
3 Sparseness

3.1 Algebraic manifestations of physical equilibrium

Many of the large systems of linear algebraic equations solved on present day computers

arise from finite element and finite difference approximations of solid, fluid and other field

equilibrium and evolution problems of computational mechanics. Replacement of a contin-

uum equilibrium problem by a good algebraic one which correctly describes the detailed

discrete behavior of an elastic solid, a moving fluid, a hot body, or magnetic field requires

knowledge of the field values at very many points throughout the mass or space. Hence the

sheer size of the algebraic system of equilibrium.

The nature of equilibrium profoundly affects the size, form and substance of the lin-

ear algebraic systems to which it gives rise, endowing equilibrium systems with distinctive

characteristics that, to a large extent, set the agenda of computational linear algebra.

There are intimate connections between the physics of the algebraically approximated

problem, even the most intuitive ones, and the deepest, most fundamental theoretical proper-

ties of the linear system of equations which formulate the equilibrium; we cannot understand

the gist and purpose of the mathematics without a good understanding of the physics.

In this chapter we will consider basic linear algebraic issues particular to equilibrium

problems. Because the nature of equilibrium is so central to the discussion we shall be

careful to derive the mathematics of equilibrium for some simple yet typical continuum

equilibrium problems from their very underlying physical principles.

1

Discretization— the passage from the continuous to the discrete, is accomplished here

by means of finite difference approximations. Discussion of the more sophisticated finite

element method and its linear algebraic ramifications is deferred to the last chapter of this

book.

3.2 Finite differences–the taut string

Herewith we shall consider the conception of discretization –of approximating a con-

tinuous process by a discrete algebraic one. The eminent example of the equilibrium of a

laterally forced taut string is simple enough for a detailed mathematical examination, yet

realistic enough to explicitly disclose the parallels between the physics and the algebra.

As is common in the analysis of such problems, we shall first write down the differ-

ential equation of equilibrium for the string, and then approximate the equation by finite

differences.

What we mean by string is a thin, long piece of elastic solid able to carry tensional axial

forces only. Such loaded string is shown in Fig.3.1(a). It is under axial tension p > 0, is

acted upon by a lateral distributed force f(x), is fixed at point x = 1, and is symmetric

about the u axis. In response to the action of the applied distributed force f(x) the string

deflects and stretches, but we shall assume that the lateral displacement u(x) is very small

in magnitude compared with the original length of the string, |u(x)| << 1, and that the

slope of the deflection is of a magnitude much smaller than unity, |u0(x)| << 1, implying

essentially lateral loadings that are very small compared with the axial tension.

(a) Fig. 3.1 (b)

Tension, the force that one part of the string exerts on another, is caused by either an

2

initial stretch, inertia, gravity, magnetic body forces, or an excessive lateral deformation. In

principle tension can be a function of both x and u(x).

To write the differential equations of equilibrium for the string, we reckon the vertical

and horizontal forces that act on a differential segment dx of it as shown in Fig. 3.1(b). The

horizontal and vertical zero force sums are expressed, in the absence of an external axial

pull, as

−p sin θ + (p+ dp) sin(θ + dθ) + f(x)dx = 0 (3.1)

and

−p cos θ + (p+ dp) cos(θ + dθ) = 0 (3.2)

respectively. But

sin(θ + dθ) = sin θ + cos θdθ, cos(θ + dθ) = cos θ − sin θdθ (3.3)

since cos(dθ) = 1, sin(dθ) = dθ, and the two equations of equilibrium reduce to

d(p sin θ) + f(x)dx = 0, and d(p cos θ) = 0. (3.4)

Integration of the second of eqs.(3.4) produces p cos θ = p0, and if θ is small so that cos θ = 1,

then p = p0 independently of θ. The assumption of small displacements decouples displace-

ment u(x) from tension p(x). Generally, tension p(x) is computed first from the actions of

the external forces, then inserted as a given coefficient in the equation of vertical equilibrium.

Thus, with sin θ = θ = u0 = du/dx, equilibrium of the string is described by the

differential equation

(pu0)0 + f(x) = 0 0 < x < 1 (3.5)

with p = p(x) given.

Equation of equilibrium (3.5) is supplemented by the two boundary conditions

u(1) = u0(0) = 0 (3.6)

at end points x = 0 and x = 1.

Equations (3.5) and (3.6) constitute a two-point boundary value problem of the string.

Understandably, without boundary condition u(1) = 0 that holds down the string, the

3

boundary value problem would have possessed many solutions of the form u(x) + c for

arbitrary constant c, and for u satisfying equilibrium equation (3.5), boundary condition

u0(0) = 0, and possibly u0(1) = 0.

For the rest of this discussion we shall conveniently suppose constant unit tension, p = 1,

so as to have the simpler
−u00

= f(x) 0 < x < 1

u0(0) = u(1) = 0
(3.7)

in place of eqs. (3.5) and (3.6).

To discretize the string, that is, to replace its analytic differential equilibrium formulation

(3.7) by an approximate linear algebraic one, we divide the string into n equal segments of

length h = 1/n, as in Fig. 3.2(a), with intermediate nodes labeled 1, 2, . . . , n, n+ 1 to which

we assign all string data. Fictitious node 0 is added under the assumption of a symmetric

continuation of the string beyond x = 0, and is placed there for the purpose of helping in

the approximation of the boundary conditions.

(a) Fig. 3.2 (b)

Algebra is instituted for analysis, and the discrete for the continuous, by replacing the

differential equation of equilibrium, good for any point along the string, by an algebraic

system of equilibrium equations written at interior nodes only and involving nodal values

only. Boundary conditions are added likewise.

A finite difference approximation to u
00
2, u

00
at node 2 of Fig. 3.2(b), is written with the

repeated approximations

u0a =
1

h
(u2 − u1), u

0
b =

1

h
(u3 − u2), u

00
2 =

1

h
(u0b − u0a) (3.8)

as

u
00
2 =

1

h2 (u1 − 2u2 + u3) (3.9)

4

where subscripts refer to the node numbers and where prime stands for differentiation with

respect to x. With eq. (3.9) differential equation (3.7) is approximated by:

at node 2
1

h2 (−u1 + 2u2 − u3) = f2,

at node 3
1

h2 (−u2 + 2u3 − u4) = f3,

... (3.10)

at node n
1

h2 (−un−1 + 2un − un+1) = fn.

At the last node boundary condition un+1 = 0 prevails, but we still need to approximate

u0(0) = 0. Making use of fictitious node 0 we write the approximations

u01 =
1

2h
(u2 − u0) = 0 ,

1

h2 (u0 − 2u1 + u2) = f1 (3.11)

and upon the elimination of u0 between them are left with

1

h2 (u1 − u2) =
1

2
f1 (3.12)

at point 1.

Equations (3.10) together with un+1 = 0 and eq.(3.12) are collected in the linear system

1

h





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2









u1

u2

u3
...

un





= h





1
2f1

f2

f3
...

fn





, Ku = f (3.13)

for the unknown nodal displacements vector u. The discrete counterpart to the linear two-

point boundary value problem (3.7) is a system of linear algebraic equations expressing

approximate equilibrium at the nodes. In system (3.13), K is the stiffness matrix and f the

load vector. We notice that the load vector consists of point forces averaged over the interval

h around each node. At node 1 the force is only 1/2f1 as the other half of the force is lost

to symmetry.

We observe that stiffness matrix K is:

1. Symmetric.

5

2. Sparse, with many zero entries.

3. Of a band form with the nonzero entries close and parallel to the main diagonal.

4. Tridiagonal.

5. With repetitive entries.

Symmetry in K stems from the string deflection being described by an even degree

differential equation, from the central or symmetric finite difference formula for u
00
, and from

boundary conditions that are just right. Boundary value problems that produce symmetric

finite difference systems are self-adjoint and constitute the most interesting class of problems

in computational mechanics.

Sparseness and the band form of K stems from the differential equation that expresses

equilibrium at a point, and from the consecutive node numbering. The nodal discrete finite

difference equations of equilibrium involve only neighboring nodes. Band form is inherent in

equilibrium problems and we introduce the

Definition. Square matrix K is a band matrix of bandwidth 2k + 1 if for |i − j| >

k,Kij = 0. By band (K) we designate all entries Kij such that |i− j| ≤ k.

A tridiagonal matrix, for instance, is with k = 1.

The critical question of the nonsingularity of K in eq. (3.13) is resolved by the LLT

factorization

hK = LLT , L =





1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1





(3.14)

demonstrating thatK is not only nonsingular but also positive definite with equal unit pivots.

In light of eq.(3.14), factorization of K into LLT appears to be the discrete counterpart to

the factorization of the second-order differential operator of the string problem into two

first-order differential operators.

If boundary condition u0(1) = 0 prevails at x = 1,instead of u(1) = 0, then the homoge-

6

neous two-point boundary value problem

u
00

= 0 0 < x < 1, u0(0) = u0(1) = 0 (3.15)

is solved by the nontrivial u = c =/ 0 for arbitrary constant c, which obviously satisfies both

the equation of equilibrium and two boundary conditions. Corresponding to problem (3.15)

is the stiffness matrix

K =
1

h





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 1





(3.16)

verified to be singular by Ku = o, u = [1 1 . . . 1]T .

As a lower-triangular factor in hK = LLT we compute for K in eq. (3.16)

L =





1
−1 1

−1 1
−1 1

−1 1
−1 0





(3.17)

and the zero pivot is encountered last since the singularity or nonsingularity of K is decided

only at the last equation, which expresses the second boundary condition.

A string with both ends fixed, with u(1) = u(0) = 0, gives rise to the stiffness matrix

K =
1

h





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2





(3.18)

and in K = LDLT

L =





1
−1

2 1
−2

3 1
−3

4 1
−4

5 1
−5

6 1





, D =
1

h





2
1

3
2

4
3

5
4

6
5

7
6





. (3.19)

7

Pivots Dii = (1 + 1/i)/h are not all equal, but pivoting with this positive definite matrix is

certainly not necessary.

3.3 Elastic energy

The method of initially writing down the differential equation of equilibrium and bound-

ary conditions and then approximating them by finite differences has its mathematical merits

as we shall see in the next two sections, but we can also write the nodal equations of equi-

librium directly from a discrete mechanical model. Since the string is elastic but transmits

only tential axial forces we imagine it as consisting of a linkage of short, thin elastic ties

connected by means of frictionless pins, as in Fig.3.3.

(a) Fig. 3.3 (b)

For finite differences the string exists at the nodes only, but the mechanical model gives

internodal substance to the discretization. Distributed forces are equivalently apportioned,

or lumped, at the joints, and the equation of equilibrium in the vertical direction for typical

joint 2 of Fig. 3.3(a) is written as

hf2 − pa sin θa + pb sin θb = 0. (3.20)

Under the assumption of small displacements

sin θa =
1

h
(u2 − u1), sin θb =

1

h
(u3 − u2) (3.21)

and joint 2 is at equilibrium on condition that

h2f2 + u1pa − u2(pa + pb) + u3pb = 0 (3.22)

8

reverting to f2 + (u1 − 2u2 + u3)/h2 = 0 if pa = pb = 1. For joint 1 on the line of symmetry

we have with reference to Fig. 3.3(b) that

f1h+ 2pa sin θ1 = 0 , sin θ1 =
1

h
(u2 − u1) (3.23)

which with pa = 1 becomes the first equation in system (3.13).

The LDL factorization proves that stiffness matrix K is positive definite and hence

nonsingular, provided that the string is fixed at least at one of its end points. Positive

definiteness can be directly shown for K in eq. (3.13) by the expansion

huTKu = u2
1 + 2u2

2 + 2u2
3 + . . .+ 2u2

n

− 2u1u2 − 2u2u3 − . . .− 2un−1un

= (u2 − u1)
2 + (u3 − u2)

2 + . . .+ (un − nn−1)
2 + (un+1 − un)

2, un+1 = 0

(3.24)

demonstrating that uTKu > 0 if u =/ o; only when u = o is uTKu = 0.

Notice that quadratic form huTKu is for arbitrary u, not just for u satisfying Ku = f ,

for which uTKu = fTK−1f . Nevertheless, stiffness matrix K includes boundary condition

un+1 = 0, without which K is only positive semidefinite. Boundary condition u0(0) = 0 as

expressed in eqs. (3.11) and (3.12) includes f1, and an arbitrary u disregards this condition.

But it matters little what conditions are imposed on u at x = 0; K is positive definite in

any event. Positive definiteness in K expresses a deep and fundamental physical property

of the string deformation. Quadratic form 1
2u

TKu is physically interpreted as the elastic

energy stored in the string by deformation u, or geometrically, for unit tension, as the total

elongation suffered by the string during deflection. Any lateral change of form causes the

string to stretch and elongate and therefore only increases the level of stored elastic energy.

What is the elastic energy stored in the analytically modeled string? Recall that the

string deflections and rotations are all small and that, as a result, the string tension is

independent of its displacement. Figure 3.4 shows a differential segment dx of the string

elongated by a small lateral deflection.

The elastic energy stored in the string element equals the work of tension p = p(x)

exerted to extend it from length dx to length (1+ ≤)dx, and is equal to p≤dx, where ≤ = ≤(x)

9

Fig. 3.4

in the pointwise relative string extension or strain. We have for the right differential triangle

in Fig. 3.4 that

1 + ≤ =
q

1 + u02 (3.25)

and if |u0(x)| << 1, then

≤ =
1

2
u0

2
(3.26)

and the total elastic energy stored in the entire string of length 1 becomes

E =
1

2

Z 1

0
pu0

2
dx. (3.27)

For the rod linkage model we write dx = h, du = u2 − u1, and have for one tie

p≤h =
1

2

p

h
(u2 − u1)

2 (3.28)

which, with p = 1, is proportional to a typical term in eq.(3.24). If we write the string model

tie element displacements as vector u = [u1 u2]T , then quadratic form (3.28) assumes the

linear algebraic form

p≤h =
1

2
uTku , k =

p

h

∑
1 −1
−1 1

∏
(3.29)

in which k is the element stiffness matrix of one link. It is customary to denote this small

size matrix by lower-case k, and we adhere to this convention.

Elastic energy expressions (3.28) and (3.29) amount to a piecewise integration of E in

eq. (3.27) under the tacit assumption that pu0 is constant in the interval between two nodes.

3.4 Greater accuracy

Accuracy of the finite difference approximation of boundary value problems can be im-

proved in two ways: 1. by subdividing the string into smaller segments, and 2. by using

more accurate finite difference formulas.

10

To understand how more accurate finite difference schemes are devised reconsider

u
00
1 =

1

h2 (u0 − 2u1 + u2) (3.30)

at x0 = −h, x1 = 0, x2 = h, and notice that it correctly computes u
00

for u = 1, u = x, u = x2

in the entire interval between points 0 and 2. For u = x3, u
00

is correctly computed by eq.

(3.30) at central node 1 only, where u
00

= 0. For u = x4 eq. (3.30) yields u
00
1 = 2h2, which

becomes ever smaller as h→ 0, but is nonetheless inaccurate. We want the finite difference

formula to be accurate, or consistent, for a polynomial u of as high a degree as possible

since according to Taylor’s theorem, a function that is analytic at x is nearly polynomial if

consideration of it is confined to a sufficiently small interval around x.

To have a finite difference scheme that correctly computes u
00

for a quartic u we must

include more points in the formula. In fact, the approximation

u
00
2 =

1

12h2 (−u0 + 16u1 − 30u2 + 16u3 − u4) (3.31)

does it. It correctly computes u
00
2 for u = 1, u = x, u = x2, u = x3, u = x4 and u = x5. For

u = x6 formula (3.31) bears u
00
2 = −8h4, which is very small in magnitude compared to 1 if

h is much smaller than 1.

Fig. 3.5

Approximation formula (3.31) for u
00

includes five neighboring points, and we need more

outside fictitious nodes to approximate the equation and boundary conditions of u
00

+ f =

0 0 < x < 1, u0(0) = u(1) = 0. In Fig. 3.5 the string extends between nodes 1 and 8, points

labeled −1, 0, 9 being fictitious. Points −1 and 0 are justified by symmetry, but for point 9

we must assume a polynomial extension of the string behind the right-hand fixing support.

We assign to the nodes concentrated loads f1, f2, . . . , f8, and going from node to node write:

11

at node 1
1

12h2 (u−1 − 16u0 + 30u1 − 16u2 + u3) = f1,

at node 2
1

12h2 (u0 − 16u1 + 30u2 − 16u3 + u4) = f2, (3.32)

at node 3
1

12h2 (u1 − 16u2 + 30u3 − 16u4 + u5) = f3,

then we eliminate u−1 and u0 from among them using the symmetry conditions u0 =

u2, u−1 = u3.

At the other end of the string we write:

at node 6
1

12h2 (u4 − 16u5 + 30u6 − 16u7 + u8) = f6,

(3.33)

at node 7
1

12h2 (u5 − 16u6 + 30u7 − 16u8 + u9) = f7,

and set in these equations u8 = 0. Then we write the less accurate

1

h2 (−u7 + 2u8 − u9) = f8 (3.34)

and use it to eliminate u9 from eq.(3.33). We need not be concerned about the lower

accuracy of eq (3.34) because around point 8 the displacements are the smallest. A better

finite difference approximation to u
00

calls for a better approximation to f , but since here we

are mainly interested in the stiffness matrix rather than the load vector we leave this issue

to the exercises.

In matrix form equations (3.32), (3.33) and (3.34) become Ku = f ,

1

6h





15 −16 1
−16 31 −16 1
1 −16 30 −16 1

1 −16 30 −16 1
1 −16 30 −16 1

1 −16 30 −16
1 −16 29









u1

u2

u3

u4

u5

u6

u7





= 2h





1
2f1

f2

f3

f4

f5

f6

f7 + 1
12f8





. (3.35)

Devising a mechanical model for the higher-order finite difference scheme is not obvious

anymore, and herein lies the advantage of the purely mathematical approach to discretization

that starts from a differential equation and approximately replaces it by finite differences.

12

We verify for eq. (3.35) that

6h uTKu = 8(u2 − u1)
2

+
n−1X

j=1

≥
6(uj − uj+1)

2 + 6(uj+1 − uj+2)
2 + (uj − 2uj+1 + uj+2)

2
¥

+ 6u2
n , un+1 = 0

(3.36)

for any u, and K is positive definite.

Also, for the higher-order finite difference approximations, 1
2u

TKu still means energy

and elongation. In the finite difference modeling, the string and its properties exist only

at the nodes. But let us suppose that the string displacement is interpolated parabolically

between any three nodes, say 1,2 and 3. Then in the interval between nodes 1 and 3 the

deflection is written as

u = u(x) = u1
1

2
ξ(ξ − 1) + u2(1− ξ2) + u3

1

2
ξ(ξ + 1), −1 ≤ ξ ≤ 1 (3.37)

where x = x2 + hξ. The small deflection elongation, or elastic energy, of the parabolic

segment is given by

1

2

Z h

−h
u0

2
dx =

1

2h

Z 1

−1
u̇2dξ

=
1

12h
(7u2

1 + 16u2
2 + 7u2

3 − 16u1u2 − 16u2u3 + 2u1u3)

(3.38)

where u̇ = du/dξ. With u = [u1 u2 u3]T quadratic form (3.39) is linear algebraically

expressed as

1

2

Z h

−h
u0

2
dx =

1

2
uTku , k =

1

6h




7 −8 1
−8 16 −8
1 −8 7



 (3.39)

in which k is the stiffness matrix of the parabolic string element.

Comparing equations (3.38) and (3.36) we realize that 1
2u

TKu may be interpreted as

the elastic energy of the entire string considered made of overlapping parabolic segments as

in Fig. 3.6, in which u0 = u2, u8 = 0, where only half the energy of the extreme segments is

added, and where the last segment is linear, u9 = −u7.

The point is this: A finer segmentation of the string done in order to achieve a better

finite difference approximation creates larger linear systems with more unknowns. Higher-

order finite difference schemes increase the bandwidth of matrix K, which in eq.(3.35) is 5

instead of 3 in eq.(3.13).

13

Fig. 3.6

Another noticeable difference between the low- and high-order stiffness matrices: for K

in eq. (3.13) the absolute sum of the off-diagonal entries in each row is not larger than the

corresponding diagonal entry. Such a case is called diagonal dominance. It is no longer true

for K in eq.(3.35).

Because we want to retain clear physical significance in the linear algebraic analysis of

the string problem, we shall return to the simpler lower-order discrete model of eq.(3.13).

Exercises

3.4.1. Let u = [u1 u2 . . . un]T include the exact nodal values of the string problem as

obtained from the solution of boundary value problem (3.7). This vector does not satisfy

algebraic system (3.13) exactly but leaves a residual vector r. For typical interior node j

1

h2 (uj−1 − 2uj + uj+1) + fj = rj .

Expand uj+1 and uj−1 by means of Taylor’s theorem around point j, and show that rj ,

including r1, is proportional to h2.

3.4.2. Let u be the exact nodal values vector and u0 the approximate nodal values vector,

f − Ku0 = o, f − Ku = r, so that K(u − u0) = r and u − u0 = K−1r. Show that in

discretization (3.13), ku− u0k1 is proportional to h2.

3.4.3. A finite difference scheme of a higher degree of consistency is obtained for the string

by the inclusion of more f nodal values. Instead of approximation (3.10) write

1

h2 (uj−1 − 2uj + uj+1) + αfj−1 + βfj + αfj+1 = rj

14

and, assuming exact nodal values, use Taylor’s theorem to determine α and β so that rj is

proportional to hp with highest p. Do the same for approximation (3.31).

3.4.4. Suppose that point j is a point of discontinuity for load f(x). Repeat exercise 3.4.3

for this case and write the best approximate force for the discrete equation of equilibrium

at node j in terms of fj−1, f
−
j , f

+
j and fj+1. Is the force of exercise 3.4.3 recovered with

f−j = f+
j = fj?

3.4.5. Use finite differences to algebraize the string problem

u
00

+ f(x) = 0 0 < x < 1

u(0) = u(1) = 0

with

f(x) = 1
1

4
≤ x ≤ 3

4
, f(x) = 0 otherwise,

and compare the approximate solution to the exact.

3.4.6. Discretize the overdetermined boundary value problem

u
00

+ f(x) = 0, 0 < x < 1, f(0) = f(1) = 0.

u(0) = 0

u0(0) = 0

u(1) = 0

u0(1) = 0

by finite differences and discuss what happens to the solution as h→ 0.

3.5 The flexibility matrix

In the terminology of computational mechanics, matrix K of Ku = f is the stiffness

matrix of the string problem. Its inverse F = K−1 is the flexibility matrix. We want to

explore here some of the basic properties of F .

For the stiffness matrix of the symmetric string,

1

h





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2





−1

= h





1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1









1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1





15

= h





6 5 4 3 2 1
5 5 4 3 2 1
4 4 4 3 2 1
3 3 3 3 2 1
2 2 2 2 2 1
1 1 1 1 1 1





, h =
1

n
, (3.40)

whereas for the fixed string,

1

h





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2





−1

=
h

n+ 1





6 5 4 3 2 1
5 10 8 6 4 2
4 8 12 9 6 3
3 6 9 12 8 4
2 4 6 8 10 5
1 2 3 4 5 6





, h =
1

n+ 1
.

(3.41)

Analytically,

Fij =
1

n
(n+ 1− j), j ≥ i (3.42)

for F = K−1 in eq.(3.40), whereas

Fij =
1

(n+ 1)2
i(n+ 1− j), j ≥ i (3.43)

for F in eq.(3.41).

We introduce the measure, or norm

kKk1 = max
i

X

j

|Kij| (3.44)

of K, and compute for K in eq. (3.13) and the corresponding F in eq. (3.40),

kKk1 = 4/h and kK−1k1 = h(1 + n)n/2 (3.45)

so that when n is large

∑1 = kKk1kK−1k1 = 2n2. (3.46)

Notice that for a positive K−1 = F , Fij > 0, kFk1 equals the maximum ui in Ku = e, e =

[1 1 . . . 1]T .

Flexibility matrix F is symmetric and positive definite since stiffness matrix K is such.

We also observe that F is:

16

1. Dense, not one of its entries is zero.

2. Positive, Fij > 0 for all i and j.

3. Bounded, maxFij = 1 in eq.(3.40), and maxFij = 1/4 in eq.(3.41) if n is odd,

independently of n.

For a physical interpretation of these three important observations notice, as in Fig.

3.7, that the jth column of flexibility matrix F contains the displacements due to a single

concentrated unit force applied to the jth node. If





u1

u2

u3

u4



 =





F11 F12 F13 F14

F12 F22 F23 F24

F13 F23 F33 F34

F14 F24 F34 F44









0
0
1
0



 , then





u1

u2

u3

u4



 =





F13

F23

F33

F34



 . (3.47)

It is in the physical nature of the string that a concentrated force applied at any interior

point causes all points of the string to move, and all in the direction of the applied force.

The finite difference deflection computed for the point-loaded string is theoretically exact for

any number of nodes, and hence the maximum deflection, and with it maxFij , is fixed for

any n.

Fig. 3.7

A string cannot transmit rotation or torque (one cannot use a string or rope as a lever),

and under a concentrated load it abruptly changes slope. Consequently if the string is

internally fixed, then the problem of computing its displacements separates, as in Fig. 3.8,

into two disjoint problems between the two pairs of supports.

Symmetry in F constitutes a discrete counterpart to the Betti-Maxwell reciprocal theo-

rem of elasticity: A unit force at node i causes the same deflection at node j as a unit force

at j causes at i. See Fig. 3.9.

17

Fig. 3.8

Fig. 3.9

An experimental F is constructed by measuring the nodal deflections resulting from a

unit force applied sequentially at all nodes. Because F is symmetric the deflection curve due

to one force can be determined by measuring u at a fixed point, where it may be measured

most conveniently and accurately, while shifting the force from point to point.

To this extent the algebraic formulation of the string faithfully imitated the analytical

model of the string; both sensibly duplicating nature. It must be borne in mind, however,

that in general the analytical or physical properties of the algebraically described problem

may correctly appear only in the limit of the discretization. Physical intuition can be a

revealing guide, but is no substitute to proper mathematical deliberation.

Exercises

3.5.1. Write symmetric flexibility matrix F of eq.(3.41) as F = (1 + n)−2M , and show that

Mij = xiyj j ≥ i, where xi is the ith component of x = [1 2 3 4 5 6]T , and yj is the jth

component of y = [6 5 4 3 2 1]T . Give this a physical explanation.

18

3.6 Variable coefficients

Tension that is not constant along the string typifies variable coefficients in the differen-

tial equation of equilibrium. Linear algebraic issues that arise from variable coefficients are

illustrated on the hanging string pulled down by its own weight.

At the lower end of the string tension is zero, and in a uniform string (think of a

chain with very fine links), the tension grows linearly with the distance from the loose

tip. Simply, p(x) = x. Vanishing tension at the lower end of the hanging string makes

consideration of equilibrium more delicate at this point . The behavior of the loose end will

require our attention but for the time being, to keep matters simple, we assume symmetry

at x = 0, u0(0) = 0, and have

−(xu0)0 = f 0 < x < 1

u0(0) = u(1) = 0
(3.48)

as the equation of equilibrium and boundary conditions for the laterally forced (say by wind)

hanging string.

When a string is truly fixed against axial as well as lateral movement at both ends as in

a violin or piano, its deflection is necessarily elastic. But we may also think of the tension

as being supplied by a weight W transmitted over a pulley support as in Fig. 3.10. In this

case the string can be assumed inextensional and the energy it stores in deflection becomes

that of the weight lifted by the sagging, and

E =
1

2
W

Z 1

0
u0

2
dx (3.49)

as for the inextensional string.

Fig. 3.10

19

A string with a free end can certainly be assumed inextensional, and for the hanging

string the energy gained in deflection is the potential energy of its own weight raised by

its own curving. The energy is discretely given by the quadratic form 1
2u

TKu and it is

worthwhile to have a theoretical expression for it. Refer to Fig. 3.11(a). A differential

element dy of the string weights ρgdy and is lifted by deflection to gain energy by the

amount

dE =
1

2
ρgdy

Z y

0
u0

2
(t)dt. (3.50)

We assume ρg = 1 and have that

E =
1

2

Z 1

y=0

Z y

t=0
u0

2
(t)dtdy. (3.51)

Or with the order of integration reversed

E =
1

2

Z 1

t=0

Z 1

y=t
u0

2
(t)dydt (3.52)

so that

E =
1

2

Z 1

0
u0

2
(1− t)dt (3.53)

which with x = 1− t becomes

E =
1

2

Z 1

0
xu0

2
dx (3.54)

as for the elastic string.

If node 1 is placed at the lower end of the string, then the finite difference equation of

equilibrium for the jth node is

−(xu0)0j =
1

2h
(−(2j − 3)uj−1 + 4(j − 1)uj − (2j − 1)uj+1) = fj j = 2, 3, . . . , n (3.55)

with un+1 = 0 to account for the fixed top. At node 1, due to symmetry

1

2h
(−u0 + 2u1 − u2) = f1, u0 = u2 (3.56)

and the linear system for the n node discretization of the hanging string becomes

1

2





1 −1
−1 4 −3

−3 8 −5
−5 12 −7

−7 16









u1

u2

u3

u4

u5




= h





1
2f1

f2

f3

f4

f5




, Ku = f (3.57)

20

with a stiffness matrix that factors into

2K =





1
−1 1

−1 1
−1 1

−1 1









1
3

5
7

9









1 −1
1 −1

1 −1
1 −1

1




. (3.58)

Once more K is positive definite. Otherwise

2uTKu = (u2 − u1)2 + 3(u3 − u2)2 + 5(u4 − u3)2

+7(u5 − u4)2 + 9(u6 − u5)2, u6 = 0
(3.59)

which is the finite difference approximation of E in eq. (3.54), and K is seen also in this way

to be positive definite. Indeed, if u is assumed to be linear between nodes j and j + 1, then

for one such interval,

E =
1

2
u0

2
Z xj+1

xj
xdx =

2j − 1

4
(uj+1 − uj)

2 (3.60)

and summation over all intervals produces (3.59).

(a) (b) (c)

Fig. 3.11

21

Symmetric flexibility matrix F of the hanging string is of the form

F = K−1 =





a1 a2 a3 a4 a5

× a2 a3 a4 a5

× × a3 a4 a5

× × × a4 a5

× × × × a5




(3.61)

explained with reference to Fig. 3.11(b). Here

Fij = 2
nX

k=j

1

2k − 1
, j ≥ i (3.62)

and in particular

F11 = 2
µ

1

1
+

1

3
+

1

5
+

1

7
+ . . .+

1

2n− 1

∂
(3.63)

which keeps increasing very slowly, ultimately like ln(n), as n is increased.

The appearance of a logarithmic term in the flexibility matrix should not surprise us;

the fundamental solution to (xu0)0 = 0 also contains a logarithmic term. The first column of

F includes the response of the string to a tip point force f = [1 0 . . . 0]T , and the analytic

solution of (xu0)0 = 0, x =/ 0, u(1) = 0 is

u(x) = c1 lnx. (3.64)

In the presence of a transverse force the assumption of small displacements becomes unfulfil-

lable at the loose end which is a singular point of the hanging string problem. Singularities of

this kind are the price of linearization, and they disappear in a nonlinear model that allows

for finite displacements and rotations. We defer the discussion of nonlinearity to the last

chapter of this book.

Equation (5.64) implies that a displacement imposed on the loose end of the string is

not transmitted upwards. A numerical solution to (xu0)0 = 0, 0 < x < 1, u(0) = 1, u(1) = 0,

however, will be very slow to recognize and simulate the displacement discontinuity at x = 0.

The computed tip rotation resulting from the end point loading of Fig. 3.11(c) is given

by (u1 − u2)/h = 1/h, and as h→ 0, the tip inclination tends to the horizontal, the reason

being that since tension is absent at the lower end point, the string’s end must rotate 90o to

tangentially meet the horizontal force.

22

How does the string respond to a uniformly distributed load f = 1? Boundary value

problem (3.48) yields in this case

u0(x) = −1 + c1/x, u = −x+ c1 lnx+ c2 (3.65)

where c1 and c2 are arbitrary constants of integration. Immovability at x = 1 is accounted

for with c2 = 1, but the zero slope condition is impossible at x = 0. However, the physically

plausible condition of finite displacements is achievable with c1 = 0, with which the displace-

ment of the hanging string under f(x) = 1 becomes u(x) = −x + 1. Boundary condition

u0(0) = 0 is not fulfilled, but the slope condition can be overruled as it may be discontinuous.

In the presence of a skew tip point force the slope condition becomes that of tangentiality to

the force, but the loose end of the hanging string is free of external forces and tension.

Solution of system (3.57) with f = 1 also yields the linear u = h[n n− 1 . . . 1]T .

For f(x) = x, the differential equation of equilibrium of the hanging brings

u0(x) = −1

2
x+

c1
x
, u(x) = −1

4
x2 + c1 lnx+ c2 (3.66)

and c1 = 0, c2 = 1/4 assure that u0(0) = 0 and u(1) = 0. Now that f(0) = 0, the zero slope

boundary condition at the free end of the string can be enforced.

For stiffness matrix K in eq.(3.57) and flexibility matrix F in eq.(3.61) we compute the

norms

kKk1 = 4(n− 2), kK−1k1 = Sn, Sn =
2

1
+

4

3
+

6

5
+ . . .+

2n

2n− 1
(3.67)

where, approximately, Sn = n+ ln(n), so that

∑1 = kKk1kK−1k1 = 4n2 (3.68)

approximately.

A hanging string with quadratically varying tension due to a linearly varying density is

also of interest. Its equilibrium is described by

(x2u0)0 + f = 0 = 0 < x < 1, u0(0) = u(1) = 0 (3.69)

23

and, using finite differences, we set up for it the stiffness matrix

K = K(n× n) =
h

4





1 −1
−1 10 −9

−9 34 −25
−25 74 −49

−49 130




, h =

1

n
(3.70)

where h renders the right side of the stiffness equation Ku = f to mean force.

Matrix K is factored as

K =
h

4





1
−1 1

−1 1
−1 1

−1 1









1
9

25
49

81









1 −1
1 −1

1 −1
1 −1

1




(3.71)

and we verify thereby that the matrix is positive definite. Flexibility matrix F = K−1,

K−1 =
4

h





1 1 1 1 1
1 1 1 1

1 1 1
1 1

1









1
1/9

1/25
1/49

1/81









1
1 1
1 1 1
1 1 1 1
1 1 1 1 1




(3.72)

is here of the same form as that in eq. (3.61) and we readily establish that

Fii = 4n
nX

k=i

1

(2k − 1)2
,

Fnn = 4n
1

(2n− 1)2
, and F11 = 4n(1 +

1

32 +
1

52 + . . .+
1

(2n− 1)2
). (3.73)

The sum of the series in the expression for F11 never exceeds º2/8, and for large n, Fnn = 1/n,

and F11 = nº2/2, approximately.

The large F11 = nº2/2 is due to a stronger singularity at the free end of the hanging string

with p(x) = x2 than that of the hanging string with p(x) = x, the solution of (x2u0)0 = 0

being

u0(x) = c1/x
2, u(x) = −c1/x+ c2. (3.74)

A hanging string with quadratically varying tension cannot carry even a uniform load. If

(x2u0)0 = −1, 0 < x < 1, then

u0(x) = −1/x+ c1/x
2, u(x) = − lnx− c1/x+ c2 (3.75)

24

and no choice of c1 and c2 renders u(0) finite. In the case of f = x,

u0(x) = −1

2
+

c1
x2 , u(x) = −1

2
x+

c1
x

+ c2 (3.76)

and the displacement is finite with c1 = 0. But f(x) = x2 allows the satisfaction of both

u(1) = 0 and u0(0) = 0.

Stiffness matrix K for the hanging string with a quadratically varying tension, given in

eq. (3.70), and its inverse have the norms

kKk1 = 4n, kK−1k1 = 2nSn, ∑1 = 4n2 ln(n) (3.77)

since

Sn =
2

1
+

4

9
+

6

25
+ . . .+

2n

(2n− 1)2
(3.78)

is ln(n)/2, approximately.

Exercises

3.6.1. A string of unit length hangs with a weight W1 attached to its lower free end, and a

weight W2 attached at midpoint. Ignoring self weight, the tension in the string is given by

p(x) = W1 0 ≤ x <
1

2
, p(x) = W1 +W2

1

2
≤ x ≤ 1.

Write the differential equation of equilibrium for the string and discretize it by finite differ-

ences. Compare the approximate solution with the exact.

3.6.2. Is the inverse of matrix K in eq. (3.35) positive? Compute ∑1 = kKk1kK−1k1 for

this matrix.

3.6.3. For the finite difference model of (xu0)0 = 0, 0 < x < 1, u(0) = 1/2, u(1) = 0, study

the approximate deflection of the string at x = 1/2 as a function of the number n of nodes.

11. A string of density ρ per unit length is attached to the axis of a turntable that revolves

with an angular velocity ω. Assume the string is in radial position and write the tension it

is under.

25

3.7 Fourth-order problem–bent beam

Physical perspectives underscore our present discussion, and we shall explore the lin-

ear algebraic properties of the discrete model for a fourth-order problem on the physically

comprehensible beam-bending problem.

Consider a long metal or wood rod of rectangular cross-section, resting on two sharp

supports at each end and laterally loaded by a distributed force f(x), as shown in Fig.

3.12. As a result of the action of load f(x) the rod bends and assumes configuration u(x).

Deformations are here entirely elastic but the beam as a whole is assumed to be axially

inextensional, and hence the right rolling support. In the linear analysis displacements are

assumed to be small compared to the thickness of the beam. Forces are transmitted through

the beam to the supports not by axial tension, which is entirely absent here, but by lateral

cross-sectional sheer stresses and bending moments.

Fig. 3.12

As the beam flexes, longitudinal material fibers above a neutral axis shorten, while fibers

below it lengthen as in Fig. 3.13(a). The neutral axis runs parallel to the long sides of the

beam and it is reasonably assumed (the Kirchhoff assumption) that cross sections remain

plane and normal to the axis during bending. We also assume that elastic deformations are

occurring longitudinally only.

At point x the radius of curvature of the beam is given by

r =
(1 + u0

2
)3/2

u00 =
1

u00 if |u0| << 1 (3.79)

and the relative elongation of a fiber located at distance z from the neutral axis is

≤ =
(r + z)dθ − rdθ

rdθ
= zu

00
. (3.80)

26

It is further assumed that the beam material is linearly elastic so that the elastic restoring

stress σ (force per unit area) is proportional to ≤, or

σ = E≤ = Ezu
00

(3.81)

where E is the elastic modulus of the material. Figure 3.13(b) shows the normal stress

distribution on typical cross sections. In the absence of axial forces and with a rectangular

cross section, the neutral axis passes symmetrically midway between the long edges.

(a) Fig. 3.13 (b)

A resultant axial force is absent here, but due to the variable σ, there appears at any

typical cross section a bending moment M equal to

M = b
Z t/2

−t/2
σzdz = Eu

00
b
Z t/2

−t/2
z2dz = E

bt3

12
u

00
(3.82)

where b is the width of the beam and t its thickness. In short

M = EIu
00

(3.83)

where I = bt3/12 is the beam’s cross-sectional moment of inertia.

27

Fig. 3.14

We assume the lateral force f(x) to be such that it never causes a corner or a discontin-

uous slope u0. The beam can carry a point force and even a point moment.

Apart from the bending moment a reactive shearing force Q arises in the beam as a

result of the applied load as in Fig. 3.14. Vertical zero force sum yields the first equilibrium

equation

Q+ fdx−Q− dQ = 0 or Q0 = f (3.84)

for the beam differential element dx, while zero moment sum about point 2 yields the second

M +Qdx+ fdx dx/2−M − dM = 0 or Q = M 0 (3.85)

if (dx)2 is neglected. The combination of eqs. (3.84) and (3.85) result in

M
00

= f(x) (3.86)

becoming with eq. (3.83)

EIu
0000

= f(x) (3.87)

which is a linear fourth-order equation with constant coefficients.

Common homogeneous displacement and force boundary, or edge, conditions for the

beam are shown in Fig. 3.15.

All energy stored in the deformed beam is elastic, and to compute it we consider a fiber

element of length dx and thickness dz additionally extended from 0 to ≤. The differential

increase in elastic energy of the element is

dE = bdxdz
Z ≤

0
σd≤ (3.88)

28

Fig. 3.15

which with σ = E≤ becomes

dE =
b

2
E≤2dxdz (3.89)

and for the entire beam of length L and thickness t

E =
b

2
E
Z L

0

Z 1
2 t

−1
2 t
≤2dxdz. (3.90)

But ≤ = zu
00
, and

E =
1

2
EI

Z L

0
u00

2
dx (3.91)

where I = bt3/12.

A metal piano string designed to produce loud tones has the mixed properties of beam

and string. Acoustically it is preferable that it have the nature of an ideal string, and by dint

of the great tension administered to it, it indeed behaves more like a string than a beam.

But even forcing the string down laterally with a sharp object does not cause it to bend

sharply as would happen to a linen thread.

A finite difference formula for u
0000

requires u at five nodes and we write at node j the

approximations

u
00
j =

1

h2 (uj−1 − 2uj + uj+1), u
0000
j =

1

h2 (u
00
j−1 − 2u

00
j + u

00
j+1) (3.92)

so that for, say, point 3

u
0000
3 =

1

h4 (u1 − 4u2 + 6u3 − 4u4 + u5). (3.93)

29

We shall now use this formula to approximate the fourth-order, two-point boundary value

problem

u
0000

= f 0 < x < 1

u
00
(0) = u

000
(0) = 0

u(1) = u0(1) = 0
(3.94)

that describes the deformation of a beam free at x = 0 and clamped at x = 1. We shall also

consider boundary conditions u(1) = u
00
(1) = 0 for a simple support at x = 1.

With reference to the grid in Fig. 3.5 we write:

at node 1
1

h4 (u−1 − 4u0 + 6u1 − 4u2 + u3) = f1, (3.95)

at node 2
1

h4 (u0 − 4u1 + 6u2 − 4u3 + u4) = f2.

Boundary conditions u
00
(0) = u

000
(0) = 0 at node 1 are approximated by

u
00
j =

1

h2 (uj−1 − 2uj + uj+1) j = 0, 1, 2 u
00
1 = 0 (3.96)

and

u
000
1 =

1

2h
(u

00
2 − u

00
0) = 0 (3.97)

resulting in

u0 = 2u1 − u2 and u−1 = 4u1 − 4u2 + u3 (3.98)

which permit the elimination of u0 and u−1 from the two equations (3.95). Now:

at node 1
1

h4 (u1 − 2u2 + u3) =
1

2
f1, (3.99)

at node 2
1

h4 (−2u1 + 5u2 − 4u3 + u4) = f2,

and for the entire discretization

1

h3





1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4

1 −4 β









u1

u2

u3

u4

u5

u6





= h





1
2f1

f2

f3

f4

f5

f6





,Ku = f (3.100)

where β = 5 if the right end of the beam is simply supported, u(1) = u
00
(1) = 0; and β = 7

if the right end is clamped, u(1) = u0(1) = 0.

30

Triangular factorization produces for K in eq. (3.100)

h3K = LLT , L =





1
−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 α





(3.101)

in which α =
√

2 if u(1) = u0(1) = 0, and K is then positive definite. If u(1) = u
00
(1) = 0,

if the beam is simply supported at the right end point (recall that it is free at the left end),

then α = 0 and K is singular, and only positive semidefinite. Obviously no elastic solution

exists for these latter boundary conditions as is seen in Fig. 3.16(a).

(a) (c) (b)

Fig. 3.16

The flexibility matrix for the beam is computed from eq.(3.101) for α =
√

2, in the form

F = K−1 = h3L−TL−1, L−1 =





1
2 1
3 2 1
4 3 2 1
5 4 3 2 1

6/α 5/α 4/α 3/α 2/α 1/α





(3.102)

and F is once more dense and positive. A point force at any node causes all points of the

beam to displace in the direction of the force as in Fig. 3.16(b).

But F need not always be positive for a beam problem. Figure 3.16(c) shows a beam on

internal supports. Rotation is transmitted over a simple support and a positive deflection

31

between the supports raises the overhanging sections in the negative direction. Positive defi-

niteness is a deeper, and more general property of the flexibility matrix than the positiveness

of all entries, which is not always there.

That K in eq.(3.100) is positive definite when β = 7 may also be proved by establishing

that

h3uTKu = (u1 − 2u2 + u3)
2 + (u2 − 2u3 + u4)

2 + . . .+ (u5 − 2u6 + u7)
2

+
1

2
(u6 − 2u7 + u8)

2
(3.103)

in which u7 = 0 and u8 − u6 = 0 to satisfy the boundary conditions u(1) = u0(1) = 0.

The last term in eq.(3.103) is then 2u2
6, and the one before it (u5 − 2u6)2. It follows that

uTKu = 0 only if u6 = 0, u5 = 0, u4 = 0 . . . u1 = 0, otherwise uTKu > 0, and K is positive

definite.

If the beam deflection is assumed parabolic over the interval 2h between, say nodes 1

and 3, then u
00

= (u1− 2u2 + u3)/h2 over this interval and the elastic energy of the segment

is according to eq. (3.91)

E =
1

2h3 (u1 − 2u2 + u3)
2 (3.104)

if EI = 1. Or with u = [u1 u2 u3]T

E =
1

2
uTku, k =

1

h3




1 −2 1
−2 4 −2
1 −2 1



 . (3.105)

We interpret eqs.(3.103), (3.104) and (3.105) as implying that the elastic energy of the beam

consists of the sum of overlapping parabolic segments similar to what is shown in Fig. 3.6.

Only half the energy of the last segment, that extends over the right-hand clamping support,

is added, and u7 = 0, and u6 = u8 are imposed on it. Also, because node 1 is at a free end

where M = Q = 0, it happens that u0 − 2u1 + u2 = 0.

To compute the infinity norm of the beam flexibility matrix F we take advantage of its

positiveness, solve Ku = e, e = [1 1 . . . 1]T , using the LLT factorization of eq. (3.102), and

obtain

kK−1k1 = u1 =
1

4
h3(2

nX

j=1

(j2 + j3)− n2(n+ 1)) (3.106)

32

which by the known summation formulas for j2 and j3, and after ignoring n2 and n3 relative

to n4, leaves us with

kKk1 = 16n3, kK−1k1 =
1

8
n, ∑1 = 2n4. (3.107)

The beam stiffness matrix has an infinity condition number ∑1 that grows proportionally

to n4, while that of the string grows proportionally to n2 only. The beam stiffness matrix

becomes ill-conditioned much faster than that of the string, and this is one of the most

important computational distinctions between the two problems.

On the other hand, solution of u
0000

= f involves four repeated integrations of f , and as

a result deflection u of the beam is of a higher degree of continuity than that of the string,

allowing for a coarser mesh with fewer unknowns. If f is a concentrated point force, or a

delta function, then the two repeated integrations needed to produce u = u(x) for the string

from −u00
= f assure the deflection to be continuous, but not more. The four repeated

integrations of the beam equation produce a deflection curve that is, in this case, not only

continuous in itself but even continuous in the second derivative.

Exercises

3.7.1. Write the stiffness matrix for a beam with an internal hinge as in Fig. 3.17.

Fig. 3.17

3.8 Two- and three-dimensional problems

Both the string and beam problems allowed us to gain invaluable insights into the physical

background of the basic linear algebraic properties of their discrete equations of equilibrium.

Because these problems are only one-dimensional we were able to write out explicitly the

stiffness and flexibility matrices for them . We observed the band form of the stiffness matrix,

33

its positive definiteness, and the inevitable increase in size and bandwidth in response to a

quest for greater accuracy, and we considered the question of why the flexibility matrix is

dense and often with entirely positive entries.

Two- and three-dimensional field problems are cumbersome and we can consider them

here in broad generalities only.

Corresponding to the taut string deflection problem u
00

+ f(x) = 0, with appropriate

boundary conditions, are the partial differential equations

@2u

@x2 +
@2u

@y2 + f(x, y) = 0 and
@2u

@x2 +
@2u

@y2 +
@2y

@z2 + f(x, y, z) = 0 (3.108)

in plane and space, respectively. They are the most common equations of equilibrium in

linear mathematical physics and their discretization should amply illustrate to us the basic

computational issues raised by higher dimensions.

Take first uxx + uyy + f = 0. Among other things it describes the deflection of a thin

taut membrane by a surface-distributed load f , and we want to think of the boundary

value problem in terms of this physical allusion. The membrane extends over domain D

with boundary B on which some boundary conditions, say u = 0, prevail. Discretization

of the membrane boundary value problem of Fig. 3.18(a) consists of replacing the partial

differential equation of equilibrium at each point of a set of nodes in D and on B, as in

Fig. 3.18(b), by a finite difference approximation involving assumed displacements u at the

point and some nodes around it. Precisely how to do it, particularly how to accommodate

boundary B and the u conditions on it, is beyond our present resources. Finite element

discretization techniques handle these questions with great methodological astuteness.

(a) (b) (c)

Fig. 3.18

34

It is enough for our purpose that we consider the square domain in Fig. 3.18(c) with

nodes regularly placed on grid lines parallel to the sides. At typical interior node 0 we write

uxx + uyy =
1

h2 (u1 + u2 + u3 + u4 − 4u0) (3.109)

and accept that a higher-order finite difference approximation to uxx + uyy would involve

more nodes around grid point 0.

Discretization of the entire membrane boundary value problem is accomplished by writ-

ing the finite difference approximation at all interior points and imposing the prescribed

boundary conditions.

Clearly, the stiffness matrix for the membrane is sparse because equilibrium is pointwise,

and each equation includes only few neighboring nodal values. We also foresee the flexibility

matrix F = K−1 as being completely dense. But the sparseness pattern of the matrix

greatly depends on the way the nodes are numbered, a task more involved and infinitely

richer in possibilities here than in one dimension. The rest of this chapter is devoted to

node numbering strategies designed to achieve certain declared storage and computational

objectives for stiffness matrix K.

Matters are more involved in space where there are layers upon layers of grid planes.

Matrices are still sparse and basically of band form, but everything is on a gigantic scale.

The fourth-order beam problem u
0000

= f becomes in the plane the biharmonic

@4u

@x4 + 2
@4u

@x2@y2 +
@4u

@y4 = f(x, y) (3.110)

equation of equilibrium for the thin elastic plate. Finite difference approximation of the plate

equation does not differ in principle from that of the membrane.

In case of polar and spherical symmetries, equations (3.108) reduce to

(ru0)0 + rf(r) = 0 and (r2u0)0 + r2f(r) = 0, 0 < r < 1 (3.111)

in two and three dimensions, respectively, reminding us of the equations of equilibrium of

the hanging string with linear and quadratic tensions.

The method of finite elements, universally used to discretize boundary value problems of

the membrane and plate kind, as well as the more general elastic problem, produces fittingly

35

and without exception symmetric positive (semi)definite stiffness matrices. We shall consider

finite elements in the last chapter of the book, but meanwhile we assume K to be symmetric

and positive definite, always admitting an LLT factorization.

Exercises

3.8.1. Use the approximation

auxx + buyy =
1

h2 (a(u2 − 2u0 + u3) + b(u1 − 2u0 + u4))

to write the stiffness equation for the square membrane problem

uxx + uyy + f(x, y) = 0

in the unit square of Fig. 3.19

Fig. 3.19

with u = 0 on all four edges.

Verify that K is positive definite and symmetric, and that F = K−1 is dense and positive.

Consider the mechanical model with short ties or links. Compute ∑1 for this m×m problem,

and estimate it as a function of h = 1/m. Explain why the response of the membrane is

more localized than that of the string under constant tension.

Let the load be symmetric so that u7 = u9 = u17 = u19, u8 = u12 = u14 = u18.

Is LLT the discrete counterpart to (@
@x + @

@y)(
@
@x + @

@y)?

36

3.8.2. Same as 3.8.1. but for

uxx + 2uyy + f(x, y) = 0

3.8.3. Same as 3.8.1. but for

uxx + 3uyy + 1 = 0

with shown boundary conditions

u = 0

@u
@y + u = 0

@u
@y − u = 0

u = 0

Discuss symmetry issues for K.

One need not get overly involved with difficulties and uncertainties of finite difference

approximations. Finite elements, to be briefly discussed in the last chapter, produce stiffness

matrices theoretically guaranteed to be symmetric and positive definite.

3.9 Sparseness patterns–band and envelope

Discrete equations of equilibrium have sparse matrices. The tridiagonal string stiffness

matrix includes only 3n− 2 nonzeroes for a total of n2 entries.

The relationship between the distribution of nonzero entries in stiffness matrix

K =





× ×
× × ×

× × ×
× × ×

× × ×
× ×





(3.112)

of the string and the drawing made to mark and number (label) the nodes of the finite

difference grid suggests that we call the latter the graph of the matrix. The graph consists of

n nodes (vertices), of which nodes i and j are said to be connected if Kij = Kji =/ 0. We are

dealing exclusively with symmetric positive definite matrices for which Kii =/ 0 and every

node is self-connected.

37

Given a matrix we may draw its graph, but with finite differences, and as we shall

see later with finite elements, the graph precedes the matrix and very often has a definite

physical existence. Two points on the string are connected if they are end points of a tie in

a linkage model.

A graph has only n points and provides concise means by which to visualize the distri-

bution of the nonzero entries in the n × n matrix. For the one-dimensional string problem

it does not occur to us to number the nodes other than consecutively, hence the tridiagonal

form of K. A decisive property of the graph of K is that the interchange of two node labels

results in the symmetric permutation of the corresponding rows and columns of symmetric

matrix K. Any other numbering creates an equivalent linear system and is therefore per-

missible, but it will destroy the band form and disperses the nonzero entries, and this we do

not want. We cherish the band form, for it allows an economic organization of the solution

of the linear system.

Figure 3.20(a) shows a two-dimensional grid of nodes with their ties or connectors. A

node is marked by a full small circle • and there is one unknown at each of the 36 nodes.

Nodes are not yet labeled but we know that there are 36 equations of equilibrium for the

grid of Fig. 3.20, one per node, each equation including the unknowns at connected nodes

only. We may picture the grid as being real with the node connections being actual ties.

Such a two- or three- dimensional rod structure is called by engineers a truss. One thinks of

a truss as a building frame.

Evidently size is a severe computational challenge for discrete systems of equilibrium

equations of two- and three-dimensional problems. A grid with 25 points per side produces

a 625×625 stiffness matrix in two dimensions and a 15625×15625 stiffness matrix in three

dimensions. If the grid truly represents a truss or building skeleton, then the movement of

each node is determined by three displacements and the number of unknowns triples. And

25 points per side are realistically very few.

Holding and solving full systems of such magnitude is unworkable even for the fastest

and largest of computers. Simulation and solution of realistic discrete two and three dimen-

sional models is a pragmatic computational proposition only if full advantage is taken of

38

(a)

(b) (c)

Fig. 3.20

the sparseness of K. Computation of the usually dense flexibility matrix F = K−1 is out

of the question for such large systems, but we have already noted that forward elimination

produces sparse triangular matrices. Central to the argument of this section is

Theorem 3.1. If K is a band matrix factored as K = LDLT , then

band (L+ LT) = band (K). (3.113)

The proof to this theorem rests on the simple observation that forward elimination and

back substitution in a band system is entirely confined to the band. Zero entries outside the

band need neither be stored nor arithmetically handled.

A primary node labeling objective becomes manifest: to create K with the smallest

band. Two good band numberings are shown in Fig. 3.20(b) and 3.20(c) with corresponding

stiffness matrices in eqs. (3.114) and (3.115)

39

(3.114)

(3.115)

Both are considered band matrices, with K having a half bandwidth equal to 7 in eq.

(3.114), and 6 in eq. (3.115). This is the best we can do, and generally the half bandwidth of

K for an m×m grid is m . Three-dimensional problems are too large for detailed description,

40

but we envision that anm×m×mmesh with stacked planes numbered consecutively produces

a matrix of size m3 ×m3 with half bandwidth equal to m2.

The second important computational consideration with sparse matrices is algorithmic

simplicity or low overhead. Gauss solution and the triangular factorization of K is as simple

for band systems as for a dense system, and hence the appeal of band storage. The band

itself is sparse but many of its zero entries turn nonzero during forward elimination; matrix

L suffers fill. Equations (3.116) and (3.117) show LT in K = LLT for K in eqs. (3.114) and

(3.115), respectively with an × to mark an original nonzero entry in K, and a • to mark a

nonzero created during factorization.

In the simplest band version of Gauss elimination, the pivots are taken consecutively

on the diagonal and are used to eliminate the current unknown from all equations below it

inside the band. No attempt is made to distinguish between permanent zeros and nonzero

entries inside the band. This is the chief algorithmic simplification of the solution procedure.

But from purely arithmetical considerations it is not entirely efficient. Some band entries in

eq. (3.116), and more in eq. (3.117) are permanently zero and it is arithmetically wasteful

to operate with them. A more sophisticated solution procedure would perform a symbolic

factorization first and then avoid all null arithmetical operations.

But here ultimate arithmetical efficiency is being paid for with a more complicated, costlier,

overhead-burdened algorithm.

For a rectangular grid it is rather obvious how to number the nodes for a narrow band.

Bandwise, the labeling rule of Fig. 3.21(a) is unmistakably good whereas that of Fig. 3.21(b)

is bad.

For grids with extensions and cutouts one expects to do better than a bandwidth for

a covering rectangle, yet no renumbering algorithm exists to find the very minimal band-

width in reasonable (polynomial) time, and to try all possibilities takes forever. Because

band reduction through node renumbering is of such great computational interest, heuristic

algorithms have been devised to search for improved labeling to reduce bandwidth.

Labeling uncertainties and grid irregularities combine to erode the computational effi-

ciency of the band algorithm. The next step in algorithm sophistication is a variable band-

41

(3.116)

(3.117)

width or envelope (also skyline) storage. Figures 3.22(a),(b) and (c) show an L-shaped grid

and a circular grid with two different node numberings. The stiffness matrices produced by

the grids are, correspondingly, written in eqs. (3.118),(3.119), and (3.120), with the envelope

42

top (a) Fig. 3.21 bottom (b)

heavily outlined.

Symmetric positive definite matrices are such that no zero pivot ever appears to require

row and column permutations. Gauss solution of the linear system works with entries within

the envelope only. We state it formally in

Theorem 3.2. If K is a symmetric and positive definite matrix factored as K = LLT ,

then

envelope (L+ LT) = envelope (K). (3.121)

Envelope algorithms are more efficient than band algorithms but are not considerably

more complicated and are favored in commercial finite difference and finite element codes.

The upper-triangular LT in the symbolic factorizations of K in eqs. (3.118),(3.119), and

(3.120) is given in eqs. (3.122),(3.123) and (3.124), respectively.

3.10 Sparse algorithms

These take ultimate advantage of the matrix sparseness. Only nonzero entries in the LLT

factorization of K are stored and arithmetically handled. All other zero entries are ignored.

43

(a)

(b) (c)

Fig. 3.22

Before the arithmetic starts matrix K is symbolically factored (assuming nodal numbering is

decided upon) to determine the nonzero entries of L, and only they are stored. This requires

some sophisticated bookkeeping to relate the densely stored entries of K to their location

in the two-dimensional table. Computational overhead both in storage and arithmetic is

incurred thereby and should be included in the overall storage and cost assessment of the

algorithm.

The avowed labeling objective of sparse algorithms is to reduce fill; to have the least

number of nonzero entries created during factorization. In one-dimensional problems con-

secutive numbering results in zero fill. In two- and three-dimensional problems fill can be

considerable. Reconsider grid 3.20(b), the corresponding matrix in eq.(3.114) and factor ma-

44

(3.118)

(3.119) (3.120)

trix LT in eq.(3.116). We count 121 nonzero entries (marked × in eq.(3.116)) in the upper

triangular part of K, and 125 newly created entries (marked •) in LT . Numbering along

diagonals as in Fig. 3.20(c) reduces the fill as seen in eq.(3.117). Only 70 nonzero entries

are created during the LLT factorization of this K.

No polynomial-time algorithm exists for a minimum-fill numbering strategy but a simple

heuristic rule is observed to regularly produce good results. It is the minimum degree algo-

rithm. Nodes are first numbered in any way and matrix K is symbolically written to mark

the zero and nonzero entries. Rows and columns are then symmetrically interchanged to

have a first equation with the least number of nonzero coefficients. Usually there are several

45

(3.122)

(3.123) (3.124)

candidates for the first place and one among them is picked up arbitrarily. Node 1 is thus

fixed, x1 is eliminated from all equations below the first, and the left n − 1 equations are

searched again for the least number of nonzero coefficients in order to fix node 2. This is

continued until all pivots are used up.

The minimum degree algorithm applied to K with the initial numbering of Fig. 3.20c

produced the permuted node labels shown in Fig. 3.23, and LT in eq.(3.125). The number

of created nonzero entries is reduced from 70 to 62 but at the price of dispersing the nonzero

entries of K all over the matrix.

46

Fig. 3.23

(3.125)

Exercises

3.10.1. Number the nodes of the three grids (graphs) in Fig. 3.24

so as to have a stiffness matrix of a narrow band.

For a given numbering of the nodes define the diameter

δ = max |i− j|

of the graph as the greatest difference between any pair of connected nodes numbered i and

j. The objective is to minimize δ over all possible numberings. Use the simple heuristic

numbering strategy of returning to the connections of a labeled node as soon as possible.

47

Fig. 3.24

Fig. 3.25

3.10.2. The pipeline layout in Fig. 3.25 is in the language of graph theory a tree structure.

Number the nodes for a low δ. This example serves as a common challenge problem in

the literature on band minimization algorithms.

3.11 Block algorithms

These are sparse submatrix storage and arithmetic schemes. An entry of K is accessed

through a two-tier indexing; an outer for the submatrices and an inner for the elements of

48

each submatrix. A submatrix that remains zero throughout the factorization is ignored.

In programs of different levels of complexity the nonzero submatrices are either considered

dense or a sparse algorithm is individually applied to each one of them.

Engineers call this storage mode substructuring, as it is a natural choice for structures

with repeated components held together at a few joints. Consider the tripod frame of Fig.

3.26 with three identical limbs tied at one point. The node-numbering system chosen in Fig.

3.26 is most sensible for this graph and it produces the stiffness matrix in eq. (3.126).

(3.126)

Partitioned, the linear system Ku = f for the tripod assumes the form





K11 K14

K22 K24

K33 K34

KT
14 KT

24 KT
34 K44









u1

u2

u3

u4



 =





f1

f2

f3

f4



 (3.127)

where u4 is the unknown at connecting joint 22. In terms of the submatrices

u1 = −K−1
11 K14u4 +K−1

11 f1

u2 = −K−1
22 K24u4 +K−1

22 f2

u3 = −K−1
33 K34u4 +K−1

33 f3

(3.128)

KT
14u1 +KT

24u2 +KT
34u3 +K44u4 = f4

49

Fig. 3.26

entailing the solution of the six equations

K11x1 = K14 K11y1 = f1

K22x2 = K24 K22y2 = f2

K33x3 = K34 K33y3 = f3

(3.129)

each with a 7× 7 stiffness matrix. But for a repeating structure K11 = K22 = K33, and only

one substructure, or super-element, stiffness matrix needs to be set-up and factored. With

systems (3.129) solved, u1, u2, u3 are expressed in terms of u4, and after their substitution

into the fourth of eqs. (3.128) the equation is solved for the remaining unknown u4.

Block-formed stiffness matrices can be created artificially with node-numbering systems

that separate groups of node numbers. Three such examples are shown in Figs. 3.27(a),

3.27(b)

and 3.27(c), with the corresponding LT factors written in eqs. (3.130),(3.131) and (3.132),

respectively.

3.12 Arithmetic operations count

Simple yet reasonably realistic cost estimates are made here for the basic algorithms of

computational matrix algebra in terms of matrix size and form and computer speed. Matrix

50

(a)

(b) (c)

Fig. 3.27

(3.130)

51

(3.131)

(3.132)

arithmetic consists mainly of the repeated sequence of the retrieval of two entries from the

computer storage, their multiplication, and the addition of the product to a stored floating-

point number. Such a sequence we name an operation. Assuming that the entire matrix is in

52

random-access storage, one operation typically lasts 10−6 seconds on a mainframe computer

and 10−4 seconds on a desktop computer. Discounting overhead, the operations count of an

algorithm is proportional to the computing time and is directly translated into cost.

We commence with full matrices.

Theorem 3.3. Let A = A(n×n) and B = B(n×n) be two dense matrices, a = a(n×1)

and b = b(n× 1) two vectors; and L = L(n× n) and U = U(n× n) dense lower- and upper-

triangular matrices. The operations count for performing

1. aT b is n.

2. Ab is n2.

3. AB is n3.

4. LLT is 1
6n(n+ 1)(n+ 2) = 1

6n
3 if n >> 1.

5. LU is 1
6n(n+ 1)(2n+ 1) = 1

3n
3 if n >> 1.

Proof.

1. This statement is shorthand for 0 + a1b1 + a2b2 + . . . + anbn and to carry it out

numerically requires n operations.

2. Formation of Ab entails the inner product of n pairs of (n× 1) vectors and hence the

nn = n2 operations.

3. Each entry of AB is the inner product of a row by a column, and there are n2 entries

in AB.

4. Since LLT is symmetric, only the lower-triangular part of it need be computed; the

entries above the diagonal are inserted symmetrically. Refer to eq. (3.133)

LLT =





× × × ×
× × × ×
× × × ×
× × × ×



 =





×
× ×
× × ×
× × × ×









× × × ×
× × ×

× ×
×



 (3.133)

and grant that LLT is computed columnwise. The first column of LLT has n entries, each

requiring one operation. The second column has n − 1 entries each requiring 2 operations.

53

The mth column has n+ 1−m entries each requiring m operations. In all

1n+ 2(n− 1) + 3(n− 2) + . . .+ n =
nX

j=1

j(n− j + 1)

= (n+ 1)
nX

j=1

j −
nX

j=1

j2
(3.134)

which with the summation formulas

1 + 2 + 3 + . . .+ n =
1

2
n(n+ 1) , 12 + 22 + 32 + . . .+ n2 =

1

6
n(n+ 1)(2n+ 1) (3.135)

yields n(n+ 1)(n+ 2)/6 operations.

4. No symmetry savings are available for the LU multiplication and all entries need be

computed, requiring

1(2n− 1) + 2(2n− 3) + 3(2n− 5) + . . .+ n1 =
nX

j=1

j(2n− (2j − 1))

= (2n+ 1)
nX

j=1

j − 2
nX

j=1

j2 =
1

6
n(n+ 1)(2n+ 1) =

1

3
n3

(3.136)

operations if n >> 1. End of proof.

Theorem 3.4. Assume that in Ax = f,A = A(n × n) is dense, and f = f(n × 1). If

the Gauss solution of the system is carried out without pivoting, then:

1. Forward elimination requires

1

6
n(n− 1)(2n+ 5) ∼=

1

3
n3 (3.137)

operations if A is unsymmetric, but only

1

6
n(n− 1)(n+ 7) ∼=

1

6
n3 (3.138)

operations if A is symmetric.

2. Back substitution requires
1

2
n(n+ 1) ∼=

1

2
n2 (3.139)

operations.

54

3. Inversion and multiplication by the right-hand side to produce x = A−1f requires

n2(n+ 1) ∼= n3 (3.140)

operations.

Proof.

1. Elimination of x1 from each equation below the first requires n operations on the matrix

and one operation on the right-hand side, altogether (n + 1)(n − 1) operations. Zeroes

created during elimination are ignored and hence elimination of x2 from all equations below

the second requires n(n− 2) operations. The entire forward elimination process consists of

0 · 2 + 1 · 3 + 2 · 4 + . . .+ (j − 1)(j + 1) + . . .+ (n− 1)(n+ 1) (3.141)

operations, summed up to yield

nX

j=1

(j2 − 1) =
1

6
n(n− 1)(2n+ 5) ∼=

1

3
n3 (3.142)

operations.

Now let A be symmetric and suppose that x1 is eliminated from all equations below the

first so that the newly created equivalent system A0x = f 0 is with

A0 =




× × ×
0 × ×
0 × ×



 . (3.143)

The lower portion of A0 is symmetric and as a result only a triangular part of A need be

stored and modified by the Gauss algorithm. Elimination of x1 requires n − 1 divisions of

the pivot, 1
2n(n− 1) operations on the matrix, and n− 1 operations on the right-hand side

vector. Altogether

nX

j=1

µ
1

2
j(j − 1) + 2(j − 1)

∂
=

1

6
n(n− 1)(n+ 7) (3.144)

operations.

55

2. In back substitution the jth equation is divided by the jth pivot, and j− 1 operations

are performed on the right-hand side. Hence the total of

nX

j=1

j =
1

2
n(n+ 1) (3.145)

operations.

3. Solution of Ax = f through x = A−1f calls for the inversion of A, and a vector

matrix multiplication. Inversion is what we have to look at. We write AA−1 = I and

perform forward elimination to transform it into




× × × ×
× × ×

× ×
×



A
−1 =





1
× 1
× × 1
× × × 1



 . (3.146)

Discounting multiplications by 0 and 1, we set out to evaluate the work done on the right-

hand side matrix. Because the first column of I has only a 1 and (n− 1) zeros, no work is

spent on the first column of the lower-triangular matrix. Formation of the second column

requires work on the first column only.

The total work to create the lower-triangular right-hand side matrix consists accordingly

of
nX

j=1

(j − 1)(n− j) =
1

6
n(n− 1)(n− 2) (3.147)

operations. From part 2 of this theorem we have that the number of arithmetic operations

needed to create the upper triangular matrix at the left-hand side is

nX

j=1

j(j − 1) =
n

3
(n2 − 1) (3.148)

and hence the total of
nX

j=1

nj − n =
1

2
n2(n− 1) (3.149)

operations.

Back substitution starts by making the current pivot 1 through division. No work is

needed on the left-hand side matrix but the right-hand side requires

n
nX

j=1

(n− j + 1) =
1

2
n2(n+ 1) (3.150)

56

operations. Altogether, approximately n3 operations are needed to separately write A−1 and

n2 operations for the product A−1f . End of proof.

Theorem 3.5. When n is large:

1. The LU, Lii = 1, factorization of A = A(n× n) requires 1
3n

3 operations.

2. The symmetric LLT factorization of A requires 1
6n

3 operations plus n square roots.

Proof. The LU factorization is accomplished by an alternate computation of the columns

of U and L. We verify that

1

2

nX

j=1

j(j − 1) and
nX

j=1

j(n− j) (3.151)

operations are needed to compute the columns of U and L, respectively. In sum,

1

3
n(n2 − 1) ∼=

1

3
n3 (3.152)

operations are required for the complete factorization.

To create L in LLT = A we need

nX

j=1

(j(n− j) + (j − 1)) =
1

6
n(n− 1)(n+ 4) (3.153)

operations, plus n square roots to determine Lii. End of proof.

Theorems 3.4 and 3.5 make it emphatically clear that solution of Ax = f by forming

the inverse A−1 is not worthwhile even with several different right-hand sides. Inversion of

A requires n3 operations but the LU factorization only n3/3 operations. Writing Ax = f as

LUx = f and repeatedly solving

Lx0 = f, Ux = x0 (3.154)

calls for one factorization for any number of right-hand sides, and two back substitutions for

any specific f .

In any event, inversion of the large sparse finite difference matrices is utterly out of the

question as no place could be found to accommodate the full inverse, even for systems that

57

can otherwise be stored and Gauss-solved by sparse codes. For sparse systems of linear

equations with a positive definite and symmetric matrix and several right-hand side vectors

the LLT factorization of the matrix and the successive solution of Lx0 = f and LTx = x0 is

the only practical thing to do.

We turn now to the practically important band matrices.

Theorem 3.6. Let A = A(n×n) be a symmetric positive definite band matrix of bandwidth

2k + 1.

1. The number of operations needed to factor A into LLT is

1

2
nk(k + 3)− 1

3
k(k + 1)(k + 2) (3.155)

plus n square roots.

2. The number of operations needed to solve Ax = f , given L is

(k + 1)(2n− k). (3.156)

Proof. Consider

k n− 2k k

LLT =





×
× ×
× × ×

× × ×
× × ×

× × ×
× × ×









× × ×
× × ×

× × ×
× × ×

× × ×
× ×

×





k

n− 2k

k

. (3.157)

The number of operations needed to factor A is that required to carry out the product LLT ,

except for the n operations for the diagonals that are square roots. The work involved in

writing the first and last k columns of L amounts to

2
kX

j=1

µ
j(k +

3

2
)− 1

2
j2
∂

=
2

3
k(k + 1)(k + 2) (3.158)

58

operations. All columns from the (k+1)th to the (n−k)th require the same (k+1)(k+2)/2

operations, and hence the work for the n− 2k columns is

1

2
(k + 1)(k + 2)(n− 2k) (3.159)

operations. Adding the work for all columns minus the n diagonal operations we arrive at

the expression in the theorem.

When n >> 1 and 1 < k << n the factorization requires close to

1

2
nk2 (3.160)

operations. Back substitution requires (n− k)(1 + k) operations for the last n− k columns,

and 1
2k(k + 1) operations for the first k columns. There are two back substitutions for each

right-hand side and expression (3.156) in the theorem is recovered.

When n >> 1 and 1 < k << n back substitution requires approximately 2kn operations.

End of proof.

In light of Theorem 3.6 we can appreciate the quest for a narrow bandwidth. Symmetric

storage of a band matrix of bandwidth 2k + 1 calls for only

1

2
(k + 1)(2n− k) ∼= kn (3.161)

locations and its factorization cost is proportional to n and merely k2.

When k is small the cost of computing the n square roots needed in LLT becomes

relatively heavy. An LDLT factorization that requires no square roots could be cheaper for

such narrow band matrices.

A square grid of plane finite differences with m nodes per side gives rise to a linear

system with a coefficient matrix of order n = m2, of half bandwidth k = m. Storage of the

matrix takes up about m3 locations and its LLT factorization requires 1
2m

4 operations. Say

m = 25, n = 625 and k = 25. This requires some 16 · 103 storage locations and 20 · 104

operations. At the rate of 10−6 seconds per operation the factorization is accomplished in

0.2 seconds.

Three-dimensional problems are considerably more expensive. A cube with m nodes per

side gives rise to a coefficient matrix of order n = m3, of half bandwidth k = m2. Some m5

59

storage locations and 1
2m

7 operations are consumed in the factorization. If m = 25 and the

cost per operation is 10−6 seconds, then factorization languishes for over 3000 seconds or 50

minutes.

Exercises

3.12.3. The serious student should clock the computer he is using to know the time it takes

to perform an arithmetical operation. A simple program to carry out the inner product aT b

of two long arrays will furnish a realistic estimate for the computer speed.

60

