Math 564, Midterm Exam, April 2, 2001 Due in class on April 9, 2001 Prof. Takashi Kimura

Throughout, \mathbf{R} is the set of real numbers, \mathbf{Q} is the set of rational numbers and \mathbf{Z} is the set of integers.

1. (10 points) Let

$$C_n := \{ (x, y) \in \mathbf{R} \, | \, x^2 + y^2 = \frac{1}{n^2} \}$$

and let $X := \bigcup_{n=1}^{\infty} C_n$ be given the subspace topology as a subset of \mathbb{R}^2 . Is X closed? Prove your answer.

2. (10 points) Consider the set \mathbf{R} of real numbers. Consider the subset

$$K := \{ \frac{1}{n} \, | \, n > 0 \text{ and } n \in \mathbf{Z} \, \}$$

- (a) Let **R** be given the topology arising from the basis $\mathcal{B} := \{ [a, b) | a < b \}$. Find the closure of K in **R** in this topology.
- (b) Let **R** be given the topology arising from the basis $\mathcal{B}' := \{ (a, b] | a < b \}$. Find the closure of K in **R** in this topology.
- 3. (10 points) Let X be a topological space and let A be a connected subset of X. Is A connected? Prove your answer.
- 4. (10 points) Find the boundary and the interior each of the following subsets of \mathbf{R}^2 :
 - (a) $A := \{(x, y) | y = 0 \}$
 - (b) $B := \{(x, y) \mid x > 0 \text{ and } y \neq 0 \}$
 - (c) $C := A \cup B$
 - (d) $D := \{(x, y) | x \in \mathbf{Q} \}$
- 5. (10 points) Problem #10 from Chapter 3 in our text.
- 6. (10 points) Problem #26 from Chapter 3 in our text.
- 7. (10 points) Let X and Y be topological spaces and suppose that $f : X \to Y$ is a continuous function. If x is a limit point of a subset A of X, is it necessarily true that f(x) is a limit point of f(A)?
- 8. (10 points) Let f and g both be continuous functions $X \to CY$ where CY is the cone of Y. Show that f and g are homotopic.
- 9. (10 points) Problem #9 from Chapter 5 in our text.
- 10. (10 points) Problem #13 from Chapter 5 in our text.