
2 Matrix Algebra

2.1 Noncommutative algebra of lists

We shall now formalize and consummate the notational initiatives taken in the previous

chapter for the symbolic representation and manipulation of whole arrays, culminating, at

least for square matrices, in a set of matrix relations and operations of sufficient mathematical

structure to merit the distinction of being called algebra.

What is algebra? For real (or complex) numbers it is the embodiment of their formal

properties under the twin operations of addition and multiplication. If a, b, c stand for three

numbers, then it is true that:

1. Their addition is commutative, a+ b = b+ a.

2. Their addition is associative, a+ (b+ c) = (a+ b) + c.

3. Their multiplication is commutative, ab = ba.

4. Their multiplication is associative, (ab)c = a(bc).

5. Their multiplication is distributive with respect to addition, a(b+ c) = ab+ ac.

6. There exists a number 0, zero, such that a+ 0 = a.

7. There exists a number −a, the additive inverse of a, such that a+ (−a) = 0.

8. There exists a number 1, one, different from 0 such that a1 = a.

9. For a =/ 0 there exists a number a−1, the multiplicative inverse of a, such that aa−1 = 1.
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This is the algebra we know, and the one we hope and aspire to emulate for matrices.

Zero enters the above rules in addition only. Its universal multiplication property is

deductive. Rule 6 says that 0 + 0 = 0 and hence by rule 5 a(0 + 0) = a0 + a0 = a0

so that a0 = 0. From rule 8 we have that 1(−1) = −1, and hence also (−1)1 = −1.

Writing −1(1 + (−1)) = 0 we verify that (−1)(−1) = 1. From a(1 + (−1)) = 0 we obtain

that −a = −1a. From rules 5 and 7 we have that a(b + (−b)) = ab + a(−b) = 0, and

a(−b) = −(ab). Similarly −a(b+ (−b)) = 0 leads to (−a)(−b) = ab.

The rules of positive times negative is negative, and negative times negative is positive

appear upon their introduction mysterious and arbitrary, which they are, but they save the

unified algebra of real numbers.

The objects we deal with here are lists of numbers such as those for the unknowns or right-

hand sides of a system of equations, that are ordered sequentially in long one-dimensional

arrays; or lists of numbers such as the coefficients of a system of linear equations, that are

ordered in two-dimensional tabular or matrix forms. We made a determined step in the

direction of matrix algebra when we instituted the convention of designating an entire list

by a single Roman letter – lower case for a one-index array, and upper case for a two-index

array, or matrix.

From this unassuming though propitious beginning, matters evolve naturally and we

symbolize relations between, and operations with, ordered arrays. Two matrices are the

same or equal , we decide, if all their corresponding entries are equal. If A and B denote two

matrices, then A = B is written to express their sameness, and once the = sign convention

is enacted there is no ambiguity as to what A = B means, provided we are informed that A

and B are matrices.

Also, for matrices as for numbers, we shall define two operations, or rules of combination,

that we name addition and multiplication, written in the style of numbers as A+B and AB.

In the abstract sense these definitions are arbitrary, but they are not careless, nor groundless,

but arise naturally in the handling of systems of linear equations. In the context of these

definitions we shall discover matrix analogies to 0 and 1, that we mark O and I, respectively.

Sum matrix C of the two matrices A and B, C = A + B, we define as holding the
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sums of the corresponding entries of A and B. Such matrix addition is simple enough to

have properties in complete formal agreement with the algebra of numbers. For any matrix

A there exists, we shall soon find, a unique additive inverse −A so that A + (−A) = O,

where O is the empty or zero matrix, and we shall also confirm that matrix addition is

commutative and associative. Matrix equation X + A = B is formally solved by all this as

X+A+(−A) = B+(−A), X+O = B+(−A), X = B+(−A), in the exact way of numbers,

except that addition here is specifically that of tables or matrices, and so is equation.

Product matrix C of two matrices A and B, C = AB is purposely defined as being

combined matrix C in the system Cx = f , resulting from the substitution of system y = Bx

into system f = Ay so that A(Bx) = f , or A(Bx) = Cx. This operation that we want to call

matrix multiplication is too complex for a total analogy with number multiplication. There

is a price to pay for the spare notation for such complex objects as matrices. Something has

to be given up.

In many important respects matrix multiplication is still formally indistinguishable from

that of numbers. It is associative, A(BC) = (AB)C, and distributive with respect to

addition, A(B + C) = AB + AC. But it is, alas, not commutative. Generally AB =/ BA;

substitution of y = Bx into f = Ay to have A(Bx) = f is decidedly not the same as

substitution of y = Ax into f = By to have B(Ax) = f .

Only in very special instances does AB = BA hold for matrices, but to restrict the

algebra to this narrow class of matrices would make it limited to the point of uselessness for

our purpose. For a certain class of square matrices a multiplicative inverse A−1 is found such

that A−1A = AA−1 = I, but the situation is not as simple here as with numbers, where a−1

exists for all a =/ 0. A matrix multiplicative inverse, we shall see, does not exist for every

square nonzero matrix.

To have a multiplicative inverse the matrix must possess intrinsic properties that require

work and insight to discover. Moreover with matrices, AB =O can happen with both

A =/ O and B =/ O. It may even happen that AB =O while BA =/ O. Having thoroughly

familiarized oneself with the algebra of numbers, one must discipline oneself further to accept

the exceptions to the rules of the noncommutative algebra of matrices.
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But even in the absence of commutative multiplication, matrix algebra is still sufficiently

versatile to do us immense service in rendering logical exactness to matrix statements by

substituting symbols for words. The extension of algebra to objects more complex than

numbers, and the realization that even under the compulsion to abandon commutativity,

noncommutative algebra is still of great mathematical usefulness is one of the great intellec-

tual accomplishments of modern times, in league with non-Euclidean geometry.

Linear algebra is at once practically and theoretically interesting. Linearity is om-

nipresent in every field of our endeavor. Every process and event that is not catastrophic

is instantaneously linear in the parameters that describe it. Because linear algebra deals

with objects of considerable inherent complexity, an unlimited mathematical richness un-

folds as the subject is further and further explored. On account of both the practice and

the theory, linear algebra is emerging as one of the most vigorous, vital, and illustrious of

all mathematical disciplines.

2.2 Vector conventions

Dealing with systems of linear equations, we acquired the habit of writing lists of un-

knowns and right-hand sides in a column. It is standard practice to call the columnwise

ordered list of n numbers

a =





a1

a2
...
an



 (2.1)

a (column) vector . The reason for the name lies in the distant history of geometry and

mechanics. Notational consistency peculiar to matrix algebra makes us differentiate between

a column vector, that is written from top to bottom, and a row vector, that is listed from

left to right. If a is a column vector then its transpose

aT = [a1 a2 . . . an], a = [a1 a2 . . . an]
T (2.2)

is a row vector.

Equality in eqs. (2.1) and (2.2) means is, and we commonly employ lower-case Roman

letters to denote vectors. Numbers, or scalars are usually denoted by lower-case Greek letters.
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Capital Romans are reserved for matrices. Numbers a1, a2, . . . , an are the components of

vector a, and two vectors are equal if their corresponding components are equal, implying

that order in the list is important. Vector equation a = b is shorthand for n equations for

the n components. Vector calculus begins with the following

Definitions.

1. Vector equality: a = b,





a1

a2
...
an



 =





b1
b2
...
bn



 is

a1 = b1
a2 = b2

...
an = bn

.

2. Multiplication of a vector by a scalar: αa = α





a1

a2
...
an



 =





αa1

αa2
...

αan



.

3. Vector addition: a+ b =





a1

a2
...
an



+





b1
b2
...
bn



 =





a1 + b1
a2 + b2

...
an + bn



.

4. Zero vector: o =





0
0
...
0



.

5. Vector subtraction: a− b = a+ (−1)b =





a1 − b1
a2 − b2

...
an − bn



.

As we progress from vectors to matrices we shall find it important to distinguish between

a row vector and a column vector. For the time being a vector is a mere one-dimensional

string of components, and what we define for a is also true for aT . But we shall never mix

the two and we thus reject expressions such as a+ bT .

Theorem 2.1.

1. Vector addition is commutative, a+ b = b+ a.

2. Vector addition is associative, (a+ b) + c = a+ (b+ c).

3. There is a unique vector o, the zero vector, such that a+ o = a.
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4. To every vector a there corresponds a unique vector −a, the additive inverse, such

that a+ (−a) = o.

5. Multiplication of a vector by a scalar is associative, α(βa) = β(αa) = αβa.

6. Multiplication of a vector by a scalar is distributive with respect to vector addition,

α(a+ b) = αa+ αb.

7. Multiplication of a vector by a scalar is distributive with respect to scalar addition,

(α + β)a = αa+ βa.

Proof. Proofs to the seven statements follow directly from the definitions, and the laws

of the algebra of numbers. End of proof.

A rectangular matrix has m rows and n columns, and when this needs to be pointed

out we shall write A = A(m × n). A matrix can be looked upon as an ordered set of n

column vectors each with m components, or an ordered set of m row vectors each with n

components. Consistently, a vector is a one-column matrix. For historical and mathematical

reasons, including the recognition of the different character that vectors and matrices have

in systems of linear equations, we retain the distinct terminology and notation for vectors

and matrices.

As a symbol for the left-hand side of a system of linear equations we wrote Ax, and we

want to name it now for what it appears to be – the multiplication of vector x by matrix A,

Ax =





A11 A12 A1n

A21 A22 A2n

Am1 Am2 Amn









x1

x2

xn




=





A11x1 +A12x2 + · · · +A1nxn
A21x1 +A22x2 + · · · +A2nxn

Am1x1 +Am2x2 + · · · +Amnxn



 (2.3)

or

(Ax)i = Ai1x1 +Ai2x2 + · · · +Ainxn, i = 1, 2, . . . ,m. (2.4)

Matrix vector multiplication symbolizes the act of substituting x into Ax. The order in

which the symbols are written is all-important, and xA is senseless.

Notationally, matters become somewhat unsettling with the introduction of subscripted

vectors, but they are unavoidable. Rectangular matrix A = A(m × n) if considered as
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consisting of n column vectors aj , or m row vectors a T
i is written as

A = [a1 a2 . . . an] , A =





a T
1
a T
2
...

a T
m




(2.5)

where row a T
i is not necessarily the transpose of column ai.

In the extreme, matrix A may consist of only one column or one row. Still, we shall

retain the distinct notation and terminology for the one-column and one-row matrices and

keep writing a and aT . The reasons for which we make this fine, and to a degree artificial,

distinction between vectors and matrices and consider them as different mathematical objects

will become clearer as we grow richer in algebraic understanding.

Recognizing aTx as the left-hand side of one equation in n unknowns, we write the

product Ax in terms of the rows a T
i of A as

Ax =





a T
1 x
a T
2 x
...

a T
m x




. (2.6)

Otherwise

Ax = x1





A11

A21

Am1



+ x2





A12

A22

Am2



+ · · · + xn





A1n

A2n

Amn



 = x1a1 + x2a2 + . . . xnan (2.7)

which is a linear combination of the n columns of A.

With subscripted vectors we must be on our guard and keep in mind that in eq. (2.7)

x1, x2, . . . , xn are numbers, the components of x, while a1, a2, . . . , an are vectors, the columns

of A. Whenever we can help it we shall avoid the notational mixture of eq. (2.7) and use

Greek letters for scalars.

The matrix vector multiplication of a one-row matrix by a column vector

aT b =

[ a1 a2 an ]




b1
b2

bn



 = bTa =

[ b1 b2 bn ]




a1

a2

an



 = a1b1 + a2b2 + · · · + anbn (2.8)
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is a very basic operation in matrix computations. It produces a scalar, and is called the

scalar, dot , or inner product of vectors a and b.

Vectors

e1 =





1
0
0
0
0




, e2 =





0
1
0
0
0




, e3 =





0
0
1
0
0




, . . . , en =





0
0
0
0
1




, (2.9)

or generally ej for the vector with all components equal to zero, except for the jth which is

1, are useful for their property xT ej = e T
j x = xj . Also, if A = [a1 a2 . . . an], then according

to equation (2.7) Aej = aj , and

e T
i (Aej) = Aij . (2.10)

Theorem 2.2.

A(αx+ α0x0) = αAx+ α0Ax0. (2.11)

Proof. This is an immediate result of the meaning of Ax, and the vector conventions.

End of proof.

Theorem 2.2 expresses the inherent linearity of operation Ax.

We define:

1. The zero matrix O=O(m× n) as having entries Oij = 0.

2. The identity matrix I = I(n× n) as having entries Iii = 1, Iij = 0.

For instance,

I = I(3× 3) =




1

1
1



 = [e1 e2 e3]. (2.12)

We shall occasionally write In for I = I(n× n).

Theorem 2.3.

1. There exists a unique matrix O, the zero matrix, so that Ox = o for any vector x.

2. There exists a unique matrix I, the identity matrix, so that Ix = x for any vector x.
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Proof.

1. If Oij = 0 then Ox = o for any x. Conversely, according to Lemma 1.7, if Ax = o for

any x, then necessarily Aij = 0.

2. If I is as in eq. (2.12), then Ix = x for any x. Conversely if Ax = Ix for any x, then

according to Lemma 1.7 necessarily Aij − Iij = 0. End of proof.

Exercises

2.2.1. What is α if αx = o. Discuss all possibilities.

2.2.2. Does A exist so that Ax = xT ?

2.2.3. If xTx+ yT y = 0 what are x and y ?

2.2.4. For a = [1 − 2 1]T , b = [1 1 1]T write aT b, bTa, abT , and baT . Are ab and aT bT

defined?

2.2.5. For a = [1 − 3 2]T , b = [−2 − 1 0]T , c = [1 1 − 1]T write aT bc, caT b, (bT c)(aT c),

bT (caT )c. Is abcT defined?

2.2.6. Prove that (abT )(pqT ) = (bTp)(aqT ), and that aT (bpT )q = (aT b)(pT q).

2.2.7. Can (bTa)(abT ) be computed as bT (aa)bT ? What about the associative law?

2.2.8. If a and b are two column vectors with n components, how many rows and columns

do matrices aT b+ bTa, abT + baT , aT bbTa, abTabT , aT ba and bTaaT have?

2.2.9. Is aT b+ abT defined?

2.2.10. For a = [1 − 1 1]T , b = [2 1 − 1]T , write abT and (abT )2. Hint: do the algebra first.

2.2.11. For = [1 − 1 1]T , b = [1 1 1]T , write (abT )6. Hint: do the algebra first.

2.2.12. For a = [1 1 1]T , b = [1 − 2 1]T , write (aaT + bbT )4. Hint: do the algebra first and

notice that aT b = 0.

2.2.13. Show that (abT )n = (bTa)n−1abT .
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2.2.14. Show that if A = uuT + vvT , with uTu = vT v = 1, uT v = vTu = ∞, then A3 =

α1uuT + α2uvT + α3vuT + α4vvT . Find α1, α2, α3, α4 in terms of ∞.

2.2.15. Does there exist a vector v so that vvT = I?
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2.3 Matrix addition and multiplication

We find it convenient to define matrix relationships and operations in terms of their

effect on an arbitrary vector.

Definitions.

1. Matrices A and B are equal, A = B, if and only if Ax = Bx for any vector x.

2. Matrix B is the scalar α times A,B = αA, if and only if Bx = αAx, (αA)x = αAx,

for any vector x.

3. Matrix C is the sum of the two matrices A and B, C = A + B, if and only if

Cx = Ax+Bx, (A+B)x = Ax+Bx, for any vector x.

Theorem 2.4.

1. Equality A = B holds if and only if Aij = Bij.

2. Equality B = αA holds if and only if Bij = αAij.

3. Equality C = A+B holds if and only if Cij = Aij +Bij.

Proof.

1. If Aij = Bij , then Ax = Bx for all x. With x = ej we have that Ax = Bx only if

aj = bj , where aj and bj are the jth column of A and B, respectively. Hence from vector

equation we have that Ax = Bx for any x only if Aij = Bij .

2. If Bij = αAij , then Bx = αAx for all x. From Bej = αAej we have that bj = αaj ,

and hence equality holds only if Bij = αAij .

3. If Cij = Aij+Bij , then Cx = Ax+Bx for any x. With x = ej we have that cj = aj+bj ,

and hence from vector addition it results that equality holds only if Cij = Aij +Bij . End of

proof.

In some instances as in geometry and mechanics, one prefers to give vectors an identity

of their own separate from matrices. A vector is then essentially a one-dimensional list of

components for which there is no point in distinguishing between a row and a column. In

this case it matters little how the vector is written, and for typographical convenience it
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is commonly listed row-wise. But for matrices it matters. Matrices are inherently two-

dimensional tables with rows and columns, and a matrix with n rows and one column does

not equal a matrix with one row and n columns. We shall consistently look upon a vector

as a one-column matrix.

Theorem 2.5.

1. Matrix addition is commutative, A+B = B +A.

2. Matrix addition is associative, (A+B) + C = A+ (B + C).

3. The equality A+O= A holds for any matrix A if and only if O is the zero matrix.

4. To every matrix A there corresponds a unique additive inverse −A, so that A +

(−A) =O.

5. α(βA) = (αβ)A.

6. (α + β)A = αA+ βA.

7. α(A+B) = αA+ αB.

Proof.

1. (A+B)x = Ax+Bx = Bx+Ax = (B +A)x.

2. ((A+B) + C)x = (A+B)x+ Cx

= Ax+Bx+ Cx

= Ax+ (B + C)x

= (A+ (B + C))x.

3. (A + O)x = Ax + Ox = Ax implies that Ox = o, and O must be, by Theorem 2.3,

the zero matrix.

4. (A + B)x = Ox implies that Ax = −Bx. Choosing x = ej we have that bj = −aj
for the columns of B and A, and Bij = −Aij . Matrix B is unique, since if A + B = O and

A+B0 = O, then A+B0 +B = B and B0 = B.

5. (α(βA))x = α((βA)x) = α(βAx) = αβAx.

6. ((α + β)A)x = (α + β)Ax = αAx+ βAx = (αA+ βA)x.

7. (α(A+B))x = α(A+B)x = α(Ax+Bx) = (αA+ αB)x.
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End of proof.

Consider the consecutive linear systems Ay = f and Bx = y. Symbolic substitution

of one equation into the other, A(Bx) = f , results in the system Cx = f with coefficient

matrix C that we call the product of A and B. This is matrix multiplication and we put it

formally in the

Definition. Matrix C is the product of A and B,C = AB, if and only if Cx = A(Bx),

(AB)x = A(Bx), for any vector x.

To write the product in terms of entries A and B we have

Theorem 2.6. The equality C = AB, A = A(m× k), B = B(k× n), C(m× n), holds

if and only if

Cij = Ai1B1j +Ai2B2j + · · · +AikBkj . (2.13)

Proof. For a detailed look at the product take the typical

A =




A11 A12

A21 A22

A31 A32



 and B =
∑
B11 B12 B13

B21 B22 B23

∏
(2.14)

for which

Bx =
∑
B11x1 +B12x2 +B13x3

B21x1 +B22x2 +B23x3

∏
(2.15)

and

A(Bx) =




(A11B11 +A12B21)x1 + (A11B12 +A12B22)x2 + (A11B13 +A12B23)x3

(A21B11 +A22B21)x1 + (A21B12 +A22B22)x2 + (A21B13 +A22B22)x3

(A31B11 +A32B21)x1 + (A31B12 +A32B22)x2 + (A31B13 +A32B23)x3



 . (2.16)

Hence

C = AB =




A11B11 +A12B21 A11B12 +A12B22 A11B13 +A12B23

A21B11 +A22B21 A21B12 +A22B22 A21B13 +A22B23

A31B11 +A32B21 A31B12 +A32B22 A31B13 +A32B23



 . (2.17)

End of proof.
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Theorem 2.6 says that Cij = (AB)ij is the product of the ith row of A by the jth column

of B, (AB)ij = a T
i bj , schematically





j

i ×




=




i × × ×









j

×

×

×




. (2.18)

That product AB exists does not mean that BA is possible, but even if both AB and

BA exist, the product of the ith row of A and the jth column of B need not be the same as

the product of the ith row of B and the jth column of A. The operation is too complicated

for that, and matrix multiplication is not commutative. Generally AB =/ BA and we need

distinguish between B that post-multiplies A, and B that pre-multiplies A, or B that right-

multiplies A and B that left-multiplies A. Substitution of a system with matrix B into a

system with matrix A is not the same as substitution of a system with matrix A into a

system with matrix B.

Matrices for which it does happen that AB = BA are said to commute.

Setting e1, e2, . . . , en into Cx = (AB)x = A(Bx) and recalling that Cej = cj , the jth

column of C, and Bej = bj , the jth column of B, we have that cj = Abj . The jth column of

C = AB is the product of matrix A by the jth column of B, C = [Ab1 Ab2 . . . Abn]. Matrix

multiplication becomes in this way an obvious generalization of matrix vector multiplication.

When writing AB we shall implicitly assume that A and B are compatible, that A has

as many columns as B has rows, so that the product is possible.

For the zero matrix O and identity matrix I we verify that AO = OA = O, and IA =

AI = A for any A.

Apart from this we have

Theorem 2.7.

1. AO=O, OA =O for any matrix A if and only if O is the zero matrix.

2. AI = A, IA = A for any matrix A if and only if I is the identity matrix.

3. A(B + C) = AB +AC.
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4. (A+B)C = AC +BC.

5. A(BC) = (AB)C.

6. (αA)(βB) = αβAB.

Proof.

1. We choose in AX = X or XA = X A =O and have that X =O.

2. The equations AX = A or XA = A can happen only if X is square. Equality is for

any A, and if we choose A = I we have X = I.

3. (A(B + C))x = A((B + C)x) = A(Bx+ Cx)

= A(Bx) +A(Cx)

= (AB)x+ (AC)x

= (AB +AC)x.

4. The same as 3.

5. A(BC)x = A((BC)x) = A(B(Cx)) = AB(Cx) = (AB)Cx.

6. (αA)(βB)x = (αA)(β(Bx)) = αβ(AB)x.

End of proof.

For specific matrices it may well happen that AX = O with X =/ O, and AX = A with

X =/ I. Consider for example

∑
1 1 1
1 1 1

∏ 


1 0 −1
−1 1 0
0 −1 1



 =

∑
0 0 0
0 0 0

∏

, AX = O, (2.19)

∑
1 1 1
1 1 1

∏ 


1 −1 1
−1 1 1
1 1 −1



 =

∑
1 1 1
1 1 1

∏

, AX = A. (2.20)

The product aT b of aT = aT (1×n) and b = b(n×1) is a (1×1) matrix, but the product

αA, A = A(m×n), is not the product of a (1×1) matrix α by an (m×n) matrix A. In this

scheme of things we let numbers retain an existence separate from matrices, as vectors may

do, and the operation of scalar times a matrix is not part of the matrix product operations.

An A (1× 1) matrix loses its status of matrix and becomes a number.
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Multiplication of every entry of A by scalar α can be done in proper matrix form by pre-

or post-multiplying A by the diagonal D = αI




α

α
α








A11 A12

A21 A22

A31 A32



 =




A11 A12

A21 A22

A31 A32





∑
α

α

∏

=




αA11 αA12

αA21 αA22

αA31 αA32



 . (2.21)

Lack of commutativeness in matrix multiplication detracts from the algebra, but it is

the associative law that saves it. One realizes how immensely important the law is in the

manipulation of matrix products, and how poor is an algebra devoid of it.

The associative law allows us to write matrix products without parentheses, and we may

use the notation AA = A2, A2A3 = A5. On the other hand, because matrix multiplication

is not commutative (AB)2 =/ A2B2, actually, (AB)2 = ABAB, and (A+B)2 = A2 +AB +

BA + B2. We see in example 1 below that AB =O can happen with both A =/ O and

B =/ O, in which case A and B are said to be divisors of zero. A homogeneous system of

linear equations Ax = o, we know, can well have nonhomogeneous solutions even when A is

square. To conclude that x = o is the only solution requires that we have knowledge of a

deeper property of A, namely that the system is equivalent to triangular form of type 1.

Examples.

1. A =
∑
0 1
0 0

∏
, B =

∑
1 0
0 0

∏
, AB =

∑
0 0
0 0

∏
, BA =

∑
0 1
0 0

∏
.

2.

∑
1 −2 1
−1 1 1

∏ 


2 1
1 1
1 1



 =

∑
1

1

∏
.

3.




2 1
1 1
1 1





∑
1 −2 1
−1 1 1

∏

=




1 −3 3
0 −1 2
0 −1 2



 .

4. AB =
∑

1 3α
3β −2

∏ ∑
3 α
β 2

∏
=
∑
3 + 3αβ 7α

7β 3αβ − 4

∏
.
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BA =
∑

3 α
β 2

∏ ∑
1 3α
3β −2

∏
=
∑
3 + 3αβ 7α

7β 3αβ − 4

∏

and AB = BA for any α and β.

5.




d1

d2

d3








A11 A12 A13

A21 A22 A23

A31 A32 A33



 =




d1A11 d1A12 d1A13

d2A21 d2A22 d2A23

d3A31 d3A32 d3A33



 .

6.




A11 A12 A13

A21 A22 A23

A31 A32 A33








d1

d2

d3



 =




d1A11 d2A12 d3A13

d1A21 d2A22 d3A23

d1A31 d2A32 d3A33



 .

7.




1
3 2
−2 1 −1








2
−3 3
−2 1 −2



 =




2
0 6
−5 2 2



 .

8.




2 −1 1
−1 3 −2
1 −2 1








1 1 −1
1 −1 2
−1 2 −1



 =




0 5 −5
4 −8 9
−2 5 −6



 .

9.
∑
1 0
0 0

∏ ∑
1 0
0 0

∏
=
∑
1 0
0 0

∏
, AA = A.

10.




1
2
−3




[−1 3 ]

=




−1 3
−2 6
3 −9



 ,
∑

1
−1

∏
[ 2 −1 3 ] =

∑
2 −1 3
−2 1 −3

∏
.

11.
∑−1 1
−1 1

∏ ∑−1 1
−1 1

∏
=
∑
0 0
0 0

∏
, AA = O.

12.
∑
1 −1
2 −1

∏ ∑
1 −1
2 −1

∏
=
∑−1

−1

∏
, AA = −I.

In Chapter 1 we introduced the notions of a triangular system of equations, systems of

type 1 and 0, systems of Hermite and echelon form, and the rank of a system. Obviously it

is the particular form of the coefficient matrix only that is responsible for these distinctions.

Now that the matrix has come into its own, it should be perfectly natural for us to speak
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about triangular matrices, matrices of type 0 and 1, Hermite and echelon matrices, and the

rank of a matrix. One-dimensional arrays are too restricted to have such interesting forms.

The products aT b = bTa of aT = aT (1× n) and b = b(n× 1), or bT = bT (1× n) and a =

a(n×1) is a (1×1) matrix, or scalar. But the product abT of a = a(m×1) and bT = bT (1×n)

is an (m × n) matrix, as in previous example 10. Matrices (abT )ij = aibj , (baT )ij = biaj ,

with nonzero a and b are rank-one matrices. To verify this we write

abT =





a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn

amb1 amb2 · · · ambn




(2.22)

and perform the elementary operations necessary to bring abT into reduced echelon form.

Assume that a1 = 1. If a1 happens to be zero, then the rows of abT are interchanged to

bring a nonzero entry of a to the top. Addition to each row of abT , −ai times the first row

leaves us with

R =





b1 b2 · · · bn
0 0 · · · 0

0 0 · · · 0



 (2.23)

which is, since b =/ o, an echelon matrix of rank 1. In section 10 we shall show that the

converse is also true, namely that every matrix A of rank one can be written as A = abT .

Matrix multiplication can be described in various ways in terms of the rows and columns

of A and B. Let the columns of A,B,C be aj , bj , cj , respectively, and the rows of A,B,C

be a T
i , b T

i , c T
i , respectively (notice that a T

1 is not the transpose of a1 here.)

We may write

A = [a1 a2 . . . an] = [a1 o o o] + [o a2 o o] + · · · + [o o o an] (2.24)

or

A = a1e
T

1 + a2e
T

2 + · · · + ane
T
n . (2.25)

Similarly, in terms of the rows a T
i

A =





a T
1
a T
2...
a T
m



 =





a T
1

oT

oT

oT



+





oT

a T
2

oT

oT



+ · · · +





oT

oT

oT

a T
m



 (2.26)
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or

A = e1a
T

1 + e2a
T

2 + . . .+ ema
T
m . (2.27)

Let A = A(m × k) and B = B(k × n). Then in terms of eqs. (2.25) and (2.27) the

product AB is written as

AB = (a1e
T

1 + a2e
T

2 + · · · + ake
T
k )(e1b

T
1 + e2b

T
2 + · · · + ekb

T
k ) (2.28)

where aj = aj(m×1), b T
i = b T

i (1×n), ej = ej(k×1) and e T
i = e T

i (1×k). Since e T
i ei = 1

and e T
i ej = 0 if i =/ j, the product becomes

AB = AB(m× n) = a1b
T

1 + a2b
T

2 + · · · + akb
T
k (2.29)

which is the sum of k rank-one matrices.

Otherwise we may write

AB = (e1a
T

1 + e2a
T

2 + · · · ema T
m )(b1e

T
1 + b2e

T
2 + · · · bne T

n ) (2.30)

where a T
i = a T

i (1×k), bj = bj(k×1), ej = ej(m×1), and e T
i = e T

i (1×n). The products

a T
i bj are scalars, while eie T

j are matrices with all entries equal to zero, except for one entry

at the ith row and jth column that is 1,

e2e
T

3 =




0
1
0




[ 0 0 1 ]

=




0 0 0
0 0 1
0 0 0



 = [ o o e2 ] . (2.31)

Hence

AB =





a T
1 b1 a T

1 b2 a T
1 bn

a T
2 b1 a T

2 b2 a T
2 bn

a T
m b1 a T

m b2 a T
m bn




, (AB)ij = a T

i bj , (2.32)

and (AB)ij is the product of the ith row of A and the jth column of B.

Writing

AB = A(b1e
T

1 + b2e
T

2 + · · · + bne
T
n ) = (Ab1)e

T
1 + (Ab2)e

T
2 + · · · + (Abn)e

T
n (2.33)

we have that

AB = [Ab1 Ab2 · · · Abn] . (2.34)
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In terms of rows

AB = (e1a
T

1 + e2a
T

2 + · · · + ema
T
m )B = e1(a

T
1 B) + e2(a

T
2 B) + · · · + em(a T

m B) (2.35)

or

AB =





a T
1 B

a T
2 B
...

a T
m B




(2.36)

since e T
i A = a T

i is the ith row of A.

Exercises

2.3.1. What is matrix A so that Ax = −2x for any x?

2.3.2. Can matrix A be found so that A(x+ y) = x+ 2y for any x and y?

2.3.3 For matrix

A =




2 1 α
1 α 2
α 2 3



 ,

find α so that if x2
1 + x2

2 = x2
3, then y2

1 + y2
2 = y2

3, where x = [x1 x2 x3]T and y = Ax.

2.3.4. Find scalars α, β, ∞ so that

α




1 −2 1
−3 2 1
−1 −2 1



+ β




−2 2 5
1 3 −1
−3 4 −3



+ ∞




−1 −2 −3
4 −2 1
2 2 −3





is upper-triangular, but not zero.

2.3.5. For

A =
∑
1 0 1
1 −1 1

∏
and B =




1 2
−2 3
1 1





write AB and BA.

2.3.6. Show that
∑

1 2
−3 −6

∏ ∑−2 2
1 −1

∏
= O.

2.3.7. Show that if ABAB = O, then (BA)3 = O.
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2.3.8. Show that if (AB)2 = α(AB), and BA = X, then X2(X − αI) = O.

2.3.9. Show that if AC = CB, then A and B are square.

2.3.10. If AB = BA and CB = BC, is it true that CA = AC?

2.3.11. Let

A =
∑
A11 A12

A21 A22

∏
and B =

∑
B11 B12

B21 B22

∏

be such that the row sum of A is α, A11 +A12 = α and A21 +A22 = α, and the row sum of

B is β, B11 +B12 = β and B21 +B22 = β. Show that the row sum of AB is αβ.

2.3.12. Let A be such that Aij ≥ 0, and such that the row sums are all 1. A matrix

having these properties is called stochastic. Show that the product of stochastic matrices is

a stochastic matrix.

2.3.13. What does the interchange of rows i and j of A do to product AB? What does the

interchange of columns i and j of B do to product AB?

2.3.14. Consider the matrix product AB = C. Add the elements in each column of A to

have row vector aT , and the elements in each row of B to similarly have column vector b.

Show that aT b =
X

i,j

Cij .

2.3.15. Find α and β so that

A =




1 α β

1 α
1



 , A2 =




1 1 1

1 1
1



 .

2.3.16. Carry out the matrix multiplication




1
L21 1
L31 L32 1








1
L21 1
L31 L32 1



 .

Is the product of lower-triangular matrices always a lower triangular matrix?

2.3.17. Show that for any lower triangular matrix L = L(2 × 2), L21 =/ 0, scalars α0, α1

exist so that L2 + α1L+ α0I = O. Write α0 and α1 in terms of L11, L21, L22.
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2.3.18. For matrix

A =
∑
2 −1
1 3

∏

find scalars α0, α1 so that A2 + α1A+ α0I = O.

2.3.19. Show that if

A =
∑

2 −1
−1 1

∏
,

then A2 = 3A− I. Use this to show further that A8 = αA− βI. Find α and β.

2.3.20. What are the conditions on α and β so that

X =
∑−1 α
β 0

∏

solves the matrix polynomial equation (X − 2I)(X + 3I) = X2 +X − 6I = O?

2.3.21. Show that for any given A = A(2× 2), scalars α0 and α1 can be found so that

A2 + α1A+ α0I = O.

Write α0 and α1 in terms of A11, A12, A21, A22.

2.3.22. Let

L1 =




0
1 3
−2 −1 1



 , L2 =




3
−2 0
1 3 2



 , L3 =




−3
1 −2
2 1 0



 .

Verify that

L1L2 =




0
−3 0
−3 3 2



 , and L1L2L3 =




0
9 0
16 −4 0



 .

2.3.23. Let

L =




0
L21 0
L31 L32 0



 .

Show that

L2 =




0
0 0

L21L32 0 0



 and L3 = O.
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Matrix A for which Am = O, Am−1 =/ O, m being a positive integer, is nilpotent of index m.

When m = 2 the index is omitted.

2.3.24. For

N =





1
1

1
1





compute N2 = N2, N3 = N3, N4 = N4, N5 = N5.

2.3.25. Write all nonzero 2× 2 nilpotent matrices.

2.3.26. Show that

N =




α

β −α
β





is nilpotent of index 3, N3 = O.

2.3.27. Show that 


α

1
1





3

=




α

α
α



 .

2.3.28. For positive integer m compute Am, Bm, Cm and (AB)m,

A =




0 1 0
0 0 1
0 0 1



 , B =




0 0 1
1 0 0
0 0 1



 , C =




1 0 0
0 0 1
1 0 0



 .

2.3.29. Compute

∑
1 1
0 1

∏m
,




α

β
∞





m

,




α

β
∞





m

,




α 1

α 1
α





m

for positive integer m.

2.3.30. Find the lowest positive integer value of m so that

∑
0 1
−1 −1

∏m
+

∑−1 −1
1 0

∏m
=

∑−1 0
0 −1

∏m

holds.
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2.3.31. Let α = α(ξ), β = β(ξ) be functions of ξ, with derivatives α0, α
00

and β0, β
00
. Show

that if

A(α) =




α
α0 α

1
2α

00
α0 α





then A(α) A(β) = A(αβ).

2.3.32. If A = abT , what are the conditions on a and b so that A2 = αA?

2.3.33. Let A = I − uvT , uT v = vTu = α. What is α so that A2 = I? A3 = I? Show that if

A = I − uvT , uT v = 0, then, A3 = I − 3uvT .

2.3.34. If A = I −uuT and uTu = 1, show that A2 = A. Such a matrix is called idempotent.

2.3.35. Show that if A2 = A, then (I −A)(I +A) = I −A.

2.3.36. Show that if AB = A and BA = B, then A and B are idempotent, that is, A2 =

A,B2 = B.

2.3.37. Find the relationships between α, β, ∞, δ so that A2 = A,

A =
∑
α β
∞ δ

∏
.

2.3.38. Let

P = I − uuT − vvT

be with uTu = vT v = 1 and uT v = 0. Show that P 2 = P .

2.3.39. Let

P =
1

1− α2 (vvT − αvuT ), α = uT v

be with uTu = vT v = 1. Show that P 2 = P .

2.3.40. What are the conditions on u and v so that (I + uvT )2 = I.

2.3.41. If A = I − αuuT , uTu = 1, for what α is A3 = A.

2.3.42. Let u be a vector so that uTu = 1. Find α and β so that (αI + βuuT )2 = 4I.
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2.3.43. Write all 2× 2 matrices such that A2 = I.

2.3.44. Write all matrices that commute with

A =
∑

1
2

∏
,

namely all X so that AX = XA.

2.3.45. Show that all matrices X that commute with

A =
∑
1 −1
2 3

∏
,

that is, such that AX = XA, are of the form

X = α
∑
1

1

∏
+ β

∑
1

−2 −2

∏

where α and β are arbitrary. Explain why specific α and β exist so that A = X. Show

subsequently that X = α0I + β0A. Explain in turn why specific α0 and β0 exist so that

A2 = X = α0I + β0A.

2.3.46. Write all matrices X that commute with

A =




0 1

0 1
0



 .

2.3.47. For A = I + 2uuT , uTu = 1, find β in B = I + βuuT so that AB = I.

2.3.48. For A = I + uuT + vvT , uTu = vT v = 1, uT v = vTu = 0, find α and β in

B = I + αuuT + βvvT so that AB = I.

2.3.49. What is α if A = I + αB and B = I + αA?

2.3.50. Show that if A and B commute with C, then I + αA+ βB commutes with C.

2.3.51. Prove that if AB = BA, then also AmB = BAm for any positive integer m.

2.3.52. Solve the matrix equation

∑
1

−2

∏
X −X

∑
1

−2

∏
=
∑
3
−3

∏
.
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2.3.53. Show that if A = I + S and B = I − S, then AB = BA

2.3.54. Show that if AX = XA for any X, then A = αI. Can it ever happen that matrix

equation AX = XA has a unique solution X?

2.3.55. Show that if AD = DA, D being a diagonal matrix and such that Dii =/ Djj i =/ j,

then A is diagonal.

2.3.56. Find matrix P so that



α β ∞
∞ α β
β ∞ α



 = αI + βP + ∞P 2.

What is P 3?

2.3.57. Write all matrices of the form

A =




α β ∞
β α β
∞ β α



 , A =/ I

so that A2 = I. Hint: write A as in the previous exercise.

2.3.58. Find matrix P so that



α β ∞

α β
α



 = αI + βP + ∞P 2.

What is P 3?

2.3.59. Matrix

T =





α β ∞ δ
α β ∞

α β
α





is an upper-triangular Töpliz matrix. Is the product of two such Töpliz matrices a Töpliz

matrix? Do Töpliz matrices commute? Use the result of the previous exercise.

2.3.60. Matrix

A =




α β ∞
∞ α β
β ∞ α




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is a 3× 3 circulant matrix. Use the result of problem 2.3.56 to show that the product of two

circulant matrices is a circulant matrix, and that they commute.

2.3.61. Show that, for circulant matrix

C =
∑
α β
β α

∏
, β =/ 0

scalars c1 and c2 exist so that

C2 + c1C + c0I = O.

Write c1 and c0 in terms of α and β. Extend the result to circulant C(3× 3) and a matrix

polynomial equation of degree 3.

2.3.62. Show that if A = A(2× 2), and A3 = O, then A2 = O.

2.3.63. If A2 = O and trace (A) = A11 +A22 + · · · +Ann = 0, does that imply that A = O?

2.3.64. Show that no square A and B exist so that AB −BA = I.

2.3.65. Prove that if A+B = O and A2 +B2 = O, then A2 = B2 = O.

2.3.66. Let A and B be idempotent. Prove that AB+BA = O implies that AB+(AB)2 = O,

BA+ (BA)2 = O, and (AB)2 + (BA)2 = O.

2.3.67. Prove that if A = A2 and B = B2, then A + B = (A + B)2 if and only if AB =

BA = O.

2.4 Matrix transposition-symmetry

Matrices

A =




A11 A12

A21 A22

A31 A32



 = [a1 a2] and AT =
∑
A11 A21 A31

A12 A22 A32

∏
=
∑
a T
1
a T
2

∏
(2.37)

where a T
j is truly the transpose of aj , are the transpose of each other. Obviously if A =

A(m× n), then AT = AT (n×m), and (AT )ij = Aji.

Matrix A can equal its transpose only when square, and when this equality occurs the

matrix is termed symmetric.
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Definition. If A = AT , Aij = Aji, then matrix A is said to be symmetric.

Symmetric matrices are common in the application of linear algebra to mathematical

physics (nature is symmetrical), and they have outstanding properties that we shall discuss

in the coming chapters.

Lemma 2.8.

1. (xT )T = x.

2. (x+ y)T = xT + yT .

3. xT y = yTx.

4. (Ax)T = xTAT .

5. (xTA)T = ATx.

Proof.

1. Obvious.

2. A direct consequence of the definitions of x = y and xT + yT .

3. xT y = x1y1 + x2y2 + · · · + xnyn = y1x1 + y2x2 + · · · + ynxn = yTx.

4. Let a T
i be the ith row ofA. Then (Ax)i = a T

i x, (Ax)Tj = a T
j x. But (xTAT )j = xTaj ,

where aj = (a T
j )T , and hence since a T

j x = xTaj , (Ax)T = xTAT .

5. Same as 4.

End of proof.

Theorem 2.9.

1. (AT )T = A.

2. (A+B)T = AT +BT .

3. (αA)T = αAT .

4. (AB)T = BTAT .

5. (Am)T = (AT )m m integer > 0.

Proof. By Lemma 2.8,
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1. (AT )Tx = (xTAT )T = ((Ax)T )T = Ax.

2. (A+B)Tx = (xT (A+B))T = (xTA+ xTB)T .

= (xTA)T + (xTB)T .

= ATx+BTx = (AT +BT )x.

3. Obvious.

4. (AB)Tx = (xT (AB))T = ((xTA)B)T = BT (xTA)T = BTATx.

5. A corollary of 4 when A = B. End of proof.

Theorem 2.9 implies that if A and B are symmetric then so is A+B, so is αA and so is

Am, where m is a positive integer. Statement 4, on the other hand, implies that the product

of two symmetric matrices is not symmetric unless the matrices commute. Indeed if A = AT

and B = BT , then (AB)T = BTAT = BA =/ AB. Notice that in previous example 8 both

A and B are symmetric but AB is not.

We verify that

R = PTAP and S = AB +BA (2.38)

are symmetric if A and B are symmetric, and that

R = ATA and S = A+AT (2.39)

are symmetric for any A.

The triple product PTAQ, with P = P (n×m), A = A(n× n), and Q = Q(n×m)

PTAQ =





p T
1

p T
2
...
p T
m





[Aq1 Aq2 Aqm ]

=





p T
1 Aq1 p T

1 Aq2 p T
1 Aqm

p T
2 Aq1

p T
m Aq1 p T

m Aqm



 (2.40)

or (PTAQ)ij = p T
i Aqj is important. When P = Q, and A = AT

(PTAP )ij = p T
i Apj = p T

j Api. (2.41)

Matrix A for which it is true that A = −AT is skew symmetric, and we readily verify

that if A is skew symmetric, then Aii = 0 for all i. Matrix B = A− AT is skew symmetric

since BT = AT − (AT )T = AT −A = −B.
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Exercises

2.4.1. Show that if A and B are symmetric, then so is C = ABA.

2.4.2. Matrix A is symmetric if A = AT , it is skew symmetric if A = −AT . If matrix A

is skew symmetric is matrix B = A2 symmetric or skew symmetric? What about matrix

C = A3? Hint: consider BT and CT .

2.4.3. Let A = −AT , B = BT . Is matrix C = ABA symmetric or skew symmetric? Let

A = AT , B = −BT . Is matrix C = ABA symmetric or skew symmetric?

2.4.4. Show that if ATA = AAT = I and BTB = BBT = I, then C = AB is such that

CTC = CCT = I.

2.4.5. Find A if

ATA = AAT =
∑
1

4

∏
.

2.4.6. For

A =
∑
1 −1
2 1

∏
, and A =

∑
0 1
0 0

∏

find X so that XA = AT .

2.4.7. Show that if A is nilpotent, A2 = O, then so is AT , and if A is idempotent,A2 = A,

then so is AT .

2.4.8. Show that for

A =




α β ∞
∞ α β
β ∞ α



 ,

AAT = I if α2 + β2 + ∞2 = 1, and αβ + β∞ + ∞α = 0.

2.4.9. Show that if A = AT , then A2 = O implies that A = O.

2.4.10. Prove that if A and B are such that A = AT , B = BT and (A − B)2 = O, then

A = B.

2.4.11. Show that if A = AT , B = BT and A2 +B2 = O, then A = B = O.
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2.4.12. Show that if X satisfies AX = XA,A = AT ,then so does XT . Say that A =

A(2× 2) = AT . When does it happen that X = XT ?

2.4.13. Consider matrix equation XD = DX where D is diagonal. Under what conditions

on D is X diagonal?

2.4.14. Consider matrix equation XD = D0X where D and D0 are diagonal. Under what

conditions on D and D0 is X = O the only solution?

2.4.15. Show that if tridiagonal matrix

T =





a1 b2
c2 a2 b3

c3 a3 b4
c4 a4





is irreducible, i,e. bi =/ 0 and ci =/ 0 for all i, then a diagonal matrix D,Dii = di =/ 0, D11 = 1,

exists so that DT is symmetric, DT = (DT )T . Verify further that if symmetric tridiagonal

T is irreducible, then a diagonal matrix D,Dii = di =/ 0, D11 = 1, exists that accomplishes

the reduction




1
d2

d3

d4









a1 b2
b2 a2 b3

b3 a3 b4
b4 a4









1
d2

d3

d4



 =





a01 1
1 a02 1

1 a03 1
1 a04



 .

2.4.16. If A is symmetric, A = AT , and B2 = A, does it imply that B = BT ? Write all

B = B(2× 2) so that B2 = I, B =/ ± I.

2.4.17. Let Ai = AT
i , and so that A1 + A2 + · · · + Am = I. Show that if A2

i = Ai, then

AiAj = O i =/ j.

2.5 Partitioned matrices

It may be practically expedient or theoretically desirable to divide, or partition, a vector

into sub-vectors, each with its own designating letter, say

a =





a1

a2

a3

a4

a5




=





f

g




. (2.42)
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Vector a in eq. (2.42) can be considered as having vector components.

We readily verify that if a and b are sub-vectors, then

∑
a
b

∏
+

∑
a0

b0

∏
=
∑
a+ a0

b+ b0

∏
, and α

∑
a
b

∏
=
∑
αa
αb

∏
(2.43)

provided that the vectors are partioned conformally, so that the subvector additions a + a0

and b+ b0 are meaningful.

Matrices may be similarly partitioned. For example





A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45



 =




E F

G H



 (2.44)

where E = E(1× 2), F = F (1× 3), G = G(3× 2), H = H(3× 3) are four submatrices of

matrix A.

Definition. Square submatrix S is a diagonal (principal) submatrix of square matrix A

if S11 = Akk for some k. Submatrix S is a leading diagonal submatrix of A if S11 = A11.

What makes partitioning so interesting is that the rules of matrix addition and multi-

plication remain valid when submatrices are instituted for scalar entries, provided addition

and multiplication are matrix operations.

Theorem 2.10. Let x,A and A0 be conformally portioned. Then

1. Ax =
∑
E F
G H

∏ ∑
a
b

∏
=
∑
Ea+ Fb
Ga+Hb

∏
.

2. αA =
∑
αE αF
αG αH

∏
.

3. AT =
∑
ET GT

FT HT

∏
.

4. A+A0 =
∑
E F
G H

∏
+
∑
E0 F 0

G0 H 0

∏
=
∑
E + E0 F + F 0

G+G0 H +H 0

∏
.

5. AA0 =
∑
E F
G H

∏ ∑
E0 F 0

G0 H 0

∏
=
∑
EE0 + FG0 EF 0 + FH 0

GE0 +HG0 GF 0 +HH 0

∏
.
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Proof. Statement 1 is a direct consequence of the definitions of matrix vector product and

vector addition. To prove statement 5 we partition x as x = [zT oT ]T and have that

AA0x =
∑
E F
G H

∏ ∑
E0z
G0z

∏
=
∑
EE0z + FG0z
GE0z +HG0z

∏
=
∑
EE0 + FG0

GE0 +HG0

∏
z (2.45)

which establishes the first submatrix column of AA0. The second column is found with

x = [oT zT ]T . The rest is left for an exercise. End of proof.

Exercises

2.5.1. If

A =
∑
I O
B −I

∏

what is A2?

2.5.2. For A =
∑
B C

I

∏
, compute A2, A3, . . . , An.

2.5.3. Fix submatrices X and Y so that

∑
I X

I

∏ ∑
A B
B A

∏ ∑
I Y

I

∏
=
∑
A+B
B A−B

∏
.

2.5.4. Fix submatrix X to render

∑
I
X I

∏ ∑
I A
AT I

∏ ∑
I XT

I

∏

block diagonal.

2.6 Elementary matrices

Whenever possible, every matrix manipulation should be expressed in terms of the de-

fined operations of addition and multiplication so that these manipulations may be included

in the algebra. In this section we shall translate the elementary operations of the first chapter

into matrix multiplications.

For vector x, an elementary operation consists of:

1. Multiplication of component xi by α, α =/ 0.

33



2. Addition to component xi, α times component xj .

3. Interchange of two components.

A square matrix that consistently performs one of these operations for arbitrary vector

x, is an elementary matrix . Letter E is usually reserved to denote an elementary matrix. We

shall consider at once the generalization of operations 1 and 2, whereby the ith component

of x is replaced by a linear combination of all components,





1
1

α1 α2 α3 α4

1









x1

x2

x3

x4



 =





x1

x2

x03
x4



 ,
x03 = α1x1 + α2x2 + α3x3 + α4x4

α3 =/ 0

(2.46)

which we divide into the three particular cases




1

α
1








x1

x2

x3



 =




x1

αx2

x3



 α =/ 0,




1

1
α 1








x1

x2

x3



 =




x1

x2

x3 + αx1



,




1 α

1
1








x1

x2

x3



 =




x1 + αx3

x2

x3



, (2.47)

done lastly with matrix E that can be written as

E = I + αeie
T
j (2.48)

and if i > j, E is lower-triangular, while if i < j, E is upper-triangular .

By the fact that e T
i x = xi, we write the permutation matrix that interchanges, say,

components two and three of x as

P = e1e
T

1 + e2e
T

3 + e3e
T

2 = [e1 e3 e2] (2.49)

so that, in this example

Px =




1

1
1








x1

x2

x3



 =




x1

x3

x2



 . (2.50)
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Permutation matrix P for the interchange of just two entries of x is symmetric, P = PT ,

and we also have the interesting result that

PP = P 2 = I (2.51)

which is the algebraic statement to the effect that repeated permutations return the entries

of x to their natural order. Permutation matrix P that is the product of several successive

permutations is not necessarily symmetric. For example, if matrix P1 interchanges entries 2

and 3, and P2 subsequently interchanges entries 3 and 4, then their successive application

produces the compound permutation matrix

P = P2P1 = (e1e
T

1 + e2e
T

2 + e3e
T

4 + e4e
T

3 )(e1e
T

1 + e2e
T

3 + e3e
T

2 + e4e
T

4 )

= e1e
T

1 + e2e
T

3 + e3e
T

4 + e4e
T

2 = [e1 e4 e2 e3] (2.52)

or

P =





1
1

1
1









1
1

1
1



 =





1
1

1
1



 (2.53)

which is clearly nonsymmetric. However, if P = Pk · · ·P2P1, then PT = P1P2 · · ·Pk, since

P T
j = Pj , and the compound permutation matrix P is such that

PTP = PPT = (Pk · · ·P2P1)(P1P2 · · ·Pk) = I. (2.54)

Pre-multiplication of A by E,EA, causes every column of A to change according to

eqs.(2.47) and (2.50), and we name this an elementary row operation on A,




1

α
1



A =




A11 A12 A13 A14

αA21 αA22 αA23 αA24

A31 A32 A33 A34



 =




a T
1

αa T
2

a T
3



 ,




1

1
α 1



A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 + αA11 A32 + αA12 A33 + αA13 A34 + αA14



 =




a T
1
a T
2

a T
3 + αa T

1








1 α

1
1



A =




A11 + αA31 A12 + αA32 A13 + αA33 A14 + αA34

A21 A22 A23 A24

A31 A32 A33 A34



 =




a T
1 + αa T

3
a T
2
a T
3




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


1

1
1



A =




A11 A12 A13 A14

A31 A32 A33 A34

A21 A22 A23 A24



 =




a T
1
a T
3
a T
2



 . (2.55)

Post-multiplication of A by an elementary matrix E, AE, is, in the same way, an

elementary column operation on A,

A




1

α
1



 =





A11 αA12 A13

A21 αA22 A23

A31 αA32 A33

A41 αA42 A43



 = [ a1 αa2 a3 ] ,

A




1 α

1
1



 =





A11 A12 A13 + αA11

A21 A22 A23 + αA21

A31 A32 A33 + αA31

A41 A42 A43 + αA41



 = [ a1 a2 a3 + αa1 ] ,

A




1

1
α 1



 =





A11 + αA13 A12 A13

A21 + αA23 A22 A23

A31 + αA33 A32 A33

A41 + αA43 A42 A43



 = [ a1 + αa3 a2 a3 ] ,

A




1

1
1



 =





A11 A13 A12

A21 A23 A22

A31 A33 A32

A41 A43 A42



 = [ a1 a3 a2 ] . (2.56)

Notice that if in the second row operation in eq. (2.55) is EA, then the corresponding

column operation in eq. (2.56) is AET . Operation EAET on A = AT is a symmetric row

and column operation. A formal proof that EAET is symmetric is given as

(EAET )T = (ET )TATET = EAET . (2.57)

Definition. If E is an elementary matrix, then A and EA are row-equivalent matrices.

Matrices A and AE are column-equivalent.

Elementary matrices are a mere notational device. It is senseless to actually write down

E and carry out the multiplication EA. What is theoretically important is to know that

elementary row and column operations can be carried out by matrix multiplications. From

the associative law of matrix multiplication we have the useful result that E(AB) = (EA)B,

and (AB)E = A(BE).
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If no row interchanges are required, then forward elimination that turns A = A(3 × 3)

into a row-equivalent upper-triangular matrix U is expressed as

E3E2E1A = U (2.58)

where

E1 =




1
α1 1

1



 , E2 =




1

1
α2 1



 , E3 =




1

1
α3 1



 (2.59)

and the compound total elementary operation is

E = E3E2E1 =




1
α1 1

α2 + α1α3 α3 1



 . (2.60)

More striking is the fact that

E1E2E3 =




1
α1 1
α2 α3 1



 . (2.61)

As a demonstration of the reasoning power that matrix algebra grants us, we algebraically

demonstrate that row interchange is not an independent operation, but can be achieved

through a succession of the first and second elementary operations of eq. (2.55). Indeed



1
−1

1








1

1
1 1








1

1 −1
1








1

1
1 1



 =




1

1
1



 . (2.62)

Compound elementary operation matrix E



1
α2 1
α3 1








x1

x2

x3



 =




x1

x2 + α2x1

x3 + α3x1



 =




x1

0
0



 x1 =/ 0 (2.63)

clears all the entries in a column below the pivot at once. If P is a permutation matrix that

swaps entries below the pivot, then there exists an E0 such that

PE = E0P (2.64)

where E0 is an elementary matrix of the same form as E, E0 = PEP . For instance



1

1
1








1
α2 1
α3 1








1

1
1



 =




1
α3 1
α2 1



 . (2.65)

37



We raise this issue here because it permits us to give a matrix proof to Theorem 1.22.

If the elementary operations to create an upper-triangular matrix are interspersed with

permutations, then the permutation matrices can be migrated to the front of the sequence.

Consider

· · ·E3PE2E1A = U (2.66)

where Ej is lower-triangular. The first permutation matrix interchanges equations below the

second, and hence there are lower-triangular E0
1 and E0

2 such that

· · ·E3PE2E1A = · · ·E3E
0

2 PE1A = · · ·E3E
0

2 E
0

1 PA (2.67)

and P is at the head of the sequence. Every other P can be lead this way to the front and

EPA = U (2.68)

where E is lower-triangular and U upper-triangular.

When system Ax = o is of rank r we shall say that matrix A is of rank r. We should,

however, be more precise and say that the row rank of A is r, since matrix A in system

Ax = o is brought to Hermite form by means of row operations only. Now that matrices

have assumed an independent existence, elementary operations are performed exclusively on

them rather than on the system of equations; and for a matrix rows have no ascendency over

columns. We must now give equal consideration to the column rank of A as to the row rank

of A. Obviously the column rank of A equals the row rank of AT . According to Theorem

1.16, row rank AT equals row rank A, and hence row rank A equals column rank A, which is

rank A.

General elementary row operation (2.46) applied to matrix A transforms it into

EA =





e T
1

e T
2

yT

e T
4



A =





1
1

y1 y2 y3 y4

1









a T
1
a T
2
a T
3
a T
4



 =





a T
1
a T
2

y1a T
1 + y2a T

2 + y3a T
3 + y4a T

4

a T
4





=





a T
1
a T
2

y TA
a T
4



 , y3 =/ 0

(2.69)
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in which the third row of A is replaced by a linear combination of all rows of A. If AT y = o

and y3 =/ 0, then since yTA = (AT y)T , the third row of EA becomes zero and is cleared. If

the nontrivial solution to AT y = o includes two independent unknowns, for instance if y4 is

also arbitrary, then we may set y4 =/ 0 and create another elementary operation matrix E0

through the replacement of the 4th row of I by yT , with which we have

E0(EA) =





a T
1
a T
2

oT

oT



 . (2.70)

No more rows of A can be cleared by elementary row operations, the row rank of A being

two. If for any y =/ o, a linear combination of the rows of A does not vanish, AT y =/ o, then

A is of full row rank. Matrix A is of full row rank if and only if AT y = o has the sole solution

y = o.

Clearly, the rows of A may be prearranged so that the rows wiped out by the elementary

row operations are all at the bottom. In other words, there exists a permutation matrix P

and a sequence of general elementary matrices as in eq. (2.69) so that

Ek · · ·E2E1PA = EPA =
∑
A0

O

∏
(2.71)

where A0 is of full row rank. The number of (nonzero) rows in A0 equals the (row) rank r of

matrix A. In the same way

E0
m · · ·E 0

2 E
0

1 P
0AT = E0P 0AT =

"
A

00

O

#

(2.72)

which upon transposition becomes

AP 0TE0T = [A00TO] (2.73)

and what we have for the rows of A we also have for the columns. Submatrix A
00

is of full

row rank equaling the row rank r of AT . Submatrix A00T is of full column rank equaling the

column rank r of A. Combination of these row and column elementary operations leads to

Theorem 2.11. For every matrix A of rank r there exist permutation matrices P and

P 0, and compound row and column elementary operation matrices E and E0 so that

EPAP 0E0 =
∑
R O
O O

∏
(2.74)
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where R = R(r × r) is of full rank r.

Only a square matrix can have full row rank and full column rank, and when this happens

the matrix is of a distinguished nature as we shall see in the next two sections.

Exercises

2.6.1. What is the rank of

A =





0 1
0 1

0 1
0



 ?

2.6.2. MatrixA = A(2×n) has rows aT1 and aT2 such that aT1 a1 = aT2 a2 = 1, aT1 a2 = aT2 a1 = 0.

Show that A is of full row rank. Hint: consider replacing a row by α1aT1 + α2aT2 = o.

2.6.3. Prove that if N = N(n× n) is a strictly upper-triangular nilpotent matrix,

N =





0 N12 N13 N14

0 N23 N24

0 N34

0





Then rank(N2) <rank(N). Hint: Consider the eventualities of N34 = 1 and N34 = 0.

2.6.4. Prove that rank(A)= rank(ATA)= rank(AAT ).

2.6.5. Prove that the rank of the sum of m, rank one, matrices cannot exceed m.

2.6.6. Write all six (3× 3) permutation matrices. Start with P1 = [e1 e2 e3].

Matrix

A =




5 1 3
4 2 3
0 6 3





has this property that all its coefficients are non-negative, and all its row and column sums

are equal, here to 9. Show that A may be written as the linear combination of the six

permutation matrices,

A = α1P1 + α2P2 + · · · + α6P6.

Find α1, α2, . . . , α6.
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2.6.7. Show that to every diagonal matrix D of type 0 there corresponds a permutation

matrix P, P 2 = P , so that PDP may be written as the product of two nilpotent matrices,

P




d1

d2

d3



P =




0
1 0

1 0








0 α

0 β
0



 .

Write also the nilpotent factorizations



2 1
−1 1

0



 =




0 1 ∞

0 1
0








0
α0 0
∞0 β0 0



 ,

and 


L11 L12

L22

0



 =




0 α ∞

0 β
0








0
1 0

1 0



 .

2.7 Right and left inverse matrices

Matrix algebra is taking shape and assuming a robust life of its own dissociated from

systems of linear equations. Addition and multiplication of matrices are defined, the zero and

identity matrices O and I are found, and the associative and distributive rules are confirmed.

All that is left for us to do is explore and discover the multiplicative inverse. Because matrix

multiplication is noncommutative, the twin questions of the existence and the uniqueness of

an inverse requires careful examination.

A multiplicative inverse B to A is such that BA = I, or AB = I. The existence of B

satisfying BA = I would allow us to solve the linear system Ax = f for any right-hand side

f through the pre-multiplication BAx = Bf, x = Bf . In section 1.10 we trifled with the

idea of an inverse, and even considered a way to compute it, but the subject calls for more

serious consideration.

Because matrix multiplication is not commutative we are obligated to probe the actuality

of a right inverse B to A such that AB = I, and a left inverse B0 to A such that B0A = I. The

principle of computing an inverse is rather simple. Take the right inverse. If A = A(m× n),

then B = B(n×m), I = I(m×m),

AB = [Ab1 Ab2 . . . Abm] = I = [e1 e2 . . . em] (2.75)
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and the m columns of B are computed from the m systems

Abj = ej j = 1, 2, . . . ,m (2.76)

that include a total of m2 equations in the mn unknowns Bij .

It is the existence and uniqueness of B that calls for theoretical attention.

Theorem 2.12. A right inverse to A exists if and only if A is of full row rank. A left

inverse to A exists if and only if A is of full column rank.

Proof. A left inverse B to A is such that BA = I, becoming upon transposition

ATBT = I. Hence, if B is a left inverse to A, then BT is the right inverse to AT and it is

sufficient that we prove the theorem for the right inverse only.

The condition is sufficient. If A is of full row rank, then in the echelon form of Abj = ej

every equation has at least one nonzero coefficient and solutions bj exist for all j.

The condition is necessary. If A is not of full row rank, then a general elementary

transformation matrix E as in eq. (2.69) exists so that EA has one zero row, say the kth.

To compute the kth column of the right inverse B, bk, we shall need to solve Abk = ek which

is inconsistent. To uncover this, multiply both sides of the equation by E so as to have

EAbk = Eek. The left-hand side of the kth equation is zero but the right-hand side of the

kth equation is yk =/ 0 and the absurdity becomes evident. End of proof.

Theorem 2.12 states that rectangular matrix A = A(m× n), n > m has a right inverse

B = B(n×m) if and only if A is of rank m. When it exists, the right inverse B to matrix A

which has more columns than rows is not unique. A right inverse to A = A(m× n), m > n

does not exist since the rank of a matrix with more rows than columns is at most n and

it therefore cannot be of full row rank. If B is the right inverse of A, AB = I, then A is

the left inverse of B. A rectangular matrix cannot have both left and right inverses. The

distinction of having both left and right inverses belongs to square matrices only, which we

deal with next.
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Exercises

2.7.1. Write the right inverses of

A =
∑
1 2 1
1 −1 1

∏
and A0 =

∑
1 1 1
1 1 1

∏
.

2.7.2. Find all left inverses of

A =




1 1
1 −2
1 1



 .

2.7.3. What is the condition on rectangular matrix A so that matrix equation AX = A has

the unique solution X = I?

2.7.4. Solve matrix equation AXA = A for

A =




1 1
1 −2
1 1



 and A =
∑
1 1 1
1 1 1

∏
.

Argue that AXA = A is soluble for any A. Hint: assume first that A has a right or a left

inverse.

2.8 The inverse matrix

With square matrices we prefer the concept of triangular matrices of type 0 and 1 over

the concept of rank.

Theorem 2.13. A necessary and sufficient condition for a square matrix to have a right

inverse and a left inverse is that it be equivalent to a triangular matrix of type 1.

Proof. This is a restatement of Theorem 2.12. Square matrix A is of full row rank and

full column rank if and only if it is row equivalent to a triangular matrix of type 1. End of

proof.

Theorem 2.14. The right and left inverses of a square matrix are equal and unique.

Proof. According to Theorem 2.13 the existence of a right inverse B to A implies the

existence of a left inverse B0 to A so that AB = B0A = I. Hence B0AB = B0 and B = B0.

If also CA = I, then (CA)B = C(AB), and C = B. End of proof.
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Definition. A square matrix that possesses an inverse, that is invertible, is said to be

nonsingular. If the matrix does not have an inverse, is not invertible, it is singular. The

unique inverse of nonsingular A is denoted by A−1, AA−1 = A−1A = I.

Now we know that if AB =O, and A is nonsingular, then B is necessarily zero, since

A−1(AB) = A−1O implies IB =O and B =O. If B is nonsingular, then A is necessarily

zero. In the case where both matrices are singular but not zero, they are divisors of zero.

Notice that because matrix multiplication is noncommutative, A/B is meaningless as it fails

to distinguish between AB−1 and B−1A.

Theorem 2.15. If A and B are nonsingular then:

1. (A−1)−1 = A.

2. (AB)−1 = B−1A−1.

3. (A−1)T = (AT )−1.

4. A−1 = (A−1)T = A−T , if A = AT ; the inverse of a symmetric matrix is symmetric.

5. (αA)−1 = 1/αA−1, α =/ 0.

Proof.

1. A−1(A−1)−1 = I

AA−1(A−1)−1 = AI

(A−1)−1 = A.

2. AB (AB)−1 = I

B−1A−1AB(AB)−1 = B−1A−1I

B−1IB(AB)−1 = B−1A−1

(AB)−1 = B−1A−1.

3. (AA−1)T = I = (A−1)TAT

I(AT )−1 = (A−1)T .

4. If A = AT , then A−1 = (AT )−1 = (A−1)T .
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5. From statement 6 of Theorem 2.7 it results that (αA)(1/αA−1) = I. End of proof.

It may well happen in applied linear algebra that a matrix is known beforehand to be

singular or nonsingular by the way it is set up, but if nothing is known previously about A,

the matrix must be brought by elementary operations to triangular form before resolving

the question of whether it is nonsingular or singular.

The statement that A−1 exists if and only if the determinant of A, det(A) =/ 0 is occa-

sionally useful, and so is

Theorem 2.16. For square matrix A the following statements are equivalent:

1. Matrix A is nonsingular .

2. Homogeneous system Ax = o has x = o as the only solution.

3. Nonhomogeneous system Ax = f has solution x for any f .

Proof. Each statement holds if and only if matrix A is row-equivalent to a triangular

matrix of type 1, and hence any single statement implies the other two statements. End of

proof.

We may put the proof to Theorem 2.16 in a different perspective. According to eq.(2.7)

the product of Ax creates a linear combination of the columns of A with factors x1, x2, . . . , xn.

The existence of x =/ o so that Ax = o spells then a generalized elementary operation on the

columns of A that annuls at least one of them, telling us in effect that A is not of full rank.

On the other hand if Ax =/ o for x =/ o, then A is of full rank.

With the aid of Theorem 2.16 we verify that

A =





1 −1
−1 2 −1

−1 2 −1
−1 1



 (2.77)

is singular since for x = [1 1 1 1]T , Ax = o.

For rectangular A = A(m × n),m > n, the fact that Ax =/ o if x =/ o, means that A

possesses a left inverse.

Statement 2 of Theorem 2.15 says that if AB is nonsingular, then so are A and B since

A−1 = B(AB)−1, B−1 = (AB)−1A, and conversely, that the product of nonsingular matrices
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is a nonsingular matrix. No corresponding simple rank statement exists for the product of

rectangular matrices. For instance

AB =

∑
1 −1 1
1 −1 0

∏ 


1 1
1 1
1 0



 =

∑
1 0
0 0

∏

(2.78)

is singular even though B is of full column rank and A is of full row rank. But if in C = AB,

A is not of full row rank, or B is not of full column rank, then C is singular, for otherwise

(C−1A)B = A(BC−1) = I contradicts Theorem 2.12.

Theorem 2.17

1. For every square A there exists a scalar α so that A+ αI is nonsingular.

2. Matrix ATA+ I is nonsingular for any rectangular A.

3. Matrix ATA is nonsingular if and only if A is of full column rank.

Proof.

1. By choosing α large enough we may render every pivot of A+ αI positive.

2. The proof is by contradiction. Suppose x =/ o exists so that ATAx + x = o. This

implies that xTATAx + xTx = (Ax)T (Ax) + xTx = 0. Since xTx > 0 and (Ax)T (Ax) ≥ 0

their sum cannot vanish if x =/ o and our assumption is wrong. By Theorem 2.16 the matrix

is nonsingular.

3. Assume that ATAx = o, x =/ o. This implies that xTATAx = (Ax)T (Ax) = 0,

which happens if and only if Ax = o. If A is of full column rank Ax = o implies x = o in

contradiction to our assumption and ATA is nonsingular. If A is not of full rank, Ax = o

definitely has nontrivial solutions, thus our assumption that ATAx = o for some nonzero x

is correct, and by Theorem 2.16 ATA is singular. End of proof.

Theorem 2.18. An elementary matrix is nonsingular.

Proof. The first three elementary matrices in eq. (2.55) are triangular matrices of type

1. In fact 


1

α
1





−1

=




1

α−1

1



 ,
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


1

1
α 1





−1

=




1

1
−α 1



 ,




1 α

1
1





−1

=




1 −α

1
1



 . (2.79)

Formally, if E = I + αeie T
j , then E−1 = I − αeie T

j , and

EE−1 = I − αeie
T
j + αeie

T
j − α2eie

T
j eie

T
j = I (2.80)

because eTi ej = 0 if i =/ j. More generally





1
1

α1 α2 1 α4

1





−1

=





1
1

−α1 −α2 1 −α4

1



 . (2.81)

For compound permutation matrix P = Pk · · ·P2P1 we have that PT = P1P2 · · ·Pk, and

hence PTP = PPT = I, or P−1 = PT . End of proof.

It is possible to invert a matrix piecemeal by partitioning. We write

∑
E F
G H

∏ ∑
P Q
R S

∏
=
∑
I

I

∏
(2.82)

then we separate the block matrix equation into its components

EP + FR = I

GP +HR = O

EQ+ FS = O

GQ+HS = I
(2.83)

from which we obtain

P = (E − FH−1G)−1

S = (H −GE−1F )−1

R = −H−1GP

Q = −E−1FS
(2.84)

as the submatrices of A−1.

In floating-point computations the distinction between singular and nonsingular matrices

can be blurred by round-off errors. A matrix can be nearly singular in the sense that small

changes in its entries can make it singular, and we imagine that in this case the variations

in A−1 may be relatively large. A sensible discussion of this subject must wait for more

groundwork on the theory of square matrices.

Clearly, the concept of the inverse is of central importance to the algebra of matrices,

and we would think to the practice as well. Surprisingly, such is not the case. An inverse is
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rarely computed, and the linear system Ax = f with arbitrary right-hand sides is not solved

as x = A−1f , as we shall see in the next three sections and further in Chapter 3.

Exercises

2.8.1. Solve the matrix equations AX = B, and XA = B for unknown matrix X, assuming

that matrixA is nonsingular and has an inverse. Beware of the fact that matrix multiplication

in not commutative!

2.8.2. Solve the system of matrix equations

AX +BY = C

FX + Y = G.

for unknown matrices X and Y . You may assume that the matrices you need to invert are

nonsingular.

2.8.3. Show that if AB +A = I, then A is nonsingular.

2.8.4. Let A,B be square matrices. Prove that if AB = O, then either A or B are singular.

2.8.5. If square matrices A and B are such that AB = 2I what is BA? If BA = 2I, what is

the inverse of C = I +AB? Hint: if AB = I, then also BA = I.

2.8.6. Show that the inverse of A = I + αuuT , uTu = 1, is of the form A−1 = I + βuuT .

Write β in terms of α. For what values of α is A singular?

2.8.7. Show that the inverse of A = I+abT is of the form A−1 = I+αabT . Write α in terms

of vectors a and b.

2.8.8. Show that either I + abT or I − abT is nonsingular.

2.8.9. Prove that both A = I + uvT , B = I − uvT , uT v = vTu = 0, are nonsingular.

2.8.10. Show that if matrix N is nilpotent, N2 = O, then A = I + 2N has an inverse in the

form A−1 = I + αN . Find α. Also, that if A is idempotent, A2 = A, then the inverse of

B = I +A is of the form B−1 = I + αA.

2.8.11. Let B = I +A, A2 = ∑I. Show that B−1 = αI + βA. Find α and β.
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2.8.12. Prove that C = I +AB,BA = O is nonsingular. Write the inverse of C.

2.8.13. Show that if A2 + 3A+ I = O, then A−1 = −A− 3I. Also that if A3 = I +A, then

A, I +A and A− I are nonsingular.

2.8.14. Prove that if A2 = A =/ I, then A is singular.

2.8.15. Write all 6 nonsingular 2× 2 matrices with entries 0 or 1.

2.8.16. Show that every square matrix can be written as the sum of two nonsingular matrices.

2.8.17. Show that matrices A,B,C

A =





× × 0 ×
× × 0 ×
× × 0 ×
× × 0 ×



 , B =





× 1 1 ×
× −2 −2 ×
× 3 3 ×
× −1 −1 ×



 , C =





× 1 × −2
× −2 × 4
× 3 × −6
× −1 × 2





are singular. Hint: find vector x =/ o such that Ax = o.

2.8.18. Show that

A =





1 × × ×
1

1 ×
1 × × × ×

1 × ×




and B =





× × × 1
× × 1
× 1
1

1





are nonsingular.

2.8.19. Under what conditions on α, β, ∞ is the Vandermonde matrix

V =




1 1 1
α β ∞
α2 β2 ∞2



 .

nonsingular?

2.8.20. Compute the inverse of the Pascal triangle matrix

P =





1
1 1
1 2 1
1 3 3 1
1 4 6 4 1




.
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2.8.21. Compute the inverses of

A =




1 0 2
−1 1 1
0 2 5



 , B =




0 2 5
1 0 2
−1 1 1



 , T =





2 −1
−1 −1

−1 −1
−1 1



 .

2.8.22. Compute the inverse of

A =





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2





.

2.8.23. Write the inverses of A,B, and C

A =





1 1 1 1 1
α

α
α

α




, B =





α
α

α
α

α




, C =





1
α 1

α 1
α 1

α 1




.

2.8.24. Compute the inverse of matrix

A =




1 1 1
1 1 α
1 α α2



 .

for what values of α is A nonsingular?

2.8.25. For what value of α are matrices A, B and C

A =




1 1

1 1
1 1 α



 , B =




1 α

1 1
α 1



 , C =




1 α α2

α 1 α
α2 α 1





singular?

2.8.26. Show that

A =




−1 1 3
5 7 9
11 13 15



 + ∏




1 1 1
1 1 1
1 1 1



 = B + ∏C
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is singular for any ∏. Hint: find vector x =/ o such that Bx = Cx = o.

2.8.27. Invert

A =





∏ 1
∏ 1
1 ∏

1 ∏



 , A =




∏ 1

1 + ∏
1 ∏



 .

For what values of ∏ is A singular?

2.8.28. Invert

A =




1 1 1
1 1 1
1 1 1



+ ∏




1

1
1



 .

For what values of ∏ is A singular?

2.8.29. Show that

A =




0 A12 A13

−A12 0 A23

−A13 −A23 0





is singular. Hint: find vector x =/ o such that Ax = o.

2.8.30. Consider matrix A(n× n) with entries all equal to 1, Aij = 1 for all i and j. Show

first that A2 = nA, then that (I −A)−1 = I − 1/(n− 1)A.

2.8.31. How does the interchange of rows i and j of A affect A−1? How does the interchange

of columns i and j of A affect A−1? Hint: consider P (AA−1−I)P , with permutation matrix

P .

2.8.32. Show that if matrix H is in Hermite form (see sec. 1.7), then H2 = H. Show further

that if B is nonsingular and such that BA = H, then ABA = A.

2.8.33. Show that for

H =




1 −1 α

0 α
1





H2 = H. Is the Hermite form of square matrix H characterized by H2 = H plus the

condition that H is upper-triangular with 0’s and 1’s on the diagonal?

2.8.34. Show that
∑
A

B

∏−1

=
∑
A−1

B−1

∏
.
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2.8.35. Show that
∑
I A

I

∏−1

=
∑
I −A

I

∏
.

2.8.36. Show that
∑
A B

C

∏−1

=
∑
A−1 −A−1BC−1

C−1

∏
.

2.8.37. Show that

∑
A I
I A

∏−1

=
∑
(I −A2)−1

(I −A2)−1

∏ ∑−A I
I −A

∏
.

2.8.38. Show that

∑
I A
A I

∏−1

=
∑
(I −A2)−1

(I −A2)−1

∏ ∑
I −A
−A I

∏
.

2.8.39. Write A−1 for

A =
∑
B αI
αI B−1

∏
.

For what values of α is A singular?

2.8.40. Show that
∑

I
−CA−1 I

∏ ∑
A B
C D

∏
=
∑
A B
O D − CA−1B

∏

and that
∑

I O
CA−1 I

∏ ∑
A O
O D − CA−1B

∏ ∑
I A−1B
O I

∏
=
∑
A B
C D

∏
.

2.8.41. Write the inverses of

A =
∑
I o
aT 1

∏
, B =

∑
S o
aT 1

∏
, C =

∑
I b
aT 1

∏
, aT b = 0.

2.8.42. Let A = AT be such that all nontrivial solutions to Bx = o are of the form αu, uTu =

1. Show that under these conditions

A =
∑
B u
uT 0

∏

is nonsingular.
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2.8.43. Show that

B =
∑

A −Aq
−pTA pTAq

∏

is always singular. Hint: compute Bx for x = [qT 1]T .

2.8.44. The matrix in the partitioned system




A a

aT α








x

xn



 =




f

fn





is called bordered . Assume that A = AT and show that

xn = (fn − fTA−1a)/(α− aTA−1a), x = A−1f − xnA
−1a.

2.8.45. Let

A =
∑
A11 A12

A21 A22

∏
A11 +A12 = α
A21 +A22 = α.

Show that if B = A−1, then the row sums of B is 1/α, α =/ 0.

2.8.46. Square matrix Q is orthogonal if QTQ = I, that is if Q−1 = QT . Show that Q =

(ATA)1/2A−1 is orthogonal. Matrix B = (ATA)1/2 is symmetric and such that B2 = ATA.

2.8.47. Show that if ATA = Q and QTQ = I, then A has a left inverse.

2.8.48. Show that if Q = ATA is orthogonal for square A, QTQ = QQT = I, then so is

AAT . Is it true for rectangular A?

2.8.49. Let A = A(3 × 3) = [a1 a2 a3] be with nonzero columns and such that a T
1 a2 =

a T
2 a3 = a T

3 a1 = 0. Show that A is nonsingular. Hint: form ATA.

2.8.50. Let S = −ST . Show that if Q = (I + S)−1(I − S), then QQT = I.

2.8.51. Prove that if nonsingularA and B are such that AAT = BBT , then B = AQ, QQT =

I.

2.8.52. Show that B = I −A(ATA)−1AT is idempotent, B2 = B.

2.8.53. Let C = A(BTA)−1BT . Show that C2 = C.
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2.8.54. Show that if A is nilpotent, then so is B−1AB, and if A is idempotent, then so is

B−1AB.

2.8.55. Let square A be nilpotent. Show that (A+AT )2 = AAT +ATA. Also that if A+AT

is nonsingular, then PA+AQ = I,

P = (A+AT )−2AT , Q = AT (A+AT )−2.

2.8.56. Show that for any positive integer m, BAmB−1 = (BAB−1)m.

2.8.57. Prove that if A is nonsingular, then A+B and I+A−1B are either both nonsingular

or both singular.

2.8.58. Show that if A,B and A+B are nonsingular, then so is A−1 +B−1 and

(A−1 +B−1)−1 = A(A+B)−1B = B(A+B)−1A.

2.8.59. Show that (I +BA)−1 = I −B(I +AB)−1A.

2.8.60. Show that if A,B,U and V are such that A,B and V TA−1U −B−1 are nonsingular,

then

(A− UBV T )−1 = A−1 −A−1UTV TA−1, T = (V TA−1U −B−1)−1.

2.8.61. Show that for any square B,

(A+B)A−1(A−B) = (A−B)A−1(A+B) = A−BA−1B.

2.8.62. Show that if A = −AT , then I + A is nonsingular. Hint: show that (I + A)x =/ o if

x =/ o.

2.8.63. Let R = R(m ×m) = AB − αI, and S = S(n × n) = BA − αI be nonsingular for

α =/ 0. Show that

S−1 =
1

α
(BR−1A− I) , R−1 =

1

α
(AS−1B − I).
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2.8.64. Show that for rectangular A and B, I +AB and I +BA are either both singular or

both nonsingular. Hint: If I +AB is singular, then x+ABx = o, x =/ o,Bx =/ 0.

2.8.65. Let (I −A) be nonsingular and show that

(I −A)−1 = I +A+A2 + · · · +Ak +Rk , Rk = (I −A)−1 Ak+1.

2.8.66. Let

A(α) =




1
α 1
α2 2α 1



 .

Show that

A(α)A(β) = A(β)A(α) = A(α + β)

and that A−1(α) = A(−α).

2.8.67. Is the inverse of a circulant matrix circulant? Hint: write




α β ∞
∞ α β
β ∞ α



 = αI + βP + ∞P 2, P 3 = I.

2.8.68. Is the inverse of an upper-triangular Töpliz matrix an upper triangular Töpliz matrix?

Hint: write 


α β ∞

α β
α



 = αI + βT + ∞T 2, T 3 = O.

2.8.69. Show that B = (ATA)−1AT , and C = AT (AAT )−1 are left and right inverses of

A, BA = I and AC = I, provided the needed inverses exist.

2.8.70. Let P be a column permutation matrix such that AP = [A1 A2] is with a nonsingular

A1. Show that every right inverse C of AP is of the block form

C =
∑
A−1

1 (I −A2Y )
Y

∏

where Y is arbitrary.
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2.8.71. Show that if E = uvT , then EAE = αE and (EA)2 = α(EA). Find α in terms of

u, v, A. Show that if A is nonsingular, then

(A+ E)−1 = A−1 + ∞A−1EA−1.

Find ∞.

2.8.72. Let A1 = A + E1, A2 = A1 + E2 with E1 = u1v T
1 , E2 = u2v T

2 . Establish the

recursive formula

A−1
1 = A−1 + ∞1A

−1E1A
−1, A−1

2 = A−1
1 + ∞2A

−1
1 E2A

−1
1

and write out ∞1 and ∞2.

2.8.73. Show that if matrices E1 and E2 are of rank 1, then inversion of A2 = A+ E1 + E2

can be done recursively by

A−1
1 = A−1

0 − 1

1 + τ1
A−1

0 E1A
−1
0

A−1
2 = A−1

1 − 1

1 + τ2
A−1

1 E2A
−1
1

where A0 = A,A1 = A0 + E1, A2 = A1 + E2, τ1 = trace(E1), τ2 = trace(E2), provided the

needed inverses exist.

2.8.74. Let u1 = u1(3 × 1), u2 = u2(3 × 1), u3 = u3(3 × 1) be such that u T
1 u1 = u T

2 u2 =

u T
3 u3 = 1, and u T

1 u2 = u T
2 u3 = u T

3 u1 = 0. Show that

A = A(3× 3) = u1u
T

1 + u2u
T

2 + u3u
T

3

is the identity matrix. Hint: Write U = [u1 u2 u3] and notice that A = UUT , UTU = I.

2.9 Positive definite matrices

We open our discussion by considering scalar functions of variable vectors.

Definition. Let x and y be arbitrary vectors, a, a given vector, and A a given matrix.

Scalar function xTa of variable vector x is a linear form of x. Scalar functions xTAy and
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yTAx of variable vectors x and y are bilinear forms of x and y. Scalar function xTAx of

variable vector x is a quadratic form of x.

Notice that in xTAy and yTAx, A may be rectangular, but that it is square in xTAx.

In case xTAy = yTAx the bilinear form is said to be symmetric.

In expanded form

xTAy = A11x1y1 +A12x1y2 + · · · +A1nx1yn

+A21x2y1 +A22x2y2 + · · · +A2nx2yn
...

+Am1xmy1 +Am2xmy2 + · · · +Amnxmyn

(2.85)

which includes the sum of all possible Aijxiyj .

It is unorthodox though visually helpful to write the bilinear form xTAy in border matrix

fashion
y1 y2 y3 y4

x1

x2

x3




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34



 (2.86)

to mark that xi multiplies each entry in the ith row of A, and yj each entry in the jth column.

Theorem 2.19. A bilinear form is symmetric, xTAy = yTAx, for any x and y, if and

only if A = AT .

Proof. Since the transpose of a scalar is the same scalar we have that (xTAy)T = yTAx if

A = AT . Choosing x = ei and y = ej we prove that xTAy = yTAx only if Aij = Aji, or

A = AT . End of proof.

Theorem 2.20. For any square matrix A

xTAx =
1

2
xT (A+AT )x. (2.87)

Proof.

xTAx =
1

2
xT (A+AT )x+

1

2
xT (A−AT )x

=
1

2
xT (A+AT )x

(2.88)
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since xT (A−AT )x = 0. End of proof.

Every matrix can be written as the sum of the symmetric 1
2(A + AT ) and the skew

symmetric 1
2(A − AT ). In view of Theorem 2.20 we may consider quadratic form xTAx as

always with a symmetric A.

Definition. Symmetric matrix A = AT , for which the quadratic form is positive,

xTAx > 0, for any x =/ o is positive definite. If xTAx ≥ 0 for all x =/ o, then A is pos-

itive semidefinite.

In mathematical physics, positive definiteness is a concept related to energy, and positive

definite matrices constitute an important class of matrices in applied computational linear

algebra. We want to pay close attention to symmetric and positive definite matrices.

Examples.

1. Matrix

D =




2

3
1



 (2.89)

is positive definite since

xTDx = 2x 2
1 + 3x 2

2 + x 2
3 > 0 if x =/ o. (2.90)

2. Matrix

A =




5 −2 3
−2 3 1
3 1 6



 (2.91)

is positive definite since

xTAx = 2(x1 − x2)
2 + 3(x1 + x3)

2 + (x2 + x3)
2 + 2x 2

3 > 0 if x =/ o. (2.92)

3. Matrix

A =




2 2 −1
2 1 2
−1 2 4



 (2.93)

is indefinite since for x = [1 − 1 1]T , xTAx = −2, while for x = [1 0 0]T , xTAx = 2.

Theorem 2.21. Let A be symmetric and positive definite. Then matrix BTAB is

symmetric and positive semidefinite if B does not have a left inverse, and is symmetric
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positive definite if B does have a left inverse. If A is symmetric and positive semidefinite,

then BTAB is symmetric and positive semidefinite.

Proof. With (BTAB)T = BTAT (BT )T = BTAB we prove that the matrix is sym-

metric. Write Bx = y so that xTBTABx = yTAy. If B does not have a left inverse then

there are vectors x =/ o for which Bx = y = o, and yTAy ≥ 0 if x =/ o. Matrix BTAB is

then positive semidefinite. If B does have a left inverse, then for any x =/ o, also y =/ o, and

yTAy > 0 if x =/ o since A is positive definite. Matrix BTAB is then positive definite.

If A is positive definite then xTBTABx = (Bx)TA(Bx) ≥ 0 for any x and BTAB is

positive semidefinite. End of proof.

Notice that for a square B, singular and nonsingular can be instituted for not having a

left inverse and having a left inverse, respectively.

Lemma 2.22. The conditions necessary and sufficient for symmetric A = A(2× 2) to

be positive definite are that

A11 > 0 and det(A) =
ØØØØ
A11 A12

A12 A22

ØØØØ= A11A22 −A 2
12 > 0. (2.94)

Matrix A is positive semidefinite if and only if A11 ≥ 0, A22 ≥ 0 and det(A) ≥ 0.

Proof. Choosing x = [1 0]T we have that xTAx = A11, whereas with x = [−A12 A11]

we have that xTAx = A11 det(A), and hence the conditions are necessary. Then we write

xTAx = A−1
11

≥
(A11x1 +A12x2)

2 + (A11A22 −A 2
12 )x 2

2

¥

= A−1
22

≥
(A22x2 +A12x1)

2 + (A11A22 −A 2
12 )x 2

1

¥ (2.95)

and see that the conditions A11 > 0, det(A) > 0 are sufficient for positive definiteness.

In case A11 = 0, xTAx = 2A12x1x2 +A22x 2
2 , and xTAx ≥ 0 if and only if A12 = 0 and

A22 ≥ 0.

If A22 = 0, then xTAx ≥ 0 if and only if A12 = 0 and A11 ≥ 0. End of proof.

We use Lemma 2.22 to prove one of the most useful inequalities of all mathematics.

Theorem (Cauchy-Schwarz) 2.23. Let A = AT be positive semidefinite, and B

rectangular. Then for any two vectors x and y conforming in multiplication

(xTABy)2 ≤ (xTAx)(yTBTABy) (2.96)
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or if A = B = I

(xT y)2 ≤ (xTx)(yT y). (2.97)

Proof. Let X(n× 2) have the two columns x1 and x2. According to Theorem 2.21

XTAX =
∑
x T

1 Ax1 x T
1 Ax2

x T
2 Ax1 x T

2 Ax2

∏
(2.98)

is positive semidefinite. Hence, necessarily

(x T
1 Ax1)(x

T
2 Ax2)− (x T

1 Ax2)(x
T

2 Ax1) ≥ 0 (2.99)

or since AT = A

(x T
1 Ax2)

2 ≤ (x T
1 Ax1)(x

T
2 Ax2). (2.100)

With x1 = x, x2 = By we obtain the inequality. End of proof.

Corollary 2.24. If A = AT is positive semidefinite and xTAx = 0, then Ax = o.

Proof. Matrix XTAX, X = [x1 x2], is positive semidefinite and hence if xT1 Ax1 = 0,

then also xT2 (Ax1) = 0 for any vector x2. This can happen only if Ax1 = o. End of proof.

Theorem 2.25. If xTAx > 0 and xTBx ≥ 0, then xT (A + B)x > 0. In particular, if

A = AT is positive semidefinite, and B is rectangular, then I +BTAB is positive definite.

Proof.

xT (A+B)x = xTAx+ xTBx > 0. (2.101)

End of proof.

Positive definiteness is preserved under addition but not under multiplication. If A and

B are positive definite then AB + (AB)T need not be positive definite. Indeed,

A =
∑

2 −1
−1 1

∏
, B =

∑
7 −1
−1 1

∏
, AB + (AB)T =

∑
30 −11
−11 4

∏
(2.102)

are such that the first two matrices are positive definite, but not the third. However,

Theorem 2.26. If A and B are symmetric positive semidefinite, then ≤I + AB is

nonsingular for any ≤ > 0.
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Proof. Assume ≤I+AB is singular so that ≤x+ABx = o with x =/ o. Premultiplication

by xTB yields ≤xTBx + xTBABx = 0 and since both B and BAB are semidefinite each

quadratic term must disappear and we have that xTBx = 0 and, consequently Bx = o. But

≤x+ABx = o implies then that x = o. Hence, if x =/ o, then (≤I +AB)x =/ o and the matrix

is nonsingular. End of proof.

Theorem 2.27.

1. If A is symmetric and positive definite, then any diagonal submatrix of A is symmetric

and positive definite.

2. If A is symmetric and positive definite, then Aii > 0 for all i. If A is symmetric and

positive semidefinite, then Aii ≥ 0 for all i, but if Aii = 0 then the entire ith row and column

are zero.

3. In a symmetric positive definite matrix the largest entry in magnitude is on the

diagonal .

4. A symmetric positive definite matrix is nonsingular.

5. If A is symmetric positive definite, then so are A2 and A−1.

Proof.

1. Let A0 be a principal submatrix of A and let x be partitioned conformally as x =

[oT zT oT ]T , z =/ o, so that xTAx = zTA0z. If A is symmetric positive definite, then zTA0z >

0, for arbitrary z and A0 is also symmetric positive definite.

2. Choosing x = ei, we have that xTAx = e T
i Aei = Aii ≥ 0 if A is positive semidefinite,

and Aii > 0 if A is positive definite. Continue with 3.

3. With x = α1ei + α2ej we have that

xTAx = α 2
1 e

T
i Aei + 2α1α2Ae

T
i Aej + α 2

2 e
T
j Aej

= α 2
1 Aii + 2α1α2Aij + α 2

2 Ajj ≥ 0
(2.103)

since e T
i Aei = Aii, and e T

i Aej = Aij . Assume first that A is symmetric positive definite.

Then quadratic form (2.103) is positive and

AiiAjj −A 2
ij > 0. (2.104)
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But the inequality is contradictory if |Aij| is the largest entry in magnitude. Hence the

largest entry in magnitude is on the diagonal.

If A is symmetric and positive semidefinite, then AiiAjj−A 2
ij ≥ 0, and if Aii = 0, Aij =

Aji = 0 for all j.

4. The existence of x =/ o such that Ax = o would have meant that xTAx = 0, in

contradiction with the assumption that A is symmetric positive definite. Hence Ax = o only

when x = o, and A is nonsingular.

5. Matrix A is positive definite and hence invertible, therefore Ax =/ o if x =/ o, and

consequently xTA2x = (Ax)T (Ax) > 0 if x =/ o. With x = A−1y, xTAx = yTA−1AA−1y =

yTA−1y, which is positive for every nonzero y since y =/ o implies x =/ o. End of Proof.

One of the most welcome and practically significant properties of symmetric positive

semidefinite matrices is that Gauss forward elimination done on a system with such a matrix

theoretically never requires row interchanges. If the matrix is positive definite, then all the

pivots are positive, whereas if the matrix is positive semidefinite, then when a zero pivot is

encountered the whole column (and row) is zero.

Theorem 2.28. Gauss forward elimination done on Ax = f , with a symmetric positive

semidefinite matrix A does not require row interchanges.

Proof. We assume the first pivot to be nonzero, since otherwise the entire first row and

entire first column of A would be zero. Elementary row operation





1
× 1
× 1
× 1









1 × × ×
× × × ×
× × × ×
× × × ×



 =





1 × × ×

A0



 (2.105)

leaves submatrixA0 symmetric and positive semidefinite. Indeed, submatrixA0 is not affected

by the symmetric column operation which also clears the first row,

EAET =




1 oT

o A0



 . (2.106)

Since E is nonsingular, EAET is positive semidefinite and so is A0.
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The second pivot (the first diagonal of A0) is nonnegative, but if it is zero then the second

row and second column of EAET are zero and we move to the third pivot. Symmetrical

elimination produces exactly the same pivots that appear in the Gauss forward elimination.

End of proof.

Theorem 2.28 has in addition important practical implications for the Gauss elimination

of systems with a symmetric positive semidefinite matrix. Since A0 remains symmetric,

elimination can be performed with only the lower half of A. If A is symmetric but not

positive semidefinite, row interchanges might be necessary during the forward elimination.

To save the symmetry, a simultaneous symmetric column interchange must be carried out.

This effectively interchanges one diagonal pivot with another diagonal pivot, but will not

work if all diagonal entries of A are zero. A symmetric matrix with a zero diagonal need not

necessarily be singular. For example

A =




0 1 2
1 0 1
2 1 0



 . (2.107)

Fortunately, the monstrously large systems of linear equations that mathematical physics

gives rise to are most often positive definite. Pivoting on such large systems would have been

a programmer’s nightmare. The solution algorithms are much simplified without the need,

at least theoretically, to interchange equations.

Exercises

2.9.1. Given that

x =




1
α
α



 , A =




2 −1 1
−1 3 2
1 2 1





find α so that xTAx = 10.

2.9.2. Is

A =




273 271 270
271 274 276
270 276 275





positive definite?

2.9.3. Let

A =
∑

1 −1
−1 α

∏
.
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Write
xTAx = x 2

1 − 2x1x2 + αx 2
2 ,

= (x1 − x2)
2 + (α− 1)x 2

2

and decide for what values of α is A positive definite. Do the same to

A =
∑

1 α
α 1

∏
.

2.9.4. Given matrix A find B so that xTAx = xTBx for all x,

A =
∑
2 1
1 −1

∏
.

2.9.5. Prove that if xTAx = xTx for any x, then A = I + S, S = −ST .

2.9.6. Show that if xTAx = 0 for any x, then A is skew symmetric, A = −AT .

2.9.7. Prove that if A = A(2 × 2) and B = B(2 × 2) are symmetric and positive definite,

then so is C, Cij = Aij Bij .

2.9.8. Show that if A = A(2×2) = AT is positive definite, then A11−2|A12|+A22 > 0. Also

that if A = AT and B = BT are both positive definite, then A11B11+2A12B12+A12B12 > 0.

Hint: use the fact that xTAx > 0 with x = [
√
B11 ±

√
B22]T .

2.9.9. Show that

A =
∑
1 + α −1
−1 1

∏
and B =

∑
1 + β −1
−1 1

∏

are positive definite if and only if α > 0 and β > 0. Establish matrix

AB +BA =
∑
2((1 + α)(1 + β) + 1) −α− β − 4

−α− β − 4 4

∏

and show that AB +BA is positive definite if and only if

6αβ > α2 + β2 or 4αβ > (α− β)2.

Find α and β such that A and B are positive definite, but AB +BA is not.

2.9.10. Write all square root matrices of

A =
∑
4

9

∏
and A =

∑
1 2

1

∏
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that is, write B so that B2 = A.

2.9.11. Consider matrix

B = A2 =
∑

2 −2
−2 2

∏

for some matrix A. Clearly AB = BA = A3. Find all matrices X so that A2X = XA2, then

among them all X so that X2 = A2. Are there other matrices Y so that Y 2 = A2 ?

2.9.12. Prove that if A and B are positive definite and such that A2 = B2, and AB = BA,

then A = B.

2.10 Triangular factorizations

It is more economical to solve a system of linear equations with a triangular matrix than

a system with a full matrix, and the factorization of a square matrix into the product of

triangular matrices is, for this reason, highly desirable. We have come close to it in eqs.(2.58)

and (2.68).

Theorem 2.29. For every square matrix A there exists a permutation matrix P so that

PA = LU (2.108)

where L is lower-triangular with unit diagonal elements, Lii = 1, and where U is upper-

triangular.

Proof. According to Theorem 1.22, row permutations exist for which forward Gauss

elimination never encounters a zero pivot. Hence lower-triangular elementary matrices, as

in eq.(2.59), exist with which

Ek · · ·E2E1(PA) = U (2.109)

and

PA = E−1
1 E−1

2 · · ·E−1
k U = LU , Lii = 1 (2.110)

by virtue of the basic properties of Ej . End of proof.

If A is singular then so is U , and it is of type 0. If A is nonsingular, then so is U , and it

is of type 1. Moreover, if U is nonsingular and Uii =/ 0, then A = LU may be written as

A = LDU, Lii = Uii = 1 (2.111)
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where D is diagonal.

Theorem 2.30. If A is nonsingular, then its LU , and hence also its LDU factorization

is unique.

Proof. Suppose it is not, and let A = L1U1 and A = L2U2 be two factorizations of the

same nonsingular A. Then L1U1 = L2U2 and

L−1
2 L1 = U2U

−1
1 . (2.112)

The left-hand side of the above matrix equation is lower-triangular with unit diagonal entries

while the right-hand side is upper-triangular. Both sides must then be diagonal and

L−1
2 L1 = I , U2U

−1
1 = I (2.113)

and it results that L2 = L1, U2 = U1. End of proof.

Corollary 2.31. If symmetric nonsingular A admits the triangular factorization A =

LU,Lii = 1, then also A = LDLT .

Proof. Since A is nonsingular we may put the factorization in the form A = LDU,Lii =

Uii = 1. The fact that A = AT implies that LDU = UTDLT , and by Theorem 2.30 U = LT .

End of proof.

For the actual computation of the lower-and upper-triangular matrices in A = LU , all

we need is to assume this form and then compute the columns of L one by one taking the

product of L,Lii = 1, and U .

Examples.

1.
∑

2 1
−2 −4

∏
=
∑

1
−1 1

∏ ∑
2 1
−3

∏
.

=
∑

1
−1 1

∏ ∑
2
−3

∏ ∑
1 1/2

1

∏
.

2.
∑

1 −2
−2 2

∏
=
∑

1
−2 1

∏ ∑
1
−2

∏ ∑
1 −2

1

∏
.
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3.
∑

1 1
−1 −1

∏
=
∑

1
−1 1

∏ ∑
1 1

0

∏
=
∑

1
−1 1

∏ ∑
1

α

∏ ∑
1 1

0

∏
.

4.
∑
0 1
1 1

∏
=/ LU.

5.




1
1 1
1 α 1








1 1 1

0 0
0



 =




1 1 1
1 1 1
1 1 1



 , α arbitrary.

Theorem 2.32. Symmetric positive (semi)definite matrix A can be factored as

A = LDLT (2.114)

where L is lower-triangular with Lii = 1, and where D is diagonal and such that Dii > 0 if

A is positive definite, and Dii ≥ 0 if A is positive semidefinite.

Proof. No row interchanges are necessary, and the symmetric row and column elemen-

tary operations

Ek · · ·E2E1AE
T

1 E T
2 · · ·E T

k = D (2.115)

produce diagonal D that holds the pivots. Hence

A = E−1
1 · · ·E −1

k−1 E
−1
k DE−T

k E −T
k−1 · · ·E−T

1 (2.116)

where Ej and E−1
j are lower-triangular with unit diagonal entries. The product of elementary

matrices E−1
j is a lower-triangular matrix L with Lii = 1. End of proof.

With

D
1
2 =





D
1
2

11

D
1
2

22

D
1
2

33

D
1
2

44




(2.117)

so that D = D1/2D1/2, the factorization becomes

A = LD
1
2D

1
2LT = (LD

1
2 )(LD

1
2 )T (2.118)

67



or, with the generic notation of L for a lower-triangular matrix,

A = LLT . (2.119)

Conversely, if A = LDLT , Lii = 1, then A is positive definite if Dii > 0, and positive

semi definite if Dii ≥ 0. Indeed

xTAx = xTLDLTx = yTDy, y = LTx (2.120)

and if y =/ o then so is x, in which case yTDy > 0, y =/ o, implies xTAx > 0, x =/ o.

We may now characterize positive definite and symmetric matrices in a numerically

convenient way.

Theorem 2.33. Symmetric matrix A is positive definite if and only if it can be factored

as A = LDLT , where L is lower-triangular with Lii = 1, and D is diagonal with Dii > 0.

Examples.

1.




2 −1
−1 2 −1

−1 2



 =




1
L21 1
L31 L32 1








D11

D22

D33








1 L21 L31

1 L32

1



 .

Moving columnwise we encounter one equation in only one unknown at a time, and we find

that

D11 = 2, L21 = −1

2
, L31 = 0

D22 =
3

2
, L32 = −2

3
(2.121)

D33 =
4

3

and the matrix is positive definite.

2.




1 −1
−1 2 −1

−1 1



 =




1
−1 1

−1 1








1

1
0








1 −1

1 −1
1





and the matrix is positive semidefinite.

Theorem 2.34. The LDLT factorization of a symmetric positive definite matrix is

unique.
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Proof. Positive definite matrix A is nonsingular and hence by Theorem 2.30 its LU ,

and consequently also its LDLT , factorization is unique. End of proof.

When A is symmetric positive semidefinite the LDLT factorization has a unique D, but

no unique L.

Example. 


1 1 1
1 1 1
1 1 2



 =




1
1 ×
1 × 1








1

0
1








1 1 1
× ×

1



 . (2.122)

For any matrix B for which BTB = I, B−1 = BT , holds, the factorization A = LLT

of positive definite and symmetric A may be written as A = LBTBLT = (BLT )T (BLT ) =

CTC, and hence there are many ways of factoring A as A = CTC with a nonsingular C.

Recall that if P is a single permutation matrix, P = PT , PP = I, as in eq.(2.50), then

PAP that first interchanges rows i and j of A, then columns i and j of PA, causes diagonal

entries Aii and Ajj to be interchanged. For generalized elementary matrix E in eq.(2.46)

this means that PEP = E0, E0 being also such a matrix. For instance, interchange of rows

1 and 3 followed by an interchange of columns 1 and 3 results in




1
α1 α2 α3

1



→




1

α1 α2 α3

1



→




1
α3 α2 α1

1



 , α2 =/ 0, (2.123)

while interchange of rows 1 and 2 followed by an interchange of columns 1 and 2 results in



1
α1 α2 α3

1



→




α1 α2 α3

1
1



→




α2 α1 α3

1
1



 . (2.124)

Hence, if P is a single permutation matrix and E a generalized elementary matrix, then

for any matrix A, P (EA) = (PEP )PA = E0PA, meaning that a row of A replaced by

a general elementary operation can be rearranged to appear wherever desired by a proper

prearrangement of the rows of A.

Theorem 2.35.

1. For every matrix A there exists a permutation matrix P so that

PA = LR (2.125)
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where L is a nonsingular, Lii =/ 0, lower triangular matrix and where R is in row echelon

form.

2. A nonsingular matrix T exists for matrix A so that

A = TR (2.126)

where R is in reduced echelon form. In case matrix A is square R becomes the Hermite form

of A.

Proof. Consider matrix A and echelon form matrix R obtained from it by elementary

row operations including row interchanges:

1
2
3
4





× × × × ×
× × × × ×
× × × × ×
× × × × ×



→

4
2
1
3





1 × × × ×
1 × ×

1



 , A→ R. (2.127)

The reduced echelon form is obtained from R by back substitutions.

We show that if the rows of A are ordered in advance in their final order of appearance

in R, then lower-triangular elementary row operation matrices exist that recreate R. In

forming R every row of matrix A is sequentially replaced, starting from the bottom row, by

an appropriate linear combination of all rows of A with the intent of having in place all the

possible zeroes before the leading 1. We know from eq.(2.127) that a generalized elementary

operation exists that voids original row 3 so that




1
1

1
α1 α2 α3 α4



PA =





× × × × ×
× × × × ×
× × × × ×



 , α4 =/ 0. (2.128)

In the same manner the third row of R is reconstructed with




1
1

α1 α2 α3 α4

1









× × × × ×
× × × × ×
× × × × ×



 =





× × × × ×
× × × × ×

1



 , α3 =/ 0, (2.129)

but since the last row of R is zero we may arbitrarily set α4 = 0 in order to have a lower-

triangular elementary matrix. Next we carry out




1
α1 α2 α3 α4

1
1









× × × × ×
× × × × ×

1



 =





× × × × ×
1 × ×

1



 , α2 =/ 0, (1.130)
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but since we do not care for the entries to the right of the leading 1 in each row of R, we

may set α3 = α4 = 0 to have a third lower-triangular elementary matrix. Continuing in this

manner we end up with

E1E2E3E4(PA) = R (2.131)

where each Ei is a nonsingular lower-triangular matrix. Hence PA = E−1
4 E−1

3 E−1
2 E−1

1 R =

LR, considering that the inverse of a lower-triangular matrix is a lower-triangular matrix, and

that the product of lower-triangular matrices is still a lower-triangular matrix. To obtain

the next factorization we proceed in eq.(2.131) with more elementary back substitutions

until EPA = R, with total elementary matrix E, turns R into the reduced form. Setting

EP = T−1 we obtain

A =





× × × ×
× × × ×
× × × ×
× × × ×









1 × ×
1 ×

1



 = TR. (2.132)

End of proof.

Corollary 2.36. Matrix A of rank r can be written as the sum of at least r, rank-one,

matrices.

Proof. The rank of matrix R in the TR factorization of matrix A in eq.(2.132) is r. Let

t1, t2, . . . , tm be the columns of T , and r T
1 , r T

2 , . . . , r T
m the rows of R. Then according to

eq.(2.29)

A = t1r
T

1 + t2r
T

2 + · · · + trr
T
r (2.133)

since r T
k = oT if k > r.

Elementary row operations reduce t1r T
1 + t2r T

2 + · · · trr T
r to a matrix with at most r

nonzero rows,





×
×
×
×





[× × ]

+





×
×
×
×





[× × ]

→





×
0
0
0





[× × ]

+





×
×
0
0





[× × ]

, (2.134)

and hence the rank of the sum of r rank-one matrices cannot exceed r. Matrix A of rank r

cannot be written therefore as the sum of less than r rank-one matrices. End of proof.
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Corollary 2.37. Matrix A = A(m × n) of rank r can be factored as A = BC, where

B = B(m× r) and C = C(r × n) are both of rank r. This is a full rank factorization of A.

Proof. According to eq.(2.133) matrix A may be written as

A =

[ t1 t2 . . . tr ]




r T
1

rT2...
r T
r




= BC. (2.135)

Matrix C is obviously of full row rank r, and so is matrix B that holds r columns of the full

rank matrix T . End of proof.

Example.





1 4 5
−1 −4 −5
2 7 7
−2 −5 −1



 =





× × × ×
× × × ×
× × × ×
× × × ×









1 4 5
0 1 3
0 0 0
0 0 0



 =





× ×
× ×
× ×
× ×





∑
1 4 5
0 1 3

∏

=





1 0
−1 0
2 −1
−2 3





∑
1 4 5
0 1 3

∏

=





1
−1
2
−2





[ 1 4 5 ]

+





0
0
−1
3





[ 0 1 3 ]

. (2.136)

Exercises

2.10.1. Perform the LU factorization of A, B, C

A =




2 −4 2
−4 7 −7
2 −7 1



 , B =




2 −1
−1 4 −1

−1 2



 , C =




1 1 1
1 2 2
1 2 3





to determine which one of them is positive definite.

2.10.2. Write the LU factorization of

A =




−2 1 −2
4 1 5
−6 6 −5



 and B =




2 1 −1
−4 −2 3
2 1 1



 .

2.10.3. Write the factorization



1
× 1
× × 1








× × × ×

× × ×
× ×



 =




2 −1 1 −3
−6 6 −2 10
2 −4 4 −2



 .
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2.10.4. Show that 


1 2 3
2 3 4
3 4 5



 =




1
2 1
3 2





∑
1 2 3
−1 −2

∏
.

2.10.5. Write the full rank factorization of

A =




0 2 −1
3 1 4
1 5 −1



 .

2.10.6. Write the factorization



1
a 1
b a 1



 =




1
α 1

α 1








1
β 1

β 1



 .

Express α and β in terms of a and b.

2.10.7. Show that a necessary and sufficient condition that

A =




α −1
−1 α −1

−1 α





is positive definite is that α >
√

2. Hint: perform the LU factorization of A.

2.10.8. Perform the LU factorization of A = A(2× 2) to prove Lemma 2.22.

2.10.9. Verify the LU factorization

T =





a1 1
1 a2 1

1 a3 1
1 a4




=





1
1/u1 1

1/u2 1
1/u3 1









u1 1
u2 1

u3 1
u4




= LU

for this, supposedly nonsingular, tridiagonal matrix T . Compute L−1 and U−1, and use

T−1 = U−1L−1 to show that the symmetric inverse may be written in terms of the compo-

nents of two vectors x = [x1 x2 x3 x4]T , y = [y1 y2 y3 y4]T in the form

T−1 =





x1y1 x1y2 x1y3 x1y4

x1y2 x2y2 x2y3 x2y4

x1y3 x2y3 x3y3 x3y4

x1y4 x2y4 x3y4 x4y4



 .

73



Notice that one may assume x1 = 1, and that vectors x and y are obtained from the solution

of x1Ty = e1 and y4Tx = e4. Extend the result to T = T (n× n).

2.10.10. Let P and Q be symmetric and positive definite, and

R =
∑
P BT

B Q

∏
.

Show that if

S =
∑

I O
−Q−1B I

∏
and T =

∑
I −P−1BT

O I

∏

then

STRS =
∑
P −BTQ−1B

Q

∏
and TTRT =

∑
P

Q−BP−1BT

∏
.

Deduce that R is symmetric and positive definite if and only if P − BTQ−1B is symmetric

and positive definite, or Q−BP−1BT is symmetric and positive definite.

2.10.11. Let

A =
∑
B a
aT α

∏

be symmetric and positive definite, and let

PT =
∑

I o
−xT 1

∏

be with x such that Bx = a. Show that

PTAP =
∑
B o
oT β

∏
, β > 0.

2.10.12. Show that if A is positive definite, then

A =
∑
α2 aT

a B

∏
=
∑

α oT

α−1a I

∏ ∑
1 oT

o B − α−2aaT

∏ ∑
α α−1aT

o I

∏
.

2.10.13. Write out the block triangular factorization

A =
∑
B AT

A C

∏
=
∑
L
X I

∏ ∑
I

Y

∏ ∑
LT XT

I

∏
,

where B = LLT . Find blocks X and Y in terms of block A,B,C.
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2.10.14. Suppose that A = LLT and let A0 be a principle submatrix of A. Show that

A0 = L0L0T , where L0 is the corresponding submatrix of L.

2.10.15. Let symmetric and positive definite A be factored as A = LLT . Show that L 2
ii ≤

Aii, i = 1, 2, . . . , n. When does equality hold?

2.11 The determinant of a matrix

We know by now that for every square matrix A there exists a permutation matrix P , a

lower-triangular matrix L with unit diagonal entries, and an upper-triangular matrix U so

that PA = LU . Matrix A is nonsingular only if upper-triangular matrix U is of type 1, and

hence the product of the diagonal entries of U constitutes a scalar function of matrix A, a

determinant, that determines by being zero or not whether A is singular or not.

We first conveniently assume that A is factorable, and introduce the

Definition. Let A = A(n × n) be factorable as A = LU where L is lower-triangular

with Lii = 1, and U is upper-triangular. The product

det(A) = U11U22 · · ·Unn (2.137)

is the determinant of A.

If A is nonsingular, then we may write the LU factorization as A = LDU, Lii = Uii = 1,

and det(A) = D11D22 · · ·Dnn.

Theorem 2.38. det(A) is unique.

Proof. If A is nonsingular, then the LU factorization of A is unique, and if A is singular,

then det(A) = 0 for any factorization. End of proof.

Theorem 2.39. det(A) = 0 if and only if A is singular.

Proof. det(A) = 0 if and only if the upper-triangular U is of type 0. End of proof.

Theorem 2.40. det(A) = det(AT ).
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Proof. If A is singular, the equation reduces to 0 = 0, so assume that A is nonsingular.

Then A = LDU and det(A) = D11D22 · · ·Dnn. On the other hand AT = UTDLT = L0DU 0,

L 0
ii = U 0

ii = 1, and also det(AT ) = D11D22 · · ·Dnn. End of proof.

Lemma 2.41. Let U and U 0 be upper-triangular, and L and L0 lower-triangular. Then

1. det(U) = U11U22 · · ·Unn. 2. det(L) = L11L22 · · ·Lnn.

3. det(UU 0) = det(U) det(U 0). 4. det(LL0) = det(L) det(L0).

5. det(U−1) = 1/ det(U). 6. det(L−1) = 1/ det(L).

7. det(AU) = det(A) det(U). 8. det(LA) = det(L) det(A)

Proof.

1. Obvious.

2. det(L) = det(LT ).

3. and 4. (UU 0)ii = UiiU 0
ii , (LL

0)ii = LiiL 0
ii .

5. and 6. (U−1)ii = 1/Uii, (L−1)ii = 1/Lii.

7. and 8. If A = L0U 0, then AU = L0U 0U and LA = LL0U 0.

End of proof.

Before turning to the question of the influence of row and column permutations on the

determinant, and the extension of the determinant definition to matrices that do not admit

an LU factorization because of a zero pivot, we find it instructive to observe the following

example. Permutation matrix P below can not be LU factored but modified matrix P 0(≤)

can by virtue of a nonzero pivot ≤:

P =
∑

1
1

∏
, and P 0(≤) =

∑
≤ 1
1

∏
=
∑

1
≤−1 1

∏ ∑
≤ 1
−≤−1

∏
. (2.138)

But det(P 0(≤)) = −1 for any ≤ no matter how small.

Theorem 2.42. Let P be a permutation matrix affecting a succession of p row in-

terchanges, and P 0 a permutation matrix affecting a succession of p0 column interchanges.

Then

det(PAP 0) = (−1)p+p0
det(A). (2.139)
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Proof. Because det(A) = det(AT ), and (PA)T = ATPT it is enough that we prove

the theorem for the permutation of rows only. Also, the proof is done if we prove that for

one swap involving only two rows det(PA) = −det(A), and for this we need consider only

successive rows since the interchange of rows i and i+k can be achieved through a succession

of 2k − 1 interchanges of adjacent rows. For instance

1
i = 2 2

3
4

i+ k = 5 5
k = 3

→

1
5
3
4
2

=

1
3
2
4
5

→

1
3
4
2
5

→

1
3
4
5
2

→

1
3
5
4
2

→

1
5
3
4
2

. (2.140)

Moreover, because the effect of the row interchanges is not felt in the factorization until the

pivot reaches down to the first displaced row, we may assume that the interchanged rows

are 1 and 2. Finally, in view of statements 7. and 8. of lemma 2.41 it is enough that we

prove that det(PL) = −1 if Lii = 1. Indeed,




1
L21 1
L31 L32 1



→




L21 1
1
L31 L32 1



→




L21 1

−L−1
21

1



 .

End of proof.

Now we use Theorem 2.42 to extend the definition of the determinant to any square

matrix as det(A) = (−1)p+p0
det(PAP 0) for any permutation of rows and columns.

Before proceeding with more theorems on the determinant we introduce permutation

matrix

P =





1
1

1
1



 , P 2 = I (2.143)

that has this remarkable property: that if L is lower-triangular, then PLP = U is upper-

triangular, and if U is upper-triangular, then PUP = L is lower-triangular.

The next theorem introduces two fundamental properties of determinants that by them-

selves make determinants worth considering.

Theorem 2.44. Let A and B be square matrices. Then
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1. det(A−1) = 1/ det(A).

2. det(AB) = det(A) det(B).

Proof.

1. Let P be the permutation matrix of eq.(2.00).If A = LDU, Lii = Uii = 1, then A−1 =

U−1D−1L−1 and

det(A−1) = det(PA−1P ) = det((PU−1P )(PD−1P )(PL−1P )).

Now, PU−1P is lower-triangular, PL−1P is upper-triangular, and

det(A−1) = det(PD−1P ) = det(D−1).

2.If one of the matrices is singular, then the equation reduces to 0 = 0, so we assume that

both A and B are nonsingular. Now

det(AB) = det(LDUL0D0U 0) (2.145)

where Lii = L 0
ii = Uii = U 0

ii = 1. Hence by Lemma 2.41

det(AB) = det(DUL0D0). (2.146)

SinceD andD0 are diagonal matrices of type 1, there are upper-and lower-triangular matrices

U 0 and L00, U 0
ii = L 00

ii = 1, so that DU = U 0D and L0D0 = D0L00, and

det(AB) = det((PU 0P )(PDD0P )(PL00P ))

= det(PDD0P ) = det(DD0) = det(D) det(D0) = det(A) det(B).
(2.147)

End of proof.

Notice that

P =
∑

1
1

∏
=
∑
1
−1

∏ ∑
1 1

1

∏ ∑
1
−1 1

∏ ∑
1 1

1

∏
(2.000)

and hence by the formality of det(AB) = det(A) det(B), det(P ) = −1.

The numerical LU factorization of PA furnishes det(A). But writing det(A) algebraically

in terms of the entries of A becomes an immense task unless drastic notational abbreviations

are undertaken.
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For A = A(2× 2) the LU factorization is with

U =
∑
A11 A12

0 (A11A22 −A12A21)/A11

∏
(2.148)

and

det(A) = A11A22 −A12A21 =
ØØØØ
A11 A12

A21 A22

ØØØØ (2.149)

which is our determinant of sec.1.2. The algebraic LU factorization of A = A(3× 3) yields

U =




∆1 A12 A13

∆2/∆1 (A23A11 −A21A13)/∆1

∆3/∆2



 (2.150)

with

∆1 = A11 , ∆2 =
ØØØØ
A11 A22

A21 A22

ØØØØ , ∆3 =

ØØØØØØØ

A11 A12 A13

A21 A22 A23

A31 A32 A33

ØØØØØØØ
(2.151)

and
det(A) = ∆3 = A11A22A33 −A11A23A32 +A12A23A31

−A12A21A33 +A13A21A32 −A13A22A31.
(2.152)

Notice that

∆3 =
6X

1

±A1iA2jA3k (2.153)

in which indices ijk run over all six permutations 123, 132, 231, 213, 312, 321, and in which

the plus sign is taken for an even number of permutations, and the minus sign for an odd.

Equation (2.153) is often taken as the starting point for the theory of determinants, and

from it all their properties are deduced.

Cramer’s rule, if not practical, is at least historically interesting. To prove it we write

x = A−1f in the inflated form Xi = A−1Fi, i = 1, 2, . . . , n, where the columns of Fi are the

columns of A except for the ith which is f ; where the columns of Xi are the columns of I,

except for the ith which is x,

[e1 e2 . . . x . . . en] = A−1[a1 a2 . . . f . . . an]. (2.154)

It is easily shown that det(Xj) = xj , and hence by the rules that det(AB) = det(A)

det(B) and det(A−1) = 1/ det(A),

xi = det(A−1Fi) = det(Fi)/ det(A) (2.155)

79



which is Cramer’s rule.

The theoretical artifice of putting a minute nonzero value for a truly zero pivot in order

to guarantee an LU factorization raises the question of the dependence of det(A) on the

coefficients of matrix A. Can small changes in Aij result in an explosive change in det(A),

or does det(A) remain barely affected?

Theorem 2.45. det(A) depends continuously upon the coefficients of A.

Proof. Suppose that nonsingular matrix A is slightly changed by the addition of E into

A+E. Then det(A+E) = det(A(I +A−1E)) = det(A) det(I +A−1E). As the coefficients

of E become ever smaller, the pivots of I +A−1E become all nearly 1, and the off-diagonal

entries much smaller than 1, and hence det(I +A−1E) cannot be far from 1.

In case A is singular we write A+ E = G(H +G−1E), where H is the Hermite form of

A. The 1 pivots of H are only slightly changed by the addition of the small entries of G−1E,

while the originally zero pivots of H are small and remain so in forward elimination, and

det(H +G−1E) is small. End of proof.

The continuous dependence of det(A) upon Aij is obvious in eq. (2.153).

The continuous dependence of det(A) on Aij does not mean that small changes in the

coefficients of A may not cause practically large changes in det(A), as we have discussed in

sec.1.2 and demonstrated numerically in eq. (1.19).

Exercises

2.11.1. Compute, without row or column interchanges, det(A)

A =





1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1



 .

2.11.2. Show that if

D =
∑
A

B

∏

then rank (D)= rank(A) +rank(B). Also that det(D) = det(A) det(B).
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2.11.3. Prove that

det
∑
A C

B

∏
= det(A) det(B)

and that

| det
∑
C A
B

∏
| = | det(A) det(B)|.

2.11.4. Prove that

det
∑
A B
C D

∏
= det(D − CA−1B) det(A) = det(A−BD−1C) det(D).

2.11.5. Prove that if CDT +DCT = O, then

det
∑
A B
C D

∏
= det(ADT +BCT )

provided D is nonsingular.

2.11.6. Prove that if CDT +DCT = O, then

|det
∑
A B
C D

∏
|= |det(ADT +BCT )|.

2.11.7. Let A = LLT , and show that

max
i,j

|Lij| ≤ max
i

q
Aii.

2.11.8. Prove that if A = A(n× n) is symmetric and positive definite, then

det(A) ≤ A11A22 . . . Ann.

Show that equality occurs if and only if A is diagonal.

2.11.9. Prove that if the entries of both A and A−1 are integers,then det(A) = ±1.

2.11.10. Show that the entries of diagonal matrix I 0 = I 0(2 × 2), I 0ii = ±1 can be arranged

so that for any A(2× 2), det(A+ I 0) =/ 0. Generalize to higher-order matrices.

2.11.11. Prove that if A = A(n× n) = −AT , then for odd n det(A) = 0.
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2.11.12. Prove that a necessary and sufficient condition for A = AT to be positive definite

is that det(S) > 0 for any diagonal submatrix S of A.

2.12.13. Let B = B(n × n) = [b1 b2 bn] be nonsingular so that A = BTB is symmetric

positive definite. Show that

det2(B) ≤ (b T
1 b1)(b

T
2 b2) . . . (b

T
n bn).

When does equality hold?

2.12.14. Show that det(I + uvT ) = 1 + uT v. Find a similar expression for det(A + uvT )

where A is nonsingular.

2.12.15. Let e = [1 1 . . . 1]T , and E = eeT . Prove that

det(A+ αE) = det(A)(1 + αeTA−1e).

2.12.16. Show that elementary operations exist to the effect that

∑
A x
yT 1

∏
→

∑
A− xyT o

oT 1

∏
.

Write the factorization
∑
A x
yT 1

∏
=
∑
L
vT 1

∏ ∑
U u

α

∏

and compute u, v, α, assuming that A is nonsingular. Use all this to prove that

det(A− xyT ) = det(A)(1− yTA−1x).

2.11.17. Let A = [a1 a2 a3] = A(t). Show that

˙detA = det[ȧ1 a2 a3] + det[a1 ȧ2 a3] + det[a1 a2 ȧ3]

where overdot means differentiation with respect to parameter t.

2.11.18. The trace, tr(A), of the square matrix A is

tr(A) = A11 +A22 +A33 + · · · +Ann.
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Show that:

1. tr(A+B) =tr(A)+tr(B).

2. tr(αA) = αtr(A).

3. tr(AB) =tr(BA).

4. tr(B−1AB) =tr(A).

5. tr(ATA) =
nX

i=1

nX

j=1

A2
ij .

2.11.19. For 2× 2 A and B show that

tr(AB)− tr(A)tr(B) = det(A) + det(B)− det(A+B).

2.11.20. If matrices A and B share a certain property, if AB and BA possess this same

property, if A−1 and B−1 possess the property, and if I possesses the property, then all such

matrices form a nonsingular multiplicative group.

Which of the following matrices form a multiplicative group?

1. Diagonal with Dii =/ 0.

2. Nonsingular symmetric.

3. Lower (upper) triangular of type 1.

4. Lower (upper) triangular with unit diagonal.

5. Possessing the property that A−1 = AT .

6. Nonsingular that commute with a given matrix.

7. A = I + aaT .

8. A = I + abT .

9. A =
∑
α β
−β α

∏
.

2.12 Variational formulations

Here we digress slightly from the spirit of linear algebra to that of analysis.
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We look upon

φ(x) =
1

2
xTAx− xT f , A = AT (2.156)

as a scalar function of the n variables x1, x2, . . . , xn. It is, in fact, a quadratic function. The

gradient grad φ of φ(x) is defined as being the vector

grad φ =
∑
@φ

@x1

@φ

@x2
. . .

@φ

@xn

∏T
, (2.157)

and by

φ(x) =
1

2

nX

i,j=1

Aijxixj −
X

i

xifi (2.158)

we establish that

grad φ = Ax− f (2.159)

provided that A = AT .

Theorem 2.46. If A is symmetric and positive semidefinite, then the following state-

ments are equivalent:

1. As = f .

2. φ(s) = min
x

φ(x).

Proof. Assume that As = f is consistent. Then

φ(x) =
1

2
(x− s)TA(x− s)− 1

2
sTAs (2.160)

and since (x − s)TA(x − s) ≥ 0, φ(s) = −1
2s

TAs are minima of φ(x). Assume that s

minimizes φ(x). A necessary condition for this is that

grad φ = Ax− f = o. (2.161)

Every vector that minimizes φ(x) is a solution of Ax = f . Because A is positive semidefinite,

and in view of eq. (2.158), all extremum points of φ(x) are minimum points. End of proof.

Exercises

2.12.1. The matrix

A =




1 −1
−1 2 −1

−1 1




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is positive semidefinite. Find the minima of φ(x) = 1
2x

TAx.

2.12.2. For given vector a find the extrema of (aTx)2/xTx.

2.13 On least squares

If positive definiteness is such a desirable property in matrices, why not do the following:

Let

Ax = f (2.162)

be a linear system with a nonsingular coefficient matrix A. Premultiplication by AT produces

the equivalent system

ATAx = AT f (2.163)

with a positive definite and symmetric ATA.

One reason for not forming ATA and AT f is that for large systems it is cumbersome

and expensive. But there is a deeper numerical reason why we should avoid it. Consider the

simple example of

A =
∑
1 0.999
1 1

∏
, EA =

∑
1 0.999
0 0.001

∏
, (2.164)

where E is an elementary operations matrix, and

ATA =
∑

2 1.999
1.999 1.998001

∏
, E(ATA) =

∑
2 1.999
0 1.998001− 1.9980005

∏
(2.165)

and if the arithmetic keeps only 6 digits, ATA is practically singular.

If the system of linear equations Ax = f is inconsistent, then no x can be found such

that

r = Ax− f = o. (2.166)

However, we might settle for an x that minimizes φ(x) = 1
2r

T r. If an x does exist such that

r = o, then the minimization will find it.

For r in eq. (2.166)

φ(x) =
1

2
xTATAx− xTAT f +

1

2
fT f. (2.167)
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A necessary condition for an extremum of φ(x) is that

grad φ(x) = ATAx−AT f = o

= AT (Ax− f) = o

= AT r = o.

(2.168)

We shall not be greatly concerned with this least squares problem, but we still want to prove

that system (2.163) is soluble for any A = A(m× n) matrix.

First we prove

Lemma 2.47. For any A = A(m× n) and x =/ o,ATAx = o if and only if Ax = o.

Proof. Of course if Ax = o x =/ o, then ATAx = o. To prove the converse, namely

that ATAx = o only if Ax = o, assume that y = Ax =/ o but ATAx = AT y = o. Then

xTATAx = yT y = 0, which is an absurdity if y =/ o. Hence our assumption is wrong and the

proof is done.

Theorem 2.48. For any A = A(m × n) matrix, and any right-hand side vector f ,

system

ATAx = AT f (2.169)

is soluble.

Proof. By Theorem 1.19 the system is soluble if and only if for any solution y of

ATAy = o, yTAT f = fTAy = 0. By Lemma 2.47 this holds true. End of proof.

exercises

2.13.1. Find the least squares solution of

2x− 3y = 1

2x− 3y = 2.

2.13.2. Write the least squares solution to




1 −1
−1 2
2 −3





∑
x1

x2

∏

=




2
−3
4



 .
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2.13.3. Find the least squares solution to x = 0, y = 0, x + y = 1, and give it a geometrical

interpretation. Do the same for −x + y = 1, x − y = 1, x + y = 0. Also, x = 1, y = 2, y =

−2x+ 2.
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Answers

Section 2.2

2.2.1. α = 0 if x =/ o, α = α if x = o.

2.2.2. No.

2.2.3. x = y = o.

2.2.4. aT b = bTa = 0,

abT =




1 1 1
−2 −2 −2
1 1 1



 , baT =




1 −2 1
1 −2 1
1 −2 1



 ,

no.

2.2.5. c, c, 12, 12, no.

2.2.6.

abT =
∑
a1b1 a1b2
a2b1 a2b2

∏
, pqT =

∑
p1q1 p1q2
p2q1 p2q2

∏
, bTp = b1p1 + b2p2.

2.2.8. (1× 1), (n× n), (1× 1), (n× n), (n× 1), (1× n).

2.2.9. No.

2.2.10.

abT =




2 1 −1
−2 −1 1
2 1 −1



 , (abT )2 = a(bTa)bT = O.

2.2.11.

(abT )6 =




1 1 1
−1 −1 −1
1 1 1



 .

2.2.12. 27aaT + 216bbT .

2.2.13. (abT )2 = abTabT = (bTa)(abT ).

2.2.14. α1 = α4 = 1 + ∞2, α2 = α3 = 2∞.

Section 2.3
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2.3.1. −2I.

2.3.2. No.

2.3.3 α = 2.

2.3.5.

AB =
∑
2 3
4 0

∏
, BA =




3 −2 3
1 −3 1
2 −1 2



 .

2.3.17. α0 = L11L22, α1 = −(L11 + L22).

2.3.18. α0 = 7, α1 = −5.

2.3.19. A8 = 987A− 377I.

2.3.20. αβ = 6.

2.3.25.

A =
∑
α β
∞ −α

∏
, α2 + β∞ = 0.

2.3.32. aT b = bTa = α.

2.3.33. α = 2, no real α.

2.3.37. δ = 1− α, β∞ = α(1− α).

2.3.40. vTu = uT v = −2.

2.3.41. α = 0.

2.3.42. α2 = 4, β(2α + β) = 0.

2.3.43.

A =
∑
α β
∞ −α

∏
α2 + β∞ = 1, or A =

∑±1
±1

∏
.

2.3.44. X = αI + βA, for any α, β.

2.3.46.

X =




α β ∞

α β
α




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for any α, β, ∞.

2.3.47. β = −2/3.

2.3.48. α = β = −1/2.

2.3.49. α = −1, also α = 1− 1/β if A = βI.

2.3.52.

X = α
∑
1 0
0 1

∏
+ β

∑
0 1
−2 0

∏
+
∑
0 0
3 0

∏

for any α, β.

2.3.56.

P =




1

1
1



 , P 3 = I.

2.3.58.

P =




1

1



 , P 3 = O.

2.3.61. c1 = −2α, c2 = α2 − β2.

Section 2.4

2.4.5.

A =
∑±1

±2

∏
.

2.4.6.

X =
∑−1 1
−1 0

∏
, no X.

2.4.16.

B =
∑
α β
∞ −α

∏
, α2 + β∞ = 1.

Section 2.5

2.5.1. A2 = I.
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2.5.3. X = I, Y = −I.

2.5.4. X = −AT .

Section 2.6

2.6.1. The rank is 3.

2.6.6. P1 = [e1 e2 e3], P2 = [e1 e3 e2], P3 = [e2 e1 e3], P4 = [e2 e3 e1], P5 = [e3 e1 e2], P6 =

[e3 e2 e1], α1 = 2, α2 = 3, α3 = 1, α4 = 3.

Section 2.7

2.7.1.

AB = I, B =
1

3




3α 3β
1 −1

1− 3α 2− 3β



 .

No right inverse for A0.

2.7.2.

B =
1

3

∑
3α 1 2− 3α
3β −1 1− 3β

∏
.

2.7.3. That A has a left inverse.

2.7.4.

X =
1

3

∑
3α 1 2− 3α
3β −1 1− 3β

∏
; X =




X11 X12

X21 X22

X31 X32



 , X11 +X12 +X21 +X22 +X31 +X32 = 1.

Section 2.8

2.8.1. X = A−1B,X = BA−1.

2.8.2. X = (A−BF )−1(C −BG), Y = G− FX.

2.8.5. BA = 2I. 2.8.6. β = −α/(1 + α). For α = −1

2.8.7. α = −1/(1 + aT b).

2.8.11. α = 1/(1− ∑), β = −α.
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2.8.12. C−1 = I −AB.

2.8.15.
∑
1 0
0 1

∏
,
∑
0 1
1 0

∏
,
∑
1 0
1 1

∏
,
∑
1 1
0 1

∏
,
∑
0 1
1 1

∏
,
∑
1 1
1 0

∏
.

2.8.19. (∞ − β)(α− ∞) =/ 0.

2.8.20.

P−1 =





1
−1 1
1 −2 1
−1 3 −3 1
1 −4 6 −4 1




.

2.8.21.

A−1 =




−3 −4 2
−5 −5 3
2 2 −1



 , B−1 =




2 −3 −4
3 −5 −5
−1 2 2



 , T−1 =





1 1 −1 −1
1 2 −2 −2
−1 −2 1 1
−1 −2 1 2



 .

2.8.22.

A−1 =





6 5 4 3 2 1
5 5 4 3 2 1
4 4 4 3 2 1
3 3 3 3 2 1
2 2 2 2 2 1
1 1 1 1 1 1





.

2.8.23.

A−1 =
1

α





1
1

1
1

α −1 −1 −1 −1




, B−1 =

1

α





1
1

1
1

1





C−1 =





1
−α 1
α2 −α 1
−α3 α2 −α 1
α4 −α3 α2 −α 1




.

2.8.24.

A−1 =
1

α− 1




0 α −1
α −α− 1 1
−1 1 0



 , α =/ 1.
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2.8.25. α = 2;α = 0;α2 =
√

2− 1

2.8.27. ∏ = ±1.

2.8.28. ∏ = 0, ∏ = −3.

2.8.39.

A−1 =
1

1− α2

∑
B−1 −αI
−αI B

∏
.

2.8.41.

A−1 =
∑

I o
−aT 1

∏
, B−1 =

∑
S−1 o

−aTS−1 1

∏
, C−1 =

∑
I + baT −b
−aT 1

∏
.

2.8.71. α = vTAu, ∞ = −1/(1 + vTA−1u).

Section 2.9

2.9.1. α = ±1.

2.9.3. α > 1;α2 < 1.

2.9.4. B11 = 2, B22 = −1, B12 = 1 + α,B21 = 1− α.

2.9.10.

A =
∑±2

±3

∏
, A = ±

∑
1 1

1

∏
.

2.9.11. X11 = X22 = ±1, X12 = X21 = ∓1.

Section 2.10

2.10.1.

A =




1
−2 1
1 3 1








2 −4 2
−1 −3

8



 , B =




1

−1/2 1
−2/7 1








2 −1

7/2 −1
12/7



 ,

C =




1
1 1
1 1 1








1 1 1

1 1
1



 .

Matrices B and C are positive definite.
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2.10.2.

A =




1
−2 1
3 1 1








−2 1 −2

3 1
0



 , B =




1
−2 1
1 α 1








2 1 −1

0 1
β



 , α + β = 2.

2.10.3. 


1
−3 1
1 −1 1








2 −1 1 −3

3 1 1
4 2





2.10.5.

A =
1

2




0 2
3 −5
1 3





∑
2 4 1

2 −1

∏

2.10.13. X = AL−T , Y = C −AB−1AT .
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