
5 Linear Subspaces of Rn

5.1 Vector spaces

Intuitive geometry ends in R3 but its formal vector notions and concepts survive and

are naturally perpetuated into higher dimensions. The language of vector spaces is at once

geometrically allusive and idiomatically adept in describing general linear actions and rela-

tionships and has become a preferred mode of speech in diverse fields of linear mathematics.

We shall first propose new, geometrically reminiscent, terminology for established linear al-

gebraic facts and then interplay them into more elaborate statements of the language. A

good part of the subject of vector spaces consists of fashioning a syntax.

Definition. Let S : v1, v2, . . . , vn be a set (order not important) of n vectors for which

the linear combination

α1v1 + α2v2 + · · · + αnvn (5.1)

is defined. The totality of vectors thus formed with arbitrary (real) numbers α1, α2, . . . , αn

constitutes a vector space, say V . The n vectors of set S span V . Vector v is an element of

V, v ∈ V , if and only if scalars α1, α2, . . . , αn exist so that

v = α1v1 + α2v2 + · · · + αnvn. (5.2)

Every vector v ∈ V consists of a homogeneous linear combination of the n vectors v1, v2,

. . . , vn that span V , and every vector space must count the zero vector v = o among its

elements. Also, if v ∈ V , then necessarily −v ∈ V .

In other words, an infinite collection of vectors constitutes a linear vector space if every

vector of the collection may be written as a linear homogeneous combination of a group
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of some n vectors— the span or generator of the space, and, conversely, if every vector

generated by the linear combination belongs to the collection.

Given a set S we easily generate vectors in V with different α’s, but it can be costly to

decide whether or not a given vector v is in V . For the latter, a system of linear equations

[v1 v2 . . . vn][α1 α2 . . . αn]T = v (5.3)

must be checked for a solution.

Examples and counterexamples.

1. Vectors e1, e2, . . . , en span Rn. Every vector x = [x1 x2 . . . xn]T with n (real)

components is written as x = x1e1 + x2e2 + · · · + xnen.

2. The totality of vectors x = [x1 x2 x3]T , x1 = 1, does not constitute a vector space

since

x =




1
0
0



+ x2




0
1
0



+ x3




0
0
1



 (5.4)

is not the required homogeneous linear combination; it does not contain the zero vector.

3. Vectors x = [x1 x2 x3]T , x1 + x2 + x3 = 0, do constitute a vector space since after

substitution

x = x2




−1
1
0



+ x3




−1
0
1



 (5.5)

where x2 and x3 are arbitrary.

4. The totality of vectors in space V excluding an element of the space does not constitute

a vector space. The reader should convince himself of this fact.

5. The reader should also have no difficulty convincing himself that x = α2
1e1+α2e2+α3e3

is not a vector space.

Definition. The m rows of matrix A = A(m × n), considered vectors in Rn, span a

vector space called the row space of A. Similarly, the n columns of A, considered vectors in

Rm, span a vector space called the column space of A.

Theorem 5.1. If v ∈ V and v0 ∈ V , then so is αv + α0v0.
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Proof. Since

v = α1v1 + α2v2 + · · · + αnvn and v0 = α01v1 + α02v2 + · · · + α0nvn (5.6)

then

αv + α0v0 = (αα1 + α0α01)v1 + (αα2 + α0α02)v2 + · · · + (ααn + α0α0n)vn. (5.7)

End of proof.

Definition. Let V and W be two vector spaces. If every w ∈ W is also in V , then W

is a subspace of V , W ⊂ V . If W is a subspace of V , and V a subspace of W , then spaces

V and W are equal, V = W .

To be equal, the number of vectors in the span of V need not be equal to the number of

vectors in the span of W .

Theorem 5.2. A necessary and sufficient condition for W to be a subspace of V is that

the spanning set of W be in V . Spaces V and W are equal if and only if span V is in W

and span W is in V .

Proof. The condition is sufficient, for if the span of W is in V , then by Theorem 5.1 any

linear combination of the spanning vectors is in V . The condition is necessary for if part of

span W is not in V , then there are vectors in W not in V . Reversing the roles of V and W ,

we conclude that V = W if and only if span V is in W and span W is in V . End of proof.

Examples.

1. Vector spaces V : v1, v2, v3, with v1 = [1 − 2 1]T , v2 = [1 1 1]T , v3 = [1 0 − 1]T ; and

R3 are equal vector spaces.

Obviously span V is in R3, and we also have that




1
0
0



 =
1

6




1
−2
1



+
1

3




1
1
1



+
1

2




1
0
−1



 ,




0
1
0



 = −1

3




1
−2
1



+
1

3




1
1
1








0
0
1



 =
1

6




1
−2
1



 +
1

3




1
1
1



−
1

2




1
0
−1



 . (5.8)
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2. Vector spaces

V :





1
1
1
1



 ,





1
−1
1
−1



 and W :





1
0
−1
0



 ,





0
1
0
−1



 (5.9)

are disjoint subspaces of R4. The two vectors that span V are not in W and the two vectors

that span W are not in V . No v ∈ V is in W , and no w ∈W is in V .

3. Vector spaces

V :





1
1
1
1



 ,





1
−1
1
−1



 and W :





1
5
1
5



 ,





2
−4
2
−4



 ,





1
0
1
0



 (5.10)

are equal subspaces of R4.

Let V : v1, v2 and W :w1, w2, w3. According to Theorem 5.2 the two vector spaces are

equal if scalars Tij and T 0
ij exist so that

v1 = T11w1 + T21w2 + T31w3

v2 = T12w1 + T22w2 + T32w3

and

w1 = T 0
11v1 + T 0

21v2

w2 = T 0
12v1 + T 0

22v2,

w3 = T 0
13v1 + T 0

23v3

(5.11)

or in compact matrix notation

[v1 v2] = [w1 w2 w3]T and [w1 w2 w3] = [v1 v2]T
0. (5.12)

We write out both equations as





1 2 1
5 −4 0
1 2 1
5 −4 0



T =





1 1
1 −1
1 1
1 −1



 and





1 1
1 −1
1 1
1 −1



T
0 =





1 2 1
5 −4 0
1 2 1
5 −4 0



 , (5.13)

then routinely solve them for

T =




1 −1
1 −1
−2 4



 and T 0 =
1

2

∑
6 −2 1
−4 6 1

∏
(5.14)

in which T 0 is unique but not T .
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exercises

5.1.1. Is the set of all vectors x = |α|[1 1]T for arbitrary α a vector space?

5.1.2. Is α1[1 0]T + α3
2[1 1]T a vector space? What about α1[1 0]T + (1 + α2)[1 1]T ?

5.1.3. Is

V :
∑

1
−1

∏
,
∑
1
1

∏
,
∑−1

1

∏

R2?

5.1.4. Is v = [1 0 1]T an element of V : [1 0 − 1]T , [−1 2 1]T ?

5.1.5. Show that the totality of vectors

v = α1




1
−1
2



+ α2




−1
2
−3



+




−1
4
−5





obtained with arbitrary α1 and α2 constitutes a vector space. Write a span for this space.

Show on the other hand that the totality of vectors

v = α1




1
−2
1



+ α2




1
1
1



+




1
0
−1





is not a linear vector space. Hint: look for v = o.

5.1.6. Show that

V : v1, v2 :




1
2
−1



 ,




1
−1
2



 and W : w1, w2, w3 :




2
1
1



 ,




0
−1
1



 ,




1
0
1





are equal subspaces of R3.

5.2 Linear independence

Definition. Vectors v1, v2, . . . , vn of space V are linearly dependent if there exist scalars

α1, α2, . . . , αn, not all zero, so that

α1v1 + α2v2 + · · · + αnvn = o. (5.15)
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Vectors that are not linearly dependent are linearly independent.

Linear dependence is the extension to higher dimensions of the geometric notions of

colinearity and coplanarity.

Theorem 5.3. If vectors v1, v2, . . . , vn of V are linearly dependent, then at least one

of them can be written as a linear combination of the others. If vector v ∈ V cannot be

written as a linear combination of the n linearly independent vectors v1, v2, . . . , vn of V , then

v, v1, v2, . . . , vn are linearly independent.

Proof. By the assumption of linear dependence at least one coefficient, say αk, is

nonzero, and

vk = −α1

αk
v1 −

α2

αk
v2 − · · · − αn

αk
vn. (5.16)

If vector v cannot be expressed as a linear combination of the n vectors, then αv = α1v1 +

α2v2 + . . . + αnvn holds only for α = α1 = α2 = . . . = αn = 0 and the vectors are linearly

independent. End of proof.

In example 3 of the previous section the span of V is linearly independent, whereas that

of W is linearly dependent:




0
0
0
0



 = 4





1
5
1
5



+ 5





2
−4
2
−4



− 14





1
0
1
0



 . (5.17)

Theorem 5.4. Any set of vectors:

1. Which contains the zero vector is linearly dependent.

2. Which contains a linearly dependent subset is linearly dependent.

3. Which is a subset of a linearly independent set of vectors is linearly independent.

4. Is linearly independent if and only if each of its subsets is linearly independent.

Proof. Left to the reader.

Example. To find the least number of linearly dependent vectors among

v1 =





1
−1
2
−3



 , v2 =





3
−5
4
−5



 , v3 =





1
−2
1
−1



 , v4 =





4
−7
5
−6



 , v5 =





2
−3
3
−4



 . (5.18)
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Solution of α1v1 + α2v2 + α3v3 + α4v4 + α5v5 = o yields 2α1 = α3 + α4 − α5, 2α2 =

−α3 − 3α4 − α5 for arbitrary α3, α4, α5. For a nontrivial solution at most two of these can

be set equal to zero, say α4 = α5 = 0. This leaves us with linearly dependent v1, v2, v3, and

the least number of linearly dependent vectors among v1, v2, v3, v4, v5 is three.

Theorem 5.5. Let v1, v2, . . . , vm, vm+1, . . . , vn be n linearly independent vectors. Vec-

tors v, vm+1, . . . , vn, where v = α1v1 + α2v2 + · · · + αmvm =/ o are linearly independent.

Proof. We have that

βv + βm+1vm+1 + · · · + βnvn = βα1v1 + βα2v2 + · · · + βαmvm

+ βm+1vm+1 + · · · + βnvn = o
(5.19)

only if βα1 = 0, βα2 = 0, . . . , βαm = 0, βm+1 = 0, . . . , βn = 0. At least one among

α1, α2, . . . , αm must be different from zero, and necessarily β = 0. End of proof.

exercises

5.2.1. Are v1 = [3 − 5 1]T , v2 = [2 − 3 0]T , v3 = [−1 2 − 1]T linearly independent?

5.2.2. Are v1 = [1 1 1 1]T , v2 = [1 1 0 0]T , v3 = [1 0 0 0]T linearly independent?

5.2.3. Fix α so that

v1 =




1
−2
α



 , v2 =




−4
−7
7



 , v3 =




α
1
−1





are linearly dependent.

5.2.4. Let a, b, c be linearly independent vectors. For what values of β are a+βb, b+βc, c+βa

linearly independent?

5.2.5. Let N be a nilpotent matrix of index m, Nm−1 =/ O,Nm = O. Prove that if v is such

that Nm−1v =/ o, then v,Nv,N2v, . . . , Nm−1v are linearly independent.

5.2.6. Consider vectors a = [aT1 aT2 ]T , b = [bT1 bT2 ]T , c = [cT1 cT2 ]T . Show that if subvectors

a1, b1, c1 are linearly independent then so are a, b, c.

5.2.7 Let v1, v2, . . . , vm be m linearly independent vectors in Rn. Prove that v2−α2v1, v3−

α3v1, . . . , vm − αmv1 are linearly independent.
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5.2.8 Find the least number of linearly dependent vectors among

v1 =





1
1
1
−1



 , v2 =





3
−1
2
−2



 , v3 =





2
−2
1
−1



 , v4 =





4
0
3
−3



 , v5 =





5
−3
3
−3



 .

5.3 Bases and dimension

Linearly independent spans have special properties.

Definition. A basis for vector space V is a linearly independent set of vectors which

span V .

A basis contains the minimal number of vectors that span V , or the maximal number of

linearly independent vectors in V . In R3 no more than one vector is needed to span a line,

and no more than two vectors are needed to span a plane.

Example.

Set

e1 =





1
0
0
0



 , e2 =





0
1
0
0



 , e3 =





0
0
1
0



 , e4 =





0
0
0
1



 (5.20)

is the standard basis for R4, but

v1 =





1
1
1
1



 , v2 =





1
1
−1
−1



 , v3 =





1
−1
−1
1



 , v4 =





1
−1
1
−1



 (5.21)

is also a basis for R4 (Verify!).

Theorem 5.6. If v1, v2, . . . , vn span vector space V , then any linearly independent set

of vectors in V contains no more than n vectors.

Proof. Assume for brevity that n = 2, and suppose that v1, v2 span V , and that v01, v
0
2, v

0
3

is a linearly independent set in V . Since v01, v
0
2, v

0
3 are in V there exist scalars Aij so that

v01 = A11v1 +A21v2

v02 = A12v1 +A22v2

v03 = A13v1 +A23v2.

(5.22)
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Completion of the proof rests on the demonstration that there are three scalars α1, α2, α3,

some nonzero, such that α1v01 +α2v02 +α3v03 = o, contradicting the assumption on the linear

independence of v01, v
0
2, v

0
3. Indeed,

α1v
0
1 + α2v

0
2 + α3v

0
3 = (α1A11 + α2A12 + α3A13)v1

+ (α1A21 + α2A22 + α3A23)v2

(5.23)

and there is a nontrivial choice of α’s that renders the right-hand side of the equation zero

since homogeneous system

∑
A11 A12 A13

A21 A22 A23

∏ 


α1

α2

α3




=
∑
0
0

∏

(5.24)

has more unknowns than equations and possesses therefore a nontrivial solution. End of

proof.

Theorem 5.7. Any two bases of vector space V have the same number of elements.

Proof. Let v1, v2, . . . , vm be one basis for V . By Theorem 5.6 every basis of V contains

no more than m vectors. If v01, v
0
2, . . . , v

0
n is another basis for V , then n ≤ m. By the reverse

argument m ≤ n, and hence m = n. End of proof.

Definition. The number of vectors in any basis for V is the dimension, dim(V ), of

vector space V .

Corollary 5.8. If V is a vector space of dimension n, dim(V ) = n, then:

1. Any set in V containing more than n vectors is linearly dependent.

2. No set in V containing fewer than n vectors can span V .

Proof.

1. Since dim(V ) = n, the space is spanned by n vectors and according to Theorem 5.6

cannot contain more than n linearly independent vectors.

2. Assumption of fewer than n vectors in the span of v would contradict the existence

of a basis with n linearly independent vectors.
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Corollary 5.9. If V is a vector space of dimension n, then any n linearly independent

vectors in V form a basis for V .

Proof. Let v1, v2, . . . , vn be n linearly independent vectors in V . Every vector v =

α1v1 + α2v2 + . . . + αnvn is in V . No vector v ∈ V exists that cannot be expressed by the

linear combination, for otherwise it would imply the existence in V of more than n linearly

independent vectors in contradiction to Theorem 5.6. End of proof.

Theorem 5.10. Let V : v1, v2, . . . , vn. Removal of a linearly dependent vector from the

span of V leaves the space unchanged.

Proof. Say n = 4 with v4 linearly depending on v1, v2, v3,

v = α1v1 + α2v2 + α3v3 + α4v4, v4 = β1v1 + β2v2 + β3v3 (5.25)

so that

v = (α1 + β1α4)v1 + (α2 + β2α4)v2 + (α3 + β3α4)v3 = α01v1 + α02v2 + α03v3 (5.26)

with

α1 + β1α4 = α01

α2 + β2α4 = α02 (5.27)

α3 + β3α4 = α03.

For any choice of α1, α2, α3, α4, there are α01, α
0
2, α

0
3, and conversely, for any choice of

α01, α
0
2, α

0
3, there are α1, α2, α3, α4, with, possibly, α4 = 0. Hence v1, v2, v3, v4 and v1, v2, v3

span the same vector space V . End of proof.

Example. To determine the dimension of vector space

V : v1 =





1
0
1
0



 , v2 =





2
−1
2
−1



 , v3 =





5
−1
5
−1



 , v4 =





3
−2
3
−2



 , (5.28)

and find a basis for it we shall remove all linearly dependent vectors from the span of V . To

this end we write the linear vector equation α1v1 + α2v2 + α3v3 + α4v4 = o in the tabular
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form 



1 2 5 3
0 −1 −1 −2
1 2 5 3
0 −1 −1 −2









α1

α2

α3

α4



 = o (5.29)

and determine that α1 = −3α3 +α4, α2 = −α3− 2α4, implying that both v3 and v4 depend

on v1 and v2. In fact, v3 = 3v1 + v2, v4 = −v1 + 2v2. Hence V : v1, v2, and dim(V ) = 2.

Theorem 5.11. Let v1, v2, . . . , vn be a set of n vectors in V . Then the following state-

ments are equivalent:

1. Vectors v1, v2, . . . , vn form a basis for V .

2. Every vector in V can be written as a unique linear combination of v1, v2, . . . , vn.

Proof. Assume 1. Then v1, v2, . . . , vn span V and any v ∈ V is written as

v = α1v1 + α2v2 + · · · + αnvn (5.30)

or possibly

v = β1v1 + β2v2 + · · · + βnvn (5.31)

so that

o = (α1 − β1)v1 + (α2 − β2)v2 + · · · + (αn − βn)vn. (5.32)

Because v1, v2, . . . , vn are linearly independent αi − βi = 0 for all i.

Assume 2. Then

o = α1v1 + α2v2 + · · · + αnvn (5.33)

is certainly satisfied with α1 = α2 = · · ·αn = 0. But this choice of α’s is unique, and hence

v1, v2, . . . , vn are linearly independent. End of proof.

Lemma 5.12. Matrix A(m × n), m ≥ n, possesses a left inverse if and only if the

dimension of its column space C is n, that is, if and only if its columns are linearly inde-

pendent.

Proof. According to Theorem 2.12 a left inverse to A = [a1a2 . . . an] exists if and only

if A is of full column rank. Matrix A is of full column rank only if no general elementary

11



operation exists that annuls one of its columns, meaning that α1a1 + α2a2 + · · · + αnan = o

only if α1 = α2 = · · ·αn = 0. End of proof.

For the particular case of a square matrix, Lemma 5.12 states that A = A(n × n) is

nonsingular if and only if its column space is of dimension n.

Theorem 5.13. If W : w1, w2, . . . , wm of dimension m, dim(W ) = m, is a subspace of

V : v1, v2, . . . , vn of dimension n, dim(V ) = n, n ≥ m, then exactly m vectors in the basis for

V can be replaced by the m vectors of the basis for W . In other words, if W ⊂ V , then the

respective bases for the vector spaces may be chosen, generically, so that W : v1, v2, . . . , vm,

and V : v1, v2, . . . , vm, vm+1, . . . , vn.

Proof. Say W :w1, w2, and V : v1, v2, v3, v4. Since w1 and w2 are both in V they may be

expressed by the linear combinations

w1 = A11v1 +A21v2 +A31v3 +A41v4

w2 = A12v1 +A22v2 +A32v3 +A42v4.
(5.34)

Linear independence stipulates that

β1w1 + β2w2 = (β1A11 + β2A12)v1 + (β1A21 + β2A22)v2

+ (β1A31 + β2A32)v3 + (β1A41 + β2A42)v4 = o
(5.35)

only if β1 = β2 = 0 and 



A11 A12

A21 A22

A31 A32

A41 A42





∑
β1

β2

∏

=





0
0
0
0



 , (5.36)

implying that matrix A in eq.(5.36) is of full column rank. Say that as a result of a sequence

of elementary column operations

A→




1
×

1



 . (5.37)

Then w1, w2, v1, v3 are linearly independent. Indeed, β1w1+β2w2+β3v1+β4v3 = o, together

with eq.(5.34), require that




A11 A12 1
A21 A22

A31 A32 1
A41 A42









β1

β2

β3

β4



 = o. (5.38)
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In view of eq.(5.37) the matrix in system (5.38) is of full column rank and β1 = β2 = β3 =

β4 = 0 only. End of proof.

Definition. Let S1 and S2 be two sets of vectors in R considered to be spans for subspaces

V1 and V2, respectively of R. Then V : S1 ∪ S2 is a subspace V of R that is the union of V1

and V2, V = V1 ∪ V2.

Notice that V1 ∪ V2 is not the set of all vectors in V1 and V2. Say V1 : e1, V2 : e2, V3 : e3.

Union V1 ∪ V2 ∪ V3 : e1, e2, e3 is R3, but v = [1 1 1]T is neither in V1, nor in V2, nor in V3.

Lemma 5.14. Subspaces V1 and V2 of R are disjoint, i.e. they share no common nonzero

element, if and only if sets S1 and S2 that contain their respective bases are such that the

collective set S = S1∪S2 is linearly independent. Then dim(V ) = dim(V1∪V2) = dim(V1)+

dim(V2).

Proof. Suppose that set S1 ∪ S2 is linearly independent and say v is an element shared

by both V1 and V2 so that

v = α1v1 + α2v2 + . . .+ αnvn and v = β1w1 + β2w2 + . . .+ βmwm. (5.39)

Then

o = α1v1 + α2v2 + . . .+ αnvn − β1w1 − β2w2 − . . .− βmwm (5.40)

and since S1 and S2 are linearly independent α1 = α2 = . . . = αn = 0, and β1 = β2 = . . . =

βm = 0. The only element common to both V1 and V2 is the zero vector.

Suppose that S1 and S2 are linearly dependent. Then

o = α1v1 + α2v2 + . . .+ αnvn + β1w1 + β2w2 + . . .+ βmwm (5.41)

holds with at least one nonzero αk and one nonzero βk. There is now a nonzero element

v = α1v1 + α2v2 + . . .+ αnvn = −β1w1 − β2w2 − . . .− βmwm (5.42)

that is in both V1 and V2.

Set S = S1 ∪ S2 is a basis for V = V1 ∪ V2 and dim(V ) = m+ n. End of proof.
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Definition. Let S1, S2, S3 be three sets of vectors in R so that S = S1 ∪ S2 ∪ S3 is

linearly independent. If V1 : S1 ∪ S2 and V2 : S2 ∪ S3, then V3 : S2 is their intersection,

V3 = V1 ∩ V2.

Set S2 holds the basis for V3, and if S2 includes k vectors, then dim(V3) = dim(V1∩V2) =

k. The only vectors shared by V1 and V2 are those of V3.

Theorem 5.15. Let V1 and V2 be two vector subspaces of R. Then

dim(V1) + dim(V2) = dim(V1 ∪ V2) + dim(V1 ∩ V2). (5.43)

Proof. Let S1, S2, S3 be three sets of vectors in R so that S1 ∪ S2 ∪ S3 is linearly

independent. Let S1 contain m vectors, S2 contain k vectors, and S3 contain n vectors. If

S1∪S2 is a basis for V1 and S2∪S3 is a basis for V2, then dim(V1) = m+k, dim(V2) = n+k,

dim(V1 ∪ V2) = m+ n+ k, dim(V1 ∩ V2) = k, and hence the equation. End of proof.

For instance, if S1 : v1, v2, v3; S2 : v4, v5; S3 : v6, v7; V1 : S1 ∪ S2, V2 : S2 ∪ S3; then

dim(V1) = 5, dim(V2) = 4, dim(V1 ∪ V2) = 7. dim(V1 ∩ V2) = 2, and 7 + 2 = 5 + 4.

Example. To find the intersection of

V :





1
1
1
1



 ,





1
−1
1
−1



 ,





1
0
−1
0



 and W :





2
1
2
−5



 ,





−1
3
−1
−1



 . (5.44)

Write the span of V as v1, v2, v3, and that of W as w1, w2. The intersection of V and W

consists of all vectors such that

v = α1v1 + α2v2 + α3v3 = −β1w1 − β2w2 (5.45)

or in matrix vector form




1 1 1 2 −1
1 −1 0 1 3
1 1 −1 2 −1
1 −1 0 −5 −1









α1

α2

α3

β1

β2




=





0
0
0
0



. (5.46)

We solve the system for α1 = 0, α3 = 0, α2 = 7/3β2, β1 = −2/3β2 for arbitrary β2, and

v = 7/3β2v2 = 2/3β2w1 − β2w2. Span V ∩W is v2 = [1 − 1 1 − 1]T and its dimension is

one.
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The language of vector spaces, the high language of modern mathematics, is indicative

rather than constructive. Such statements as: linear system Ax = f has a solution if and

only if vector f is in the column space of A, is concise and intuitive, but requires lengthy

computational interpretations before it is translated into a practical criterion.

exercises

5.3.1. Is the set of all vectors x = [x1 x2 x3]T subject to the condition xTa = 0, a = [1 −1 1]T ,

a vector space? If yes, write a span for it, and determine its dimension.

5.3.2. Write all vectors in R4 that are not in

V :





1
1
0
0



 ,





0
0
1
1



 .

5.3.3. For

V :





3
1
3
1



 ,





1
−1
1
−1



 and W :





5
−2
−1
−2



 ,





2
−1
0
−1





write a basis for V ∩W .

5.4 Linear transformations

Linear transformations have most significant geometrical interpretations, and we have

considered them already as such in Chapter 4. Here we want to reconsider the terminology

of linear transformations in the algebraic context of higher-dimensional vector spaces.

Consider, then, the linear transformation x0 = Ax,A = A(m × n) = [a1 a2, . . . , an], in

which x is a variable vector selected at will from domain Rn of the transformation. Variable

vector x0 is the image of x under the transformation. It is confined to the column space of

A, x0 = x1a1 + x2a2 + · · ·+ xnan, a subspace of Rm that is the range of the transformation.

The linear transformation, or mapping




x01
x02
x03



 =




1 2 1
−2 −1 1
1 2 1








x1

x2

x3



 = x1




1
−2
1



+ x2




2
−1
2



+ x3




1
1
1



 , x0 = Ax, (5.47)

15



for example, takes arbitrary vector x ∈ R3 and dispatches it to column space C(A) of

matrix A. We symbolically articulate this algebraic transaction by writing the compact

message T : R3 → C. We numerically verify that the columns of A are linearly dependent so

that dim(C) = 2, and conclude that three-dimensional vector space R3 is mapped by linear

transformation (5.47) into two-dimensional vector subspace C of R3. Linear transformation

(5.47) assigns to every vector x ∈ R3 a unique image vector x0, but not conversely. Vector

x0 = [4 − 2 4]T , for instance, is the image of x = [1 1 1], of x = [2 0 2]T , and, in fact, of

x = [α 2−α α] for any α. All this comes from basic facts of the solution of systems of linear

equations.

By contrast, linear transformation




x01
x02
x03



 =




1 1 1
−2 0 1
1 −1 1








x1

x2

x3



 (5.48)

which is with a nonsingular, or invertible, matrix A maps every x ∈ R3 into a distinct image

x0 ∈ R3, and conversely, since not only is x0 = Ax but also reversely x = A−1x0. Linear

transformation (5.48) is a one-to-one transformation that maps the whole of R3 onto itself.

We may find it convenient or expedient to span Rn with bases other than the standard.

Say that instead of using the standard basis for R3 we chose to express x as

x = α1




1


+ α2




1
1



+ α3




1
1
1



 =




1 1 1

1 1
1








α1

α2

α3



 (5.49)

in which variables α1, α2, α3 are sometimes called the components or coordinates of x in the

chosen basis. On the other hand, every vector x0 in the column space C of matrix A affecting

linear transformation (5.47) may be written as

x0 = β1




1

1



+ β2



 1



 =




1

1
1





∑
β1

β2

∏

(5.50)

for arbitrary β1, β2. With eqs. (5.49) and (5.50) transformation (5.47) becomes




1

1
1





∑
β1

β2

∏

=




1 2 1
−2 −1 1
1 2 1








1 1 1

1 1
1








α1

α2

α3



 (5.51)
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assuming finally the form
∑
β1

β2

∏
=
∑

1 3 4
−2 −3 −2

∏ 


α1

α2

α3




(5.52)

so that if α1 = 1, α2 = −2, α3 = 3, then β1 = 7, β2 = −2, and x = [2 1 3]T , x0 = [7 − 2 7]T ,

which we could have gotten also from eq. (5.47).

One more example. Consider the two vector spaces

V : v1 =





1
1
1
1



 , v2 =





1
−1
1
−1



 and W : w1 =





1

−1



 , w2 =




1

−1



 (5.53)

that are a pair of disjoint two-dimensional subspaces of R4. Any v ∈ V is written by its

components as v = α1v1 + α2v2, and any w ∈ W is written in terms of its components as

w = β1w1 + β2w2. A one-to-one linear transformation between spaces V and W is induced

by a one-to-one linear relationship between the components of v ∈ V and w ∈ W . For

instance,
∑
β1

β2

∏
=
∑

2 −1
−1 1

∏ ∑
α1

α2

∏
,
∑
α1

α2

∏
=
∑
1 1
1 2

∏ ∑
β1

β2

∏
(5.54)

which is essentially a one-to-one mapping of R2 onto itself. The fact the one-to-one linear

transformation T : V →W reverts to a one-to-one linear transformation of R2 onto itself is

expressed by saying that V and W are isomorphic to R2. Any two-dimensional vector space

is, in fact, isomorphic to R2, any three-dimensional vector space is isomorphic to R3, and so

on. Geometrically speaking, R2 is a plane, and so are V and W in the generalized sense of

higher dimensions. In this sense, not only are V and W isomorphic to R2, but they are also

isomorphic to each other, and any one-to-one linear transformation between them is said to

be an isomorphism.

Since a linear transformation of two vector spaces is produced by a matrix we shall refer

concretely to matrices as they affect the transformation rather than to the transformation

itself.

Theorem 5.16. Let v1, v2, . . . , vn be a basis for the n dimensional vector space V , and

let w1, w2, . . . , wn be n vectors in vector space W . Then there is one and only one linear

transformation T from V into W so that Tvi = wi i = 1, 2, . . . , n.
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Proof. Let vj be the jth column of matrix V and wj the jth column of matrix W , and

write TV = W . By Lemma 5.12 V is nonsingular and T = V −1W . To prove uniqueness

assume also that T 0V = W . This means that (T − T 0)V = O, and since V is invertible

T − T 0 = O. End of proof.

5.5 Row and column spaces

The rows and columns of matrix A = A(m × n), considered as vectors in Rn and Rm,

possess some remarkable interdependent properties.

Theorem 5.17. Let T and T 0 be two nonsingular matrices. Then A and TA have the

same row space, and A and AT 0 have the same column space.

Proof. Because B = AT 0 and A = BT
0−1 the columns of B are in the column space of

A, and the columns of A in the column space of B. Matrices A and B = AT 0 have the same

column space. A similar argument holds for the rows. End of proof.

Theorem 5.17 effectively states that the two vector spaces

V : v1, v2 and W : w1 = T11v1 + T21v2, w2 = T12v1 + T22v2 (5.55)

are equal if matrix T has an inverse. That W ⊂ V is obvious by the linear combination.

By virtue of the invertability of matrix T , matrix T 0 = T−1 also exists so that conversely

v1 = T 011w1 + T 021w2, v2 = T 012w1 + T 022w2, which we readily verify by substitution.

Corollary 5.18. Row equivalent matrices have the same row space, and column equiv-

alent matrices have the same column space.

Proof. In Theorem 5.17 let T and T 0 be two elementary operation matrices. End of

proof.

Determination of bases for the row and column spaces of a matrix requires the reduction

of the matrix by means of elementary operations to row and column echelon form. A typical
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column echelon matrix is written below:

A =





1
×
×
× 1
× × 1
× × ×





. (5.56)

Theorem 5.19. Let A be a column (row) echelon matrix. The nonzero column (row)

vectors of A hold a basis for the column (row) space of A.

Proof. Obviously the nonzero column vectors of A are linearly independent. End of

proof.

Example.

α1





1
×
×
×
×
×





+ α2





0
0
0
1
×
×





+ α3





0
0
0
0
1
×





=





0
0
0
0
0
0





(5.57)

only if α1 = α2 = α3 = 0.

Theorem 5.17 and Corollary 5.18 assure us that elementary row operations do not change

the row space of matrix A, and similarly elementary column operations do not change the

column space of A. Theorem 5.19 says that for matrix A in row echelon form a basis for

the row space is written in the nonzero rows of A, and the same holds true for the columns.

Hence the way to write bases for the row space and column space of any matrix.

Example. To find bases for the row and column spaces of A. By elementary column

operations

A =




1 1 −1 2 2
−1 1 0 3 2
2 1 1 1 1



→




1
−1 2 −1 5 4
2 −1 3 −3 −3



→




1
−1 2
2 −1 5/2 −1/2 −1





→




1
−1 2
2 −1 5



→




1

1
1



 (5.58)
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we find basis e1, e2, e3 for the column space C of A, and dim(C) = 3. By elementary row

operations

A =




1 1 −1 2 2
−1 1 0 3 2
2 1 1 1 1



→




1 1 −1 2 2

2 −1 5 4
−1 3 −3 −3



→




1 1 −1 2 2

2 −1 5 4
5/2 −1/2 −1





→




1 1 9/5 8/5

2 24/5 18/5
5/2 −1/2 −1



→




1 −3/5 −1/5

2 24/5 18/5
5/2 −1/2 −1



→




5 −3 −1

5 12 9
5 −1 −2





(5.59)

and the row space R of A is

R :





5
0
0
−3
−1




,





0
5
0
12
9




,





0
0
5
−1
−2




(5.60)

and dim(R) = 3.

exercises

5.5.1. Show that the set of all solutions x to the homogeneous system




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



x = o

constitutes a vector space. Write a basis for it.

5.6 Rank and nullity

Linearly independent vectors are mapped in a nonsingular linear transformation into lin-

early independent vectors. This is a basic fact of nonsingular mapping and it has interesting

consequences.

Lemma 5.20. Let v1, v2, . . . , vn of space V be linearly independent, and A nonsingular.

Then Av1, Av2, . . . , Avn are linearly independent.

Proof. If v1, v2, . . . , vn are linearly independent then

α1v1 + α2v2 + · · · + αnvn = v =/ o (5.61)
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for any nontrivial choice of α1, α2, . . . , αn. Since A is nonsingular Av =/ o if v =/ o and

α1Av1 + α2Av2 + · · · + αnAvn = Av =/ o. (5.62)

End of proof.

Theorem 5.21. Let T and T 0 be nonsingular matrices. Then A and TA have a column

space of the same dimension, and A and AT 0 have a row space of the same dimension.

Proof. If the columns of A are a1, a2, . . . , an, then the columns of TA are

Ta1, Ta2, . . . , Tan. Since linearly independent vectors are mapped into linearly independent

vectors by the nonsingular T the number of linearly independent columns is the same for A

as for TA. The same argument holds for AT and T 0
T
AT . End of proof.

Theorem 5.22. The totality of solutions of Ax = o constitute a vector space.

Proof. Let v1, v2, . . . , vk be an entire set of linearly independent solutions to Ax = o.

Then x = α1v1 +α2v2 + · · ·+αkvk is such that Ax = o for any α1, α2, . . . , αk. No v,Av = o

exists that cannot be written as v = α1v1 + α2v2 + · · · + αkvk for this would imply that

v1, v2, . . . , vk, v are linearly independent contrary to the assumption on the vectors. End of

proof.

Definition. The space of all vectors x such that Ax = o is the nullspace, or kernel

(sometimes written ker(A)) of A. The nullity of A is the dimension of its nullspace, and the

rank of A is the dimension of its column space.

Theorem 5.23. Let A = A(m× n). The dimension of the column space of A (column

rank (A)), and the dimension of the row space of A (row rank (A)), are equal:

row rank (A) = column rank (A) = rank (A). (5.63)

Proof. According to Theorems 5.17 and 5.21 elementary row and column operations

leave the dimensions of the row and column spaces of A unchanged. Elementary row oper-

ations reduce A to a row echelon form, then elementary column operations bring it to the
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form

A0 =
∑
I(r × r) O

O O

∏
(5.64)

that shows the equality. End of proof.

Theorem 5.23 is a restatement of Theorem 1.16.

Theorem 5.24. If A = A(m× n), then

rank(A) + nullity(A) = n. (5.65)

Proof. Let v1, v2, . . . , vk, vk+1, . . . , vn be a basis for domain Rn of Ax = x0, such that

v1, v2, . . . , vk is a basis for nullspace N of A,Avi = o i = 1, 2, . . . , k. We shall prove that

Avk+1, Avk+2, . . . , Avn is a basis for range R, or column space C, of A.

Indeed, if

x = α1v1 + α2v2 + · · · + αkvk + αk+1vk+1 + · · · + αnvn (5.66)

then

x0 = Ax = o+ αk+1Avk+1 + · · · + αnAvn (5.67)

and Avk+1, Avk+2, . . . , Avn span R. These vectors are also linearly independent. To show

this we write

βk+1Avk+1 + · · · + βnAvn = A(βk+1vk+1 + · · · + βnvn) = o (5.68)

implying that either βk+1vk+1 + · · · + βnvn is in the nullspace of A or the β’s are all zero.

But the vector sum is not in N and hence βk+1 = βk+2 = · · · = βn = 0. Now dim(N) =

k, dim(R) = n− k, and dim(N) + dim(R) = n. End of proof.

Notice how the proof to this theorem is done in the spirit of abstract linear algebra

without dipping into the tabular nature and structure of matrix A or vector x. Otherwise

we may argue that if the rank of system Ax = o is r, then solution vector x includes n− r

arbitrary components making for a nullspace of that dimension , and r + (n− r) = n.

The nullity of an n×n nonsingular matrix is zero and the dimension of both its column

space and row space is n.
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Rank(A) of A = A(m × n) counts the largest number of linearly independent columns

(rows) in matrixA, while nullity(A) counts the largest number of linearly independent vectors

x ∈ Rn for which Ax = o.

Example. To find a basis for the nullspace of A:

Ax =





1 −1 −2
2 −1 −3
−1 2 3
−3 −2 1








x1

x2

x3



 =





0
0
0
0



 , EAx =





1 −1
1 1








x1

x2

x3



 =





0
0
0
0



 . (5.69)

Hence x1 = x3, x2 = −x3, and n = [1 − 1 1]T , is a basis for the one-dimensional nullspace.

Theorem 5.25.

nullity(AB) ≥ nullity(B) (5.70)

rank(AB) ≤ rank(A), rank(AB) ≤ rank(B). (5.71)

Proof. Obviously for every vector x such that Bx = 0, also A(Bx) = 0, and hence the

nullspace of B is contained in that of AB.

Say A = A(m × k), B = B(k × n) so that AB = AB(m × n). Then by Theorem 5.24

rank(AB) = n−nullity(AB), and rank(B) = n−nullity(B), and the first rank inequality

of the theorem results from the inequality of the nullities. The second rank inequality is

obtained from rank(AB) = rank((AB)T ) = rank(BTAT ) ≤ rank(AT ) = rank(A). End of

proof.

Theorem (the Frobenius rank inequality) 5.26.

nullity(AB) + nullity(BC) ≥ nullity(ABC) + nullity(B) (5.72)

rank(AB) + rank(BC) ≤ rank(ABC) + rank(B). (5.73)

Proof. Let x1, x2, . . . , xk be a basis for N(BC), and x1, x2, . . . , xk, xk+1, . . . , xk+1+l a

basis for N(ABC), the nullspace of ABC, so that nullity(ABC)−nullity(BC) = l + 1.

Vectors (BC)xk+1, . . . , (BC)xk+1+l are linearly independent. Indeed,

αk+1(BC)xk+1 + · · · + αk+1+l(BC)xk+1+l = (BC)(αk+1xk+1 + · · · + αk+1+lxk+1+l) = o

(5.74)
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happens only if αk+1xk+1 + · · · + αk+1+lxk+1+l = o because vectors xk+1, · · · , xk+1+l are

not in the nullspace of BC, and it results, by virtue of the fact that xk+1, · · · , xk+1+l are

themselves linearly independent, that αk+1 = · · · = αk+1+l = 0.

Vectors Cxk+1, · · · , Cxk+1+l are also linearly independent since

αk+1Cxk+1 + · · · + αk+1+lCxk+1+l = C(αk+1xk+1 + · · · + αk+1+lxk+1+l) = o (5.75)

happens only if αk+1xk+1 + · · · + αk+1+lxk+1+l = o, because vectors xk+1, · · · , xk+1+l are

not in the nullspace of C. The l + 1 linearly independent vectors Cxk+1, · · · , Cxk+1+l are

thus in the nullspace of AB, (AB)(Cxk+1) = · · · = (AB)(Cxk+1+l) = o, but not in the

nullspace of B,B(Cxk+1) =/ o · · ·B(Cxk+1+l) =/ o. Hence nullity(AB)−nullity(B) ≥ l + 1,

and the inequality on the nullities of the theorem results.

Say A = A(m × k), B = B(k × l), C = C(l × n) so that AB = AB(m × l), BC =

BC(k × n), ABC = ABC(m × n). Then by Theorem 5.24 nullity(AB) = l−rank(AB),

nullity(B) = l−rank(B), nullity(BC) = n−rank(BC), nullity(ABC) = n−rank(ABC), and

the rank inequality of the theorem follows. End of proof.

exercises

5.6.1. Let solution x to Ax = o, A = A(m× n), be such that x1, x2, . . . , xk are independent

and xk+1, . . . , xn are dependent. Show that x = x1v1 + x2v2 + . . . + xkvk with linearly

independent v1, v2, . . . , vk.

5.6.2. Write bases for the column space, row space, and nullspace of

A =




5 −1 3 4 −7
4 0 1 3 −5
3 1 −1 2 −3



 .

Also for the nullspace of AT .

5.6.3. Does the set of all solutions to



1 1 1
1 1 1
1 1 1



x =




1
1
1





constitute a vector space?
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5.6.4. Show that the nullspace N(A) of

A =
∑
B
B0

∏

is N(B) ∩N(B0).

5.6.5. Consider the three matrices

M1 =
∑

4 −5
11 1

∏
, M2 =

∑
1 1
−1 1

∏
, M =

∑
4 −5
11 1

∏
.

Are M1 and M2 linearly independent? Is M in the vector space spanned by M1,M2?

5.6.6. Is the set of all 2× 2 symmetric matrices a vector space? If yes, write a basis for the

space and count its dimension.

5.6.7. What is U ∩L if U is the vector space of all n× n upper-triangular matrices and L is

the vector space of all n× n lower-triangular matrices?

5.6.8. What is S ∩ S0 if S0 is the vector space of all symmetric matrices and S0 the vector

space of all skew symmetric matrices?

5.6.9. Show that the totality of matrices that commute with

A =




1 1
−1

1





constitute a vector space. Write a basis for it.

5.6.10. Does the totality of the right inverses to

A =
∑
1 1 1
1 0 1

∏

constitute a vector space?

5.6.11. Show that the totality of circulant matrices

C =




α β ∞
∞ α β
β ∞ α





25



for arbitrary α, β, ∞ constitute a vector space. Find a basis for the space and determine its

dimension. Generalize the result to n× n circulant matrices.

5.6.12. Show that the mapping Y (X) = AX +XB is linear,

Y (αX + α0X 0) = αY (X) + α0Y (X 0).

Find the range and the nullspace of the transformation for

A =
∑
1
−1

∏
, B =

∑−1
1

∏
and A =

∑
1

2

∏
, B =

∑
2

1

∏
.

5.6.13. Is the set of all upper-triangular matrices U such that Uii = 1 a vector space?

5.6.14. Is the linear combination of two n× n permutation matrices a permutation matrix?

5.6.15. If the set of all matrices that commute with

A =
∑

1 2
−1 1

∏

constitutes a vector space, then write a basis for it and determine its dimension.

5.6.16. Count the number of linearly independent 2× 2 matrices of rank 1.

5.6.17. Are φ1 = 1, φ2 = ξ, φ3 = ξ2 linearly independent?

5.7 Analogies and abstractions

Linear algebra is the mathematics of linear combinations and transformations and as such

bids generalizations to mathematical objects other than ordered lists of numbers. Indeed,

our introduction to vector spaces as put forth in eq.(5.1) does not explicitly stipulate that

v1, v2, . . . , vn, the n vectors that span the space, be vectors in the traditional sense. All

it actually requires is that we be able to form linear combinations of these objects with

addition and scalar multiplication as we do for numbers. We sense here a great opportunity

for abstraction, but must beware not to over carry the abstraction into obfuscation. In our

willingness to speak in generalities about the linear combination of objects, elements and

things (i.e. tangibles) we risk creating an illusion. Objects or ”things” cannot be added
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or multiplied, only numbers can be added and multiplied, and the linear combination of

”elements” remains meaningless until and unless the elements have revealed their numerical

faces. In writing φ1(ξ)+φ2(ξ) we do not intend the addition of the two mathematical objects

that we call functions, but rather the addition of the numerical values of φ1 and φ2 for some

value of variable ξ.

Yet we may consider the pattern and structure of vector spaces without giving a thought

to the nature of vectors, and still have most of the subject intact and in place. This is because

the prevalence of vector spaces is metaphorical. Few of the theorems of the previous sections

netted us anything computationally new or theoretically revealing. In fact, the whole edifice

of vector spaces as we have presented it rests on the theorem that a homogeneous system of

m equations in n unknowns has a nontrivial solution if n > m. The concrete answer to the

basic question as to whether or not a given vector is ”in” a certain vector space reverts, for

vectors in Rn, to the question of whether or not a linear system of equations is consistent.

In the same way the proofs of vector space theorems consist in large part in translating the

new language into meaningful statements on linear systems of equations. Saying that the

rows of a matrix are linearly independent is an elegant, concise, idiomatic statement to the

effect that elementary row operations done on the matrix will never annul a row.

The basic concepts of vector space theory such as linear independence, span, basis,

and dimension are also not predicated on the specific nature of what we may call vectors.

Examples will make this clear.

Take for instance matrices. The (infinite!) set of all M = M(3× 2) matrices created by

the linear combination

M = α1




1 1
1 −1
1 1



+ α2




1 1
−2 0
1 −1



 = α1M1 + α2M2 (5.76)

with arbitrary real scalar variables α1, α2 constitutes a vector space, say M , spanned by

M1,M2, which is a subspace of R3×2 —the space of all 3× 2 real matrices.

It should be perfectly clear to us what is meant by linearly independent matrices, and a

vector space of matrix elements has a span, a basis, and a dimension. Matrices M1 and M2

are linearly independent, they are a basis for space M which is two dimensional.
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Or we may speak of function vector spaces. Let F : φ(ξ), φ2(ξ), . . . , φn(ξ) be a set of n

functions defined in the interval 0 ≤ ξ ≤ 1. Linear combination

φ = α1φ1 + α2φ2 + · · · + αnφn (5.77)

for real α’s is defined for all ξ in that interval, and the totality of φ’s thus created constitutes

a vector space, say Φ. Functions φ1(ξ), φ2(ξ), . . . , φn(ξ), span the space, and if they are

linearly independent, then dimΦ = n. For instance, φ1 = ξ, φ2 = ξ2 are linearly independent,

never can α1φ1 + α2φ2 = 0 with a nonzero α. To show this we select nonzero ξ = ξ1, and

ξ = −ξ1, and have that α1ξ1 +α2ξ2
1 = 0, and −α1ξ1 +α2ξ2

1 = 0, from which it readily results

that, necessarily, α1 = α2 = 0.

Functions, however, are of a mathematical nature vastly more complicated than lists of

numbers, and their use raises delicate questions on continuity, differentiability, and integra-

bility. Which of these properties, we wonder, does the span pass on to the space? Here we

must resort to analysis for help, and it assures us, for instance, that if the span is continuous

on some interval, then every function of the space is continuous on that interval. But no

finite dimensional vector space of continuous basis functions can include every continuous

function. By a stretch of the imagination and by dint of a careful limiting process we may

consider the collection of all functions continuous on an interval as comprising a vector space

of infinite dimensions with a never-ending set of appropriate basis functions. This space is

an ideal; in practice we must limit ourselves to finite dimensional vector spaces of functions,

albeit of an immense size. There are ways, such as by using finite elements, for devising

finite dimensional function vector spaces that hold a good approximation to any continuous

function on a certain interval. All this is mathematically fascinating and is of great practical

value, but belongs in the distinct and distinguished disciplines of functional analysis and

function approximations.

And if the vector is abstracted, then so must be the matrix vector multiplication. Ab-

stract linear algebra dissociates itself from matrix algebra by splitting the nature of the

matrix. On the one hand it retains it, with its algebra, as a two-dimensional array of num-

bers, for its essential role in systems of equations and linear transformations. On the other

hand the matrix vector multiplication w = Av is abstracted into a general linear operation
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on general vector v to produce general vector w.

With functions the linear operation may be differentiation. If operator D is such that

D(ξn) = nξn−1, then

D(α11 + α2ξ + α3ξ
2) = α21 + α22ξ. (5.78)

The image of V : 1, ξ, ξ2, dim(V ) = 3, under differential transformation D is R : 1, ξ,

dim(R) = 2. The nullspace of D acting on V is N : 1, dim(N) = 1. Hence the rank of

the transformation, the dimension of its image space or range, is here 2, while the nullity

of the transformation is here 1, and rankD+nullityD=dimV = 3. Notice that the range of

transformation D and its nullspace are both in V .

Linear operator T is such that, generally

T (α1v1 + α2v2) = α1(Tv1) + α2(Tv2) (5.79)

sending every element of V : v1, v2 to vector space W : Tv1, Tv2, and if w1, w2 is another

span of W , then

Tv1 = A11w1 +A21w2

Tv2 = A12w1 +A22w2. (5.80)

A linear operator affects a linear transformation between the two vector spaces.

It is by concrete examples that we create generalities, not conversely. Look at the

following example of matrix vector spaces. Matrix transposition is a linear operation. If

T (A) = AT , then T (α1A1 + α2A2) = α1T (A1) + α2T (A2). For any A = A(2× 2)

A = α1

∑
1

∏
+ α2

∑

1

∏
+ α3

∑
1
∏

+ α4

∑

1

∏
= α1A1 + α2A2 + α3A3 + α4A4 (5.81)

where A1, A2, A3, A4, is the standard basis for R2×2. Hence T (A) = α1A1 + α2A2 + α3A4 +

α4A3, or T (A) = β1A1 + β2A2 + β3A3 + β4A4, and β1 = α1, β2 = α2, β3 = α4, β4 = α3.

The vector space analogy of functions continuous on the interval 0 ≤ ξ ≤ 1 can be

carried further and extended into normed spaces by defining for a pair of functions a scalar

product analogous to aT b, that is related to the geometric notions of length and angle. If φ1

and φ2 are two such functions, then by virtue of the integral linearity
Z 1

0
(α1φ1 + α2φ2)dξ = α1

Z 1

0
φ1dξ + α2

Z 1

0
φ2dξ. (5.82)
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Expression

(φ1, φ2) =
Z 1

0
φ1φ2dξ (5.83)

behaves exactly like the vector scalar product, and

kφk1 = max
0≤ξ≤1

|φ(ξ)| and kφk2 =
µZ 1

0
φ2dξ

∂1/2
(5.84)

satisfy the conditions on norms or magnitudes.

Both the Cauchy-Schwarz and the triangular inequalities hold for these analogies as they

hold for vectors, and in this sense, functions φ1(ξ) = 1 and φ2(ξ) = 1
2 − ξ are orthogonal.

We shall not stray here into more profound abstractions of vector spaces and linear

transformations. Suffice it to say that with experience we pass from the concrete to the

abstract, and by restricting ourselves to vectors in Rn we concretely created all that is

needed to muster the language of vector spaces and transport its concepts into all sorts of

analogies and isomorphisms.

exercises

5.7.1. Write a basis for the nullspace of

A =




0 1 1

0 1
0



 .

5.7.2. Find the range and the nullspace of

A =





1 −1 1 −3
−1 1 −1 3
1 1 3 −3
1 2 4 −3





then their intersection.

5.7.3. Let

A = A(4× 4) =





1
1

1





. Find the nullspace and range of A,A2,A3, and their respective intersections.

30



5.7.4. Prove that the nullspace of AB contains the nullspace of B, and that the column

space of AB is in the column space of A.

5.7.5. Explain that N(AB), the nullspace of AB, need not include N(A).

5.7.6. Show that AB = O implies that the columns of B are in the nullspace of A.

5.7.7. Prove that

rank(AB) ≤ rank(A), rank(AB) ≤ rank(B)

rank(A+B) ≤ rank(A) + rank(B)

and also that

nullity (AB) ≥ nullity (B).

5.7.8. Prove that if A = A(m × n) is of rank r, then every submatrix S of A is such that

rank (S) ≤ r, with equality holding for at least one S.

5.7.9. Show that

rank(A) = rank(B−1AB).

5.7.10. Verify the Frobenius rank inequality

rank(AB) + rank(BC) ≤ rank(B) + rank(ABC)

on

A =




1 1 1
1 1 1
1 1 1



 , B =




1 1 1
1 −1 0
1 1 1



 , C =




−1 0 1
1 1 1
1 1 1



 .

5.7.11. Prove that if N = N(n× n) is a strictly upper-triangular nilpotent matrix,

N =





× × ×
× ×

×





Then nullity(N2) >nullity(N). Hint: Consider the eventualities of N34 = 1 and N34 = 0.

5.7.12. Show that rank(ATA) = rank(A).
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5.8 Orthogonal bases

Vectors v1, v2, . . . , vm of Rn are mutually orthogonal, or just orthogonal, if pairwise

vTi vj = 0.

Any n linearly independent vectors in a n-dimensional vector space serve as a basis

for that space. No one basis of a vector space has ascendency over any other basis, but

orthogonal bases are computationally most desirable.

Theorem 5.27. An orthogonal set of nonzero vectors, v1, v2, . . . , vm in Rn is linearly

independent. If v is in the space spanned by the m vectors so that v = α1v1 + α2v2 + · · · +

αmvm, then αi = vT vi/vTi vi, i = 1, 2, . . . ,m.

Proof. To show linear independence we write α1v1 + α2v2 + · · · + αmvm = o, and have

upon premultiplication by vTi that vTi o = αi(vTi vi). Since vTi vi =/ 0 it results that αi = 0.

The m orthogonal vectors are a basis for vector space V , and if v ∈ V , then v =

α1v1 + α2v2 + · · · + αmvm, and vT vi = αi(vTi vi). End of proof.

The theorem demonstrates how easy it is to solve a system of equations with a matrix

having orthogonal columns.

If v is not in the subspace spanned by v1, v2, . . . , vm then αi = vT vi/vTi vi are the co-

efficients of an orthogonal projection of v into the subspace spanned by the m v’s. For

if v = α1v1 + α2v2 + · · · + αmvm + v0, where v0 is orthogonal to v1, v2, . . . , vm, then

vTi v = αivTi vi + vTi v
0 = αivTi vi. On the other hand, if vi ∈ Rm i = 1, 2, . . . ,m, then

v0 = o, as there are no more than m nonzero orthogonal vectors in Rm.

5.9 Orthogonalization and the QR factorization

Now that we understand how computationally desirable orthogonal bases are we shall

learn how to produce them.

The Gram-Schmidt orthogonalization algorithm replaces the basis vectors of V one at

a time, requiring that each new vector be orthogonal to all those already in place. Let

v1, v2, v3, v4 be the linearly independent span of V . We seek to select in V four nonzero
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orthogonal vectors q1, q2, q3, q4 to serve as a new basis for the space, and pick them one after

the other in the following sequence:

v1, v2, v3, v4

q1, v2, v3, v4 q1 = G11v1

q1, q2, v3, v4 q2 = G12q1 +G22 v2

q1, q2, q3, v4 q3 = G13q1 +G23q2 +G33v3

q1, q2, q3, q4 q4 = G14q1 +G24q2 +G34q3 +G44v4.

(5.85)

Vector v1 is first replaced by q1 = G11v1, and scalar G11 may be selected at will to normalize

q1 so that q T
1 q1 = 1. Vector q2 is sought next in the two dimensional subspace of V spanned

by q1 and v2, and if q2 =/ o, then by Theorem 5.5 it is linearly independent of v3 and v4 that

are outside the subspace. The condition that q2 is orthogonal to q1, q T
1 q2 = 0, produced the

scalar equation

0 = G12q
T

1 q1 +G22q
T

1 v2 , G12 = −G22
q T
1 v2

q T
1 q1

(5.86)

and G22 may be arbitrarily set to render q T
2 q2 = 1. Vectors q1, q2, v3, v4 are linearly inde-

pendent and still span V . Vector q3 is now sought in the three-dimensional subspace of V

spanned by q1, q2, v3, and any q3 =/ o is linearly independent of v4. The conditions that q3

be orthogonal to q1 and q2, namely the conditions that q T
1 q3 = 0, q T

2 q3 = 0 are stated in

the two equations, each with a single unknown

G13q
T

1 q1 +G33q
T

1 v3 = 0,

G13 = −G33
q T
1 v3

q T
1 q1

G23q
T

2 q2 +G33q
T

2 v3 = 0

G23 = −G33
q T
2 v3

q T
2 q2

,
(5.87)

and G33 may be set at will to render q T
3 q3 = 1. Lastly q4 is sought in the whole four-

dimensional space and the conditions that q T
1 q4 = 0, q T

2 q4 = 0, q T
3 q4 = 0 reduce, since

already q T
1 q2 = 0, q T

1 q3 = 0, q T
2 q3 = 0, to the three linear equations each in only one

unknown

G14q T
1 q1 +G44q T

1 v4 = 0, G24q T
2 q2 +G44q T

2 v4 = 0, G34q T
3 q3 +G44q T

3 v4 = 0

G14 = −G44
q T
1 v4

q T
1 q1

G24 = −G44
q T
2 v4

q T
2 q2

G34 = −G44
q T
3 v4

q T
3 q3

(5.88)
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and we may choose G44 so that q T
4 q4 = 1.

It is all quite simple, and results in the theoretically important

Theorem 5.28. Every vector space has an orthonormal basis.

Proof. Apply the Gram-Schmidt algorithm to any basis of the space. End of proof.

Examples.

1. V :




1
−1
1



 ,




1
1
1



 , V :




1
−1
1



 , α1




1
−1
1



+ α2




1
1
1



 , 3α1 + α2 = 0 (5.89)

2. V :





1
1
1
1



 ,





0
0
1
1



 ,





0
0
0
1



 , V :





1
1
1
1



 ,





1
1
−1
−1



 ,





0
0
−1
1



 (5.90)

3. Functions φ1(ξ) = 1, and φ2(ξ) = ξ, 0 ≤ ξ ≤ 1 are linearly independent in the

sense that α1φ1 + α2φ2 = 0 only if α1 = α2 = 0. Functions √1(ξ) = φ1, √2(ξ) = α1φ1 + φ2

are mutually orthogonal in the sense of eq.(5.83) if 2α1 + 1 = 0. Then, for any choice of

α1, α2 there is a unique choice of β1, β2, and vice versa, so that α1φ1 +α2φ2 = β1√1 + β2√2.

The Gram-Schmidt algorithm also has a matrix formulation.

Let A = A(m × n) be a matrix with n linearly independent columns. Constructing

an orthonormal basis for the column space of A amounts to finding a nonsingular matrix

X(n × n) so that AX = Q, where QTQ = I. Matters are considerably simplified if X can

be chosen to be an upper-triangular, or right, matrix.

Theorem 5.29. Matrix A(m × n) with linearly independent columns can be uniquely

factored as A = QR, where Q(m × n) has orthonormal columns, QTQ = I, and where

R(n× n) is an upper-triangular matrix with a positive diagonal.

Proof. Since the columns of A are linearly independent ATA is positive definite and

can be uniquely factored as ATA = RTR,Rii > 0. Then Q = AR−1 is with orthonormal

columns since QTQ = R−TATAR−1 = I. End of proof.
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A square matrix with orthonormal columns is said to be orthogonal. Then QT = Q−1,

and QTQ = QQT = I. Not only are the columns of square Q orthonormal but so are the

rows.

The arithmetics of the Gram-Schmidt orthogonalization of n vectors each with m com-

ponents takes about mn2 operations, or n3 operations if m = n. But, if all we want is an

orthogonal basis, then the work when m = n is nill since no arithmetic is needed to write

an orthogonal basis for Rn.

The Gram-Schmidt orthogonalization algorithm is simple and works fine in integer arith-

metic, but it can be erroneous and produce a flawed Q in floating -point computations.

We have already remarked in Sec. 2.12 that if the columns (rows) of A are nearly linearly

independent, then the columns (rows) of ATA are more so. Take, for instance, the matrices

A =
∑
1 1
1 1 + ≤

∏
and ATA =

∑
2 2 + ≤

2 + ≤ 1 + (1 + ≤)2

∏
|≤| << 1. (5.91)

If φ and φ0 denote the angle between the two columns of A and ATA, respectively, then

φ = 1
2≤ and φ0 = 1

8≤
2.

The ATA = RTR factorization is in this case with a nearly singular R, and as a result

we run the risk that R−1 is greatly in error. Matrix Q = AR−1, which theoretically has or-

thonormal columns, is practically far from being orthogonal. In situations where the accurate

orthogonality of the columns of Q is crucial, the Gram-Schmidt algorithm is unsatisfactory.

The QR factorization of matrix A is one of the very basic algorithms of linear algebra,

and we shall describe next two algorithms, one named after Givens, and the other after

Householder, that produce good Q matrices.

Both algorithms use simple orthogonal matricesQ designed so that for given vector x,Qx

turns up zeros at specified entries. An orthogonal matrix, we recall, is square and such that

QTQ = QQT = I. We also recall that the product of orthogonal matrices is an orthogonal

matrix.

The idea of Givens is to use the Jacobi orthogonal rotation matrix
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k l

Jkl=





1
c s

1
−s c

1




, Jklx =





x1

xkc+ xls
xi

−xks+ xlc
xn




, c2 + s2 = 1 (5.92)

to enforce (Jklx)l = −xks+ xlc = 0 with

c = xk/(x
2
k + x2

l )
1/2 , s = xl/(x

2
k + x2

l )
1/2. (5.93)

One multiplication of x by J sets one entry of Jx equal to zero. Successive multiplications

by the orthogonal matrices create more zeroes. Because kJxk = kxk, kxk =
√
xTx, at least

one entry in Jx must remain nonzero.

Let A = A(m× n), m ≥ n, be the matrix we want to factor. Premultiplication of A by

Jkl affects the k and l rows of A only, and we adjust c and s to create a permanent zero at

(JklA)lk. Repeated premultiplication by the Jacobi rotation matrices renders the product

upper-triangular (trapezoid), as described below:

A0 = A




× × ×
× × ×
× × ×
× × ×




→

A1 = J12A0




× × ×
0 × ×
× × ×
× × ×




→

A2 = J13A1




× × ×
0 × ×
0 × ×
× × ×




→

A3 = J14A2




× × ×
0 × ×
0 × ×
0 × ×





(5.94)

→

A4 = J23A3




× × ×
0 × ×
0 0 ×
0 × ×




→

A5 = J24A4




× × ×
0 × ×
0 0 ×
0 0 ×




→

A6 = J34A5




× × ×
0 × ×
0 0 ×
0 0 0





.

Since the product of orthogonal matrices is an orthogonal matrix we write QT = J34J24

J23J14J13J12 and have that QTA = R, or A = QR. In our example the last row of A6 is

zero and therefore
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A




× × ×
× × ×
× × ×
× × ×




=

Q




× × × ×
× × × ×
× × × ×
× × × ×





R




× × ×
× ×

×




=





× × ×
× × ×
× × ×
× × ×








× × ×

× ×
×



. (5.95)

Givens’ method can factor A even with linearly dependent columns, except that then R

is of type 0. For example:

√
2

2

∑
1 1
−1 1

∏ ∑
1 1
1 1

∏
=
√

2
∑
1 1
0 0

∏
, (5.96)

and it therefore produces Q matrices that have nearly perfect orthogonal columns. Whenever

the orthogonality of Q is important, the method of Givens is preferred to that of Gram-

Schmidt. The fact that Q is nearly orthogonal does not mean, however, that it is near the

theoretical factor, nor that R is.

In the same way a finite sequence of premultiplications of A by the elementary orthogonal

Jacobi matrices leads to the factorization QTA = L with a lower-triangular L, as described

below:

A



× × ×
× × ×
× × ×



 →

J23A


× × ×
× × 0
× × ×



 →

J13J23A


× × 0
× × 0
× × ×



 →

J12J13J23A


× 0 0
× × 0
× × ×



 . (5.97)

To create one zero in Qx by the method of Givens requires four arithmetical operations

and one square root, whereby the complete factorization of A = A(m × n) requires about

2n2(m − n/3) operations plus n(2m − n)/2 square roots, but it produces Q in a factored

form.

For a geometrical interpretation of Givens’ method imagine x = [x1 x2 x3]T being first

rotated in space by J12 into x0 = J12x = [x01 0 x03]
T in the x1x3 plane, then by J13 into

x
00

= J13x0 = [x
00
1 0 0]T = σkxk[1 0 0]T , where σ = ±1, along the x1 axis.

Computational efficiency is increased if the successive rotations to turn x colinear with

e1 are combined into a single rotation. Geometrically it is obvious what this rotation could
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Fig. 5.1

be. Figure 5.1 shows e1 and σx, with σ = |x1|/x1, so as to create an acute angle between e1

and σx. Rotation of σx by 180o around axis u in the plane of σx and e1, that bisects angle

2θ, cos 2θ = |x1|/kxk, between them brings σx into colinearity with e1.

This is also true in Rn, and for a 180o rotation we use matrix

R = −I + 2uuT (5.98)

that is such that Ru = u, Rv = −v, vTu = 0, with

u = β(e1 +
σ

kxkx), σ = |x1|/x1 (5.99)

where β is to make uTu = 1, or

1 = 2β2(1 + |x1|/kxk). (5.100)

We readily verify that Rx = σkxke1.

It is customary to use the reflection matrix H (after Householder) H = −R = I − 2uuT

instead of rotation matrix R .

As an exercise the reader could undertake writing the rotation matrix R for an axis that

is orthogonal to both e1 and x.
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What H did to the entire vector x it can do to a portion of it by partitioning . Say we

want to leave the first k entries of x untouched but want to have (Hx)i = 0 for i = k + 2,

k + 3, . . . , n. To achieve this we write u = [0 0 . . . 0, uk+1 . . . un]T = [oT vT ]T , vT v = 1, so

that H assumes the partitioned form

H = I − 2uuT =
∑
I O
O I − 2vvT

∏
(5.101)

and if x = [xT1 xT2 ]T , then

Hx =
∑

x1

(I − 2vvT )x2

∏
=

∑
x1

H 0x2

∏
. (5.102)

It is now obvious how to apply the Householder reflection matrices to create the QR

factorization of A:

A0 = A




× × ×
× × ×
× × ×
× × ×




→

A1 = H1A0



× × ×
0 × ×
0 × ×
0 × ×




→

A2 = H2A1



× × ×
0 × ×
0 0 ×
0 0 ×




→

A3 = H3A2



× × ×
0 × ×
0 0 ×
0 0 0




(5.103)

where

H2 =
∑
1

H 0
2

∏
, H3 =




1

1
H 0

3



 . (5.104)

As with Givens’ method, Householders’ method can also factor A, even with linearly

dependent columns, and produces therefore a nearly perfect orthogonal matrix Q. Round-

off errors are not manifested so much in loss of orthogonality as in the computed Q being

rotated relative to the theoretical one.

Householders’ method is faster than Givens’ method; the number of operations in this

method are approximately n2(m− n/3) plus 1
2n square roots.

exercises

5.9.1. Use the Gram -Schmidt algorithm to write an orthogonal basis for V : v1 = [1 1 1]T ,

v2 = [1 − 1 1]T .
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5.9.2. Use the Gram-Schmidt orthogonalization to write an orthogonal basis for

V : [1 1 1 1]T , [1 1 1 0]T , [1 1 0 0]T .

5.9.3. Let V be a subspace of R4 spanned by v1 = [1 1 1 1]T , v2 = [1 1 1 − 1]T . Write a

basis for the orthogonal complement of V .

5.9.4. Write an orthogonal basis for R4 starting with v1 = [1 1 1 1]T .

5.9.5. Write the QR factorization of

A =





1 −1
1 1
1 1
1 1



 .

5.9.6. For matrix

A =
∑
1 1
1 1.095

∏

find upper-triangular R so that ATA = RTR, then form Q = AR−1. Use a four-digit

round-off floating-point arithmetic. Show that the computed Q = [q1 q2] is not orthogonal;
q
qT2 q2 = 1.223 with the angle of 91o between q1 and q2.

5.9.7. Use a succession of Jacobi rotation matrices to produce orthogonal matrix Q so that

Qx = αe1 for x = [1 1 1 1]T . Do the same with the Householder H matrix.

5.9.10. Write an orthogonal basis for F : 1, ξ, ξ2, |ξ| ≤ 1.

5.9.11. What is R in the QR factorization of A such that ATA = D is diagonal?

5.9.12. Show that the orthogonal complement of V ∪W is the intersection of the orthogonal

complements of V and W . Think first geometrically.

5.9.13. Verify that the provisions of Theorem 5.32 hold true for

A =





1 3 2 1 3
−1 2 3 4 7
1 −1 −2 −3 −5
−1 0 1 2 3



 .
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5.10 Orthogonal projections

In this section we take up the question of vector approximations.

Definition. Let W be a subspace of vector space V . A best approximation to a given

v ∈ V from among the vectors of W is a nonzero element w0 ∈W such that

kv − w0k ≤ kv − wk (5.105)

for every w ∈W .

We restrict ourselves to the `2 norm, kvk = (vT v)1/2.

Theorem 5.30. Let W be a subspace of V and v ∈ V be given. Then:

1. A best approximation w0 to v exists if and only if there is at least one w ∈ W for

which vTw =/ 0.

2. A best approximation, when it exists, is unique.

3. Vector w0 ∈ W is a best approximation to v if and only if wT (v − w0) = 0 for every

w ∈W .

4. If w1, w2, . . . , wm is an orthonormal basis for W , then the best approximation to v is

w0 = (wT
1 v)w1 + (wT

2 v)w2 + · · · + (wT
mv)wm. (5.106)

Proof. Let v1, v2, . . . , vn be an orthonormal basis for V , and v1, v2, . . . , vm, m < n an

orthonormal basis for W . If

v = α1v1 + α2v2 + · · · + αmvm + · · · + αnvn (5.107)

and

w = β1v1 + β2v2 + · · · + βmvm (5.108)

then

v − w = (α1 − β1)v1 + (α2 − β2)v2 + · · · + (αm − βm)vm (5.109)

+αm+1vm+1 + · · · + αnvn
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and
kv − wk2 = (α1 − β1)

2 + (α2 − β2)
2 + · · · + (αm − βm)2

+ α2
m+1 + · · · + α2

n.
(5.110)

Each term on the right is nonnegative, and kv − wk2 possesses a unique minimum with

respect to β1, β2, . . . , βm at

α1 − β1 = 0, α2 − β2 = 0, . . . , αm − βm = 0 (5.111)

and the best approximation in W is

w0 = α1v1 + α2v2 + · · · + αmvm (5.112)

so that

kv − w0k2 = α2
m+1 + · · · + α2

n. (5.113)

A nonzero best approximation exists if and only if at least one of α1, α2, . . . , αm is nonzero,

or v is not orthogonal to W ; we have therefore proved statements 1 and 2.

To prove statements 3 and 4, notice that v−w0 = αm+1vm+1 + · · ·+αnvn is orthogonal

to v1, v2, . . . , vm, and hence to every w ∈ W . This condition is necessary and sufficient for

w0 to be the best approximation. The condition wT
i (v − w0) = 0 i = 1, 2, . . . ,m yields 4.

End of proof.

Vector w0, the best approximation to v in W , is the orthogonal projection of v into W .

Orthogonal bases are most convenient here but they are not always directly available.

We shall consider now the question of best approximation under less favorable circumstances.

Theorem 5.31. Let φ1(x) = xTa, and φ2(x) = xTAx be a linear and a quadratic form

for x ∈ Rn, respectively. Then

@φ1

@x
= a,

@φ2

@x
= Ax+ATx (5.114)

and if A = AT , then
@φ2

@x
= 2Ax (5.115)

where
@φ

@x
=
∑
@φ

@x1

@φ

@x2
. . .

@φ

@xn

∏T
(5.116)
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is the gradient of φ = φ(x).

Proof. Write

φ1(x) =
nX

i=1

xiai (5.117)

and obtain @φ1/@xi = ai. Then write

φ2(x) =
nX

i=1

nX

j=1

Aijxixj (5.118)

and obtain
@φ2

@xi
=

nX

j=1

(Aij +Aji)xj . (5.119)

End of proof.

Let v ∈ Rm be a given vector and consider the search for w ∈W so that

φ(w) = (v − w)T (v − w) = kv − wk2 (5.120)

is minimal. Let a1, a2, . . . , an, the columns of A = A(m × n), be a basis for W so that we

may write w = Ax x ∈ Rn, n ≤ m. Objective function φ(w) becomes with this

φ(x) = (v −Ax)T (v −Ax) = vT v − 2xTAT v + xTATAx. (5.121)

A necessary condition for minimum φ is that the gradient of φ(x) vanish, or

@φ

@x
= −2AT v + 2ATAx = o (5.122)

and x = (ATA)−1AT v. An inverse to ATA exists since the columns of A are linearly inde-

pendent, and if AT v =/ o, then a nonzero x for which @φ/@x = o exists. Matrix (ATA)−1AT

is occasionally called the generalized inverse of A.

To prove that s = (ATA)−1AT v minimizes φ(x) we rewrite it as

φ(x) = (x− s)TATA(x− s) + vT (v −As) (5.123)

and conclude that, since (x− s)TATA(x− s) ≥ 0 with equality holding only when x = s, s

is the unique minimizer of φ(x).
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Example. To find the best approximation to φ(ξ) = eξ among √(ξ) = α1 + α2ξ 0 ≤

ξ ≤ 1 in the sense that

kφ− √k2 =
Z 1

0
(α1 + α2ξ − eξ)2dξ (5.124)

is minimal.

Setting the gradient of kφ− √k2 equal to zero we obtain

Z 1

0
(α1 + α2ξ − eξ)1dξ = 0 ,

Z 1

0
(α1 + α2ξ − eξ)ξdξ = 0 (5.125)

or after integration

α1 +
1

2
α2 = e− 1 ,

1

2
α1 +

1

3
α2 = 1 (5.126)

and α1 = 4e− 10, α2 = 18− 6e. Best approximating among √(ξ) is

√min(ξ) = 0.8731273 + 1.690309ξ (5.127)

for which kφ− √mink = 0.0628.

The choice of norm, or the way the question of best approximation is posed, has a

significant influence on the ease with which √min is computed. Computation of the best

approximation in the L2 norm of eq. (5.124) is, at least in principle, simple. Finding the

best approximation in the L1, or uniform, norm is an altogether different matter. Here we

are confronted with the min-max problem of finding

min
α1,α2

max
0≤ξ≤1

|φ− √| (5.128)

and this is far from simple. We cannot say more here on this difficult subject, which belongs

to the theory of polynomial approximations, except that lengthy computation yields

√min(ξ) = 0.894067 + 1.718282ξ (5.129)

and

max
0≤ξ≤1

|√min − eξ| = 0.105933. (5.130)

exercises
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5.10.1. Show that A(ATA)−1AT , A = A(m×n), m > n, is an orthogonal projection matrix.

5.10.2. Show that if P is an orthogonal projection matrix (P = PT , P 2 = P, P =/ I), then

I − P is also a projection matrix, and that Q = I − 2P is orthogonal.

5.11 Orthogonal subspaces

The row and column spaces of a rectangular matrix have interesting orthogonality rela-

tionships.

Definition. Two vector subspaces V and W are orthogonal if vTw = 0 holds for every

v ∈ V and every w ∈W . If V and W are both subspaces of Rn, and dim(V )+dim(W ) = n,

then V and W are orthogonal complements of Rn.

Obviously orthogonal subspaces are disjoint. Only the zero vector is orthogonal to itself.

Theorem 5.32.

1. Let C(A) and N(AT ) be the column space or range of A = A(m×n), and the nullspace

of AT = AT (n×m), respectively. They are orthogonal complements of Rm.

2. Let R(A) and N(A) be the row space and the nullspace of A = A(m×n), respectively.

They are orthogonal complements of Rn.

Proof.

1. First we show that every x ∈ N(AT ) is orthogonal to every x
00 ∈ C(A). Indeed, if

ATx = o, and Ax0 = x
00
, x0 ∈ Rn, then xTx

00
= xTAx0 = x0

T
ATx = 0. Secondly, we have

that

dimC(AT ) + dimN(AT ) = m (5.131)

and since dimC(AT ) = dimC(A) it results that

dimC(A) + dimN(AT ) = m. (5.132)

2. As for 1, except that here

dimC(A) + dimN(A) = n (5.133)
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and dimC(A) = dimC(AT ) = dimR(A). End of proof.

Corollary 5.33. If A(n × n) = AT (n × n), then N(A) and C(A) are orthogonal com-

plements of Rn.

Proof. Set A = AT in Theorem 5.32. End of proof.

Example. The four fundamental spaces of

A =





1 0 −1
2 3 4
−1 −2 −3
3 4 5



 (5.134)

are

column space C(A) :





3
0
1
1



 ,





0
3
−2
4



 , row space R(A) :




1
0
−1



 ,




0
1
2



 ,

nullspace N(AT ) :





−1
2
3
0



 ,





−1
−4
0
3



 , and nullspace N(A) :




1
−2
1



 ; (5.135)

and

dimC(A) = dimR(A), dimR(A) + dimN(AT ) = 4, dimR(A) + dimN(A) = 3 (5.136)

and

C(A) ⊥ N(AT ) , R(A) ⊥ N(A) (5.137)

where ⊥ means orthogonal to.

exercises

5.11.1. Write the 2× 2 matrices that have an equal column and nullspace. Do the same for

3× 3 matrices.

5.11.2. Prove that if A = A(n × n) is such that its column space equals its nullspace,

R(A) = N(A), as in

A =
∑
1 −1
1 −1

∏
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then A+AT is nonsingular. Can this happen for a 3× 3 matrix?

5.11.3. Consider the set of vectors a1, a2, a3, a4 in Rn. Define V1 = |a1|, V2 = V1|a2|sinθ2,

where θ2 is the angle between a2 and its orthogonal projection upon a1. In this way V1 is

the length of a1 and V2 is the area of the parallelogram formed by a1 and a2. Continue

in this manner and write V3 = V2|a3|sinθ3 = |a1||a2||a3|sinθ2sinθ3, where θ3 is the angle

between a3 and its orthogonal projection upon the space spanned by a1, a2. If a1, a2, a3 are

in R3, then V3 is the volume of the parallelepiped formed by a1, a2, a3, and we know that

V3 = |det[a1 a2 a3]|. What is V4 defined recursively by V4 = V3|a4|sinθ4, with a1, a2, a3, a4

in R4 ? What is generally Vn = Vn−1|an|sinθn with a1, a2, . . . , an in Rn ?
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Answers

section 5.1 5.1.1. No.

5.1.2. Yes. Yes.

5.1.3. Yes.

5.1.4. No.

5.1.6. v1 = −2w2 + w3, v2 = w2 + w3;w1 = v1 + v2, w2 = −1
3v1 + 1

3v2, w3 = 1
3v1 + 2

3v2.

section 5.2

5.2.1. No: v1 − v2 + v3 = o.

5.2.2. Yes.

5.2.3. 7α2 − 18α + 8 = 0.

5.2.4. β3 + 1 =/ 0.

5.2.8 If α1v1 + α2v2 + α3v3 + α4v4 = o, then α1 = α3 − α4 + α5, α2 = −α3 − α4 − 2α5, and

we may set α4 = α5 = 0, α3 =/ 0 to have v1 − v2 + v3 = o.

section 5.3

5.3.1. x1 − x2 + x3 = 0, x = x2




1
1
0



+ x3




−1
0
1



 .

5.3.2. x = [x1 x2 x3 x4]T , x1 =/ x2, x3 =/ x4.

5.3.3. V ∩W : [1 − 1 1 − 1]T .

section 5.6

5.6.2.

N(A) :





1

−3
−1




,





1

−5
−3




,




1
8
5




, N(AT ) :




1
−2
1




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R(A) :





4

1
3
−5




,





4
−7
−1
3




, C(A) :




1

−1



 ,



 1
2



 .

.

5.6.5. Yes. Yes.

5.6.9. AX = XA,X = α1




1

1



+ α2



 1



+ α3




1


 .

5.6.10. No.

5.6.12.

Y = 2X12

∑
1
∏
− 2X21

∑

1

∏
. If X = X11

∑
1

∏
+X22

∑

1

∏
, then Y = O.

Y =
∑
3X11 2X12

4X21 3X22

∏
. Range: X = X. Null space: X = O.

section 5.7

5.7.1. N(A) : e1.

5.7.2. Ans.

C(A) :





2
−2

−1



 ,



 2
3



 ; N(A) :





3

1



 ,




3
−3
−2



 ; C(A) ∩N(A) :





1
−1
1
1



 .

5.7.3. C(A) : e1, e2, e3; N(A) : e1; C(A)∩N(A) : e1. C(A2) : e1, e2; N(A2) : e1, e2; C(A2) =

N(A2). C(A3) : e1, N(A3) : e1, e2, e3; C(A3) ∩N(A3) : e1.

section 5.9

5.9.1. q1 = v1, q2 = v2 + αv1, α = −1/3, V : [1 1 1]T , [1 − 2 1]T .

5.9.2. q1 = [1 1 1 1]T , q2 = [1 1 1 − 3]T , q3 = [1 1 − 2 0]T .

5.9.3. v3 = [1 0 − 1 0]T , v4 = [0 1 − 1 0]T , R4 : v1, v2, v3, v4.
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5.9.4. v1 = [1 1 1 1]T , v2 = [1 1 − 1 − 1]T . v3 = [−1 1 1 − 1]T , v4 = [1 − 1 1 − 1]T .

5.9.5.

A =
1

6





3 −3r
3 r
3 r
3 r





∑
2 1

r

∏

, r =
√

3.
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