2 and
B <1/p. We first show that f(A)hs(A) € Z,(B), where h(L) = h4 (L) is defined by (4.24).
In this case necessarily »r = 0 and 8 = o < 1. Hence we only need to estimate the quantity
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I(fha)(-+8) — (fha)()Ilp. Denoting by f4(1) the Dirichlet integral of function f (1) and

applying Minkowski and Holder inequalities, we find
Jo:=[(fha)(+8) = (fFh)O)], < lhalloo [ £ +8) = FO,

H O = Fa0l, [haC+8) =haO)]

1 falloo][haC +8) = ha()] -
Applying the inequality (4.31) for s = oo and t = g, we obtain

halloo]| £C+8) = fO, < C-8*AY Iyl
By the second inequality in Lemma 4.1(a)
[ fO =20, <C-aF=C-Aa~

Hence, applying the inequality (4.33) for k =0 and g; = oo, we find

1FO = faO],[haC+8) =haO)]

<C- AT min(8A" 9 hally, 247 |hylly) < C - 8% AV R ally-

According to Lemma 4.1(d)
| fallow < C-AYPH = AVP,
Hence, applying (4.33) for k =0 and ¢, = p, we get

I falloo [PaC+8) = ha)]
<C- AP min(SA"TV Pyl 2897 Py ll,)

< C -8 AV Ihall,-
A combination of (4.45), (4.46), (4.47) and (4.48) yields
Jo=[(fMC+8) — (fhO)], = C-87AY|lhy]l,.
It follows from (4.24) and (4.49) that
[ (FrC+8) = (O, < C - 8" M.,
where

My =T AV fgull5>.

(4.45)

(4.46)

4.47)

(4.48)

(4.49)

(4.50)

(4.51)

Setting g4(A) = A=F - S84 "and taking into account that [ Si“j% dr=Am and f()) >

¢ >0, we find
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o * gin? AA
/ G20y dr= AT f o P dh
00 12
AX

> c.A*Zﬂ/ S L (4.52)

Coo A

Taking A =T, from (4.51) and (4.52) we obtain

MA¢T§C~T_%+$—1+2/3=C.Tz(ﬂ—%)#z_—,f’_ 4.53)

By assumption p > 2 and 8 < 1/p, so from (4.50) and (4.53) we conclude f(A)ha(X) €
%,(B). For A=T, from (4.25) and (4.52) we get

C o0
A > 70/ S fFAdv>C T 'AY P >c .77,
—00

Thus, for p > 2 and B < 1/p the assertion (B) of the theorem is proved.

Now we prove the assertion (B) for 1 < p <2 and g < 1/2. By the previous arguments,
we only have to prove an analog of inequality (4.49).

Applying Minkowski and Holder inequalities, we get the following analog of (4.45):

[ (FrC+8) = (RO,
<lhalloo] fC+8) = FOU, + [ FO = 2O [ hat +8) = ha)]
+ 1 fallzgsq=2 [ haC+8) —haC) |, := J1 + T + 5. (4.54)

The quantities J; and J, coincide with the first and second terms in (4.45) respectively.
Therefore, according to (4.46) and (4.47) we have

Ji<C-8AV||hyll, and J, <C-8“AY|hy,. (4.55)

Now we estimate J;. Setting ¢ = %, we have ¢; > p = -L- and i - i —B= % —-B>0.

—1
Hence, by Lemma 4.1(d) and Lemma 4.2(a) !
l,i,ﬁ
| fally, <C-AP a7, (4.56)
Further, since ¢ > 2, from (4.31) for s =2 and ¢t = g, we obtain
1_1

lhallz <= C- A" 2|hall,- (4.57)

Using the inequalities (4.56), (4.57) and (4.30) for s =2 and k = 1, we find
1_1_g | ,
I =1 fallg [haC+8) = ha@)|, < € - A7~ @ P min(3]11, 112, 2l1allz)

1 g2 g 1_g=2 g 1_1
<C-A» 2 "min(AS, D|halla <C-Av 20 TATT2||hyll,
< C-8“AY|hy,. (4.58)

A combination of (4.54), (4.55) and (4.58) yields (4.49). The rest of the proof follows the
previous case. Thus, the assertion (B) is proved. This completes the proof of Theorem 4.1. [
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