Math 124, Solutions to Practice Questions for Exam #2, April 25, 2001

1. Which of the following series converges? Explain your answer.
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This is an alternating series which can be written as
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the series converges by the Alternating Series Test.
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which is nonzero. Therefore, the series diverges by the Divergence Test.
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Use the Limit Comparision Test. Consider the series
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Both series have positive terms and, in addition,
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By the Limit Comparision Test, both series either converge or both series diverge. However,
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which is a geometric series which converges since \%\ < 1. In fact, we even know that the

series is equal to
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2. Consider the following series
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How many terms in the series must one sum up in order to obtain s correct to within 0.000001
accuracy?

Since s is an alternating series satisfying m < for all n and
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the Alternating Series Estimation Theorem tells us that the remainder R, = s — s,, where

= 1+k2 satisfies
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for all n. We want ]
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which is equivalent to n > /99999 — 1 = 998.999. Therefore, sggg is equal to s to within an
accuracy 0.000001. So we need sum up the first 1000 terms of s to obtain the desired accuracy.

< 0.000001 = 1076

3. Consider the following series

1

How many terms in the series must one sum up in order to obtain s correct to within an accuracy
of 0.000017

Recall that the series s converges by the Integral Test. By the Remainder Estimate for the
Integral Test, the remainder R,, = s — s,, where s, = 22:1 k% satisfies
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53 < 0.00001

which is equivalent to n > /5000 = 223.607. Therefore, s924 (which is the sum of the first 224
terms) is equal to s up to an accuracy of 0.00001.
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4. Cousider the function f(x) = 5‘1‘“"_47.

(a) Write f(x) as a power series.
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using 1= = Y7 u" and plugging in v = 3%, Multiplying though, one obtains
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(b) Find its radius of convergence.
Its radius of convergence, R, is equal to the radius of convergence of 3" ((32)™. But the

latter converges if and only if |3£| < 1 or, equivalently, when |z| < . Therefore, R = £.



(¢) Find its interval of convergence.
The series converges on the interval (—I,%).

5. Consider the function f(x) = tan~!(2?).

(a) Write f(z) as a power series.
We have that
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where C' is an integration constant. However, since tan=1(0) = 0, C = 0. Therefore,
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Now we just set u = 23 to obtain

tan™! 2% = i(—l)” o
= 2n+1"

(b) Find its radius of convergence.

The series converges if |u| = |23| < 1 which is equivalent to |z| < 1. Therefore, the radius
of convergence is 1.

6. Consider the series >.°° | 2"
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(a) Find its radius of convergence.

Since
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the series converges if |z| < 2 and diverges if |x| > 2 by the Ratio Test. Therefore, the
radius of convergence is 2.

(b) Find its interval of convergence.
We need only check x = 2. If x = 2 then the series is

n > 1
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which is the Harmonic series and, hence, diverges. If z = —2 then the series is
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which converges by the Alternating Series Test. Therefore, the interval of convergence is
[—2,2).
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7. Find the Taylor series centered at 1 of the function f(z) ==«
Notice that f(©(z) = 23 and for all n > 1,
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where ¢, = (3)(3-1)---(3 —n+1)ifn>1and ¢ = 1.



8. (a) Find the MacLauren series of the function f(x) = In(3 + x).
Notice that £ (2) =In(3 + ) and for all n > 1,

f (@) = (=1 Hn = 1)IB +a) "
Plugging in 0, we obtain
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(b) Find its radius of convergence.

Since -
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the Ratio Test implies that the radius of convergence is 3.

9. (a) Find a power series expression for the following integral:

/e_’”4 dx

We use the formula
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then setting v = —z%,
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where C' is an integration constant.

(b) Find a series representation for the following:
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Just take the answer in the previous answer, plug in x = 2 and = = 0 and take the difference

to obtain
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10. Calculate
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Recall the power series expansion for sin z which is
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Plugging in z = 7, we obtain
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Multiplying through by 2, we obtain
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which is our desired series. The answer is therefore 2sin g = 2.



