Math 123, Practice Exam #3 Solutions, December 5, 2008
(1) Find the following:

(a)
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by using the fundamental theorem of calculus.
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(g) Let u= a3 —82% + 5z + 3 then du = %dx = (322 — 16z + 5) dz then
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(h) Let u = 2% — 3z then 2% = (22 — 3) or 39 = (z — 2)dz and
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(2) Find the following:
(a) For any constant a, we have
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(b) f(t) which satisfies the equation
It
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Apply % to both sides of the equation to get

Solving for f(x) and simplifying, we get
fla) = a3,

(c) the average speed an object moving along a line between —2 < t < 6 if its velocity at
time ¢ is given by v(t) =t — 3t — 4
The speed at time ¢, s(t) = |v(¢)| by definition so the average speed we are after is
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Since v(t) = (t —4)(t + 1), v(t) > 0 when either ¢t > 4 or ¢t < —1 while v(¢) < 0 when
—1<t<4. Thus,

t2 — 3t — 4, if t>4 or t<-1

()] = 2 .
—(#2—3t—4) if —1<t<4

and we have
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Therefore, the average speed is
_ 1,109 109
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(3) Michelle begins walking along a line at time ¢ = 0. Her acceleration at time t > 0 is a(t) =
6t — 7. Suppose that her initial velocity is 1 and her initial position is 3. If s(¢) denotes her
position at time ¢ and v(t) denotes her velocity at time ¢ then answer the following:

(a) Find her velocity at t = 4. Since v(t) is an antiderivative of a(t),

v(t) = /(6157 7)dt = 3t* — Tt + vy
where vg is a constant. Furthermore, 1 = v(0) = vg so
v(t) = /(6t77)dt:3t2—7t+1.

Therefore, v(4) = 3(4)? — 7(4) + 1 = 21.
(b) Find her position at ¢t = 2. Since s(t) is an antiderivative of v(t),

5(t) :/(37:2 —Tt+1)dt =3 - th—i—t—f—so
where s¢ is a constant. Furthermore, 3 = s(0) = sg so
s(t) =13 — ;t2+t+3.
Therefore, s(2) = 2% — 2(2)? +2+3 = —1.



= s(0) where

(¢) When does she return to her starting position? This occurs when s(t)
t > 0. But s(0) = 3 so we are really solving the equation:
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The left hand side is 7
t(t? — 3t 1) =0.

Now, since we are interested in ¢ > 0, we need to solve
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By the quadratic formula, Michelle returns to the starting point when
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both of which are positive.
(4) Consider the following Riemann sum:
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(b) Calculate I (using any method you like).
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(5) Consider the graph below. Find the following:

(a) Write I as a definite integral.
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= 1 and 22 = 4 thus,

) Let u = 2% then du = 2*dz = 2zdz. Furthermore, (—1)
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f(z). Therefore, g(z) is increasing on

(g) g(x) is increasing whenever ¢’(z) > 0 but ¢'(x)
the interval (0,1) since we are restricting to « values —4 <z <1
f/(x) but f'(x) > 0 which occurs on the interval (—3,0) U (0, 1).

Similarly, ¢’ (z) =



