Math 722A1, Homework 1 Differential Topology I

- (1) (10 points) Let S^n be the unit *n*-sphere with the standard metric *g*. Let RP^n denote *n*-dimensional projective space and let $\pi : S^n \to RP^n$ be the canonical projection map $\pi(p) := [p]$ where [p] is the equivalence class of *p*.
 - (a) Show that there is unique metric h on $\mathbb{R}P^n$ such that $\pi^*h = g$.
 - (b) Show that every geodesic $\gamma : R \to RP^n$ with respect to the metric h is closed (that is, there is a number a such that $\gamma(t+a) = \gamma(t)$ for all t), and that every two geodesics intersect exactly once.
- (2) (10 points) Let M be a smooth, n-dimensional manifold. Let ∇ be a connection on M. Let p be a point in M and let $(U, (x^i))$ be a chart containing p then let Γ_{ij}^k for all $i, j, k = 1, \ldots, n$ be functions defined by the equation

$$\sum_{k=1}^{n} \Gamma_{ij}^{k} \frac{\partial}{\partial x^{k}} := \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}$$

Similarly, let $(\widetilde{U}, (\widetilde{x}^i))$ denote another chart about p and define $\widetilde{\Gamma}_{ij}^k$ for all $i, j, k = 1, \ldots, n$ be functions defined by the equation

$$\sum_{k=1}^{n} \widetilde{\Gamma}_{ij}^{k} \frac{\partial}{\partial \widetilde{x}^{k}} := \nabla_{\frac{\partial}{\partial \widetilde{x}^{i}}} \frac{\partial}{\partial \widetilde{x}^{j}}.$$

How are $\{\Gamma_{ij}^k\}$ and $\{\widetilde{\Gamma}_{ij}^k\}$ related?

- (3) (10 points) Let M be a smooth manifold.
 - (a) Let ∇ and ∇' be two connections on M. For all vector fields X and Y on M, define

$$A(X,Y) := \nabla'_X Y - \nabla_X Y.$$

Show that A is a covariant tensor of type 2.

(b) Let ∇ be a connection on M and let B be any covariant tensor of type 2 then define

$$\nabla'_X Y := \nabla_X Y + B(X, Y).$$

Show that ∇' is a connection on M.

- (c) What can one conclude about the set of all connections on M?
- (4) (10 points) Problem 17-4 of Lee.
- (5) (10 points) Problem 17-5 of Lee.
- (6) (10 points) Prove part (e) of Proposition 18.9 (see page 474) of Lee.
- (7) (10 points) Problem 18-2 of Lee.
- (8) (10 points) Problem 18-4 of Lee.
- (9) (10 points) Problem 18-6 of Lee.