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Abstract

In neural network theory the complexity of constructing networks to approxi-
mate input-output (i-o) functions is of interest. We study this in the more general
context of approximating elements f of a normed space F using partial infor-
mation about f . We assume information about f and the size of the network
are limited, as is typical in radial basis function networks. We show complex-
ity can be essentially split into two independent parts, information ε-complexity
and neural ε-complexity. We use a worst case setting, and integrate elements
of information-based complexity and nonlinear approximation. We consider de-
terministic and/or randomized approximations using information possibly cor-
rupted by noise. The results are illustrated by examples including approximation
by piecewise polynomial neural networks.

1 Introduction

In Kon and Plaskota (2000), an information complexity theory for radial basis function
(RBF) neural networks is studied. It is shown that two types of complexity, information
complexity and neural complexity, interact in simple ways to determine the complexity
of function approximation. Information complexity involves the amount of information
about the unknown input-output (i-o) function f needed to approximate it to tolerance
ε (by any approximation engine). Neural complexity involves the number of hardware
processors (neurons) needed in a network for this approximation. We assume that
(as for general feedforward networks) each processor Pj computes a single function
dj(x), and that the network computes linear combinations of the dj(x). In standard
RBF networks, the di(x) are generally simple transformations of a single function, the
reproducing kernel for a Hilbert space.

We connect the above theory to a formulation for more general classes of neural nets
and function approximation paradigms. This connects information-based complexity
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theory and nonlinear approximation theory, yielding an approach to what might be
called information-based nonlinear approximation.

Our problem at its most basic is to approximate an element f of a normed linear space
F . The following two approaches to this problem seem most typical.

The first approach assumes available information about f is partial and/or noisy. If F is
a space of multivariate functions, information about f might consist of sample values,
which in addition can be corrupted by noise. Lack of complete information causes
approximation error, since many functions generally share the same information. This
is typical of problems in information-based complexity (IBC) and problems related to
scientific computation, and numerical computation in particular. Computation of high
dimensional integrals (e.g., in financial mathematics) is a primary example. The reader
is referred to the monographs of Novak (1988), Plaskota (1996), Traub, Wasilkowski
and Woźniakowski (1988), and Traub and Werschulz (1999).

In the second approach one assumes complete (unlimited) information about f , but
is limited computationally to approximations in a special class or set (e.g., of avail-
able “computers”). If this set is a finite-dimensional linear subspace of F , we are in
the domain of classical approximation theory. Recently, however, attention has been
devoted to nonlinear approximation (NA), where the set of possible approximations is
nonlinear. There, on the premise of limited computational resources, one seeks a k-
term approximation of the form f̃ =

∑k
j=1 ajdj, where dj are selected from a dictionary

D ⊂ F of “basis functions” optimized for functions in F . Here approximation error
comes from restrictions on approximations; see, e.g., DeVore and Temlyakov (1995,
1997), DeVore (1998), and DeVore and Lorentz (1993).

Nonlinear approximation has been applied to signal and data compression; see, e.g.,
Bergeaud and Mallat (1996) for applications to so-called matching pursuit methodolo-
gies. Choices of D depend on whether the signal is a speech signal (with D a class of
phoneme signals), a cardiac signal (a class of “standard” heartbeats plus variations),
a stock trend (a class of wavelets appropriate to Brownian motion), or from a space of
smooth functions (an appropriate class of RBF’s). This approach is present in solu-
tions of approximation-theoretic problems in feedforward perceptron models of neural
network theory. See, e.g., Chui, Li, and Mhaskar (1996), Mhaskar and Micchelli (1995),
or Pinkus (1999) for a survey of this topic.

The above two assumptions seem to have little in common, but there are situations
where both of them are present. Consider a neural network for approximating an i-o
function f (encoding a real-world phenomenon). The network depends on parameters
chosen in a learning process based on collection of examples Nf = (f(x1), ..., f(xn))
of f . This involves collecting information and using it, and limited information is
generic. On the other hand, with the assumption of limited neural resources, nonlinear
approximation becomes central. Thus IBC and NA find common ground in neural
network theory.

In this paper we study a combined model for the approximation problem, where in-
formation as well as allowed approximations are limited. The notion of information

2



is adopted from IBC, and that of approximation from NA. The term network denotes
a k-term approximation, which can be viewed as an (artificial) neural network with a
single hidden layer containing k neurons. Examples are RBF and feedforward percep-
tron networks. Our goal is to construct a network approximating f with error at most
ε. We seek the number n = n(ε) of observations of f and the number k = k(ε) of
hidden neurons necessary and sufficient to perform this task. The analysis is done in
the worst case setting.

When the space F is a Sobolev class, an optimal choice of dictionary D consists of
translates of the reproducing kernel for F (Kon and Plaskota, 2000). Our goal here is
to show that these RBF results extend to more general function classes.

We now introduce the two notions of complexity. Information ε-complexity, ICwor(ε),
is the number of observations necessary and sufficient to construct an ε-approximation
in the IBC model (limited information and unlimited approximations). Neural ε-
complexity, NCwor(ε), is the number of neurons necessary and sufficient to obtain an
ε-approximation in NA model (unlimited information and limited approximations).
Both quantities have been studied, though the term ‘neural complexity’ is new as used
here. Obviously, ICwor(ε) and NCwor(ε) provide lower bounds for the number of obser-
vations and neurons, respectively, in the combined model. It turns out, however, that
they essentially provide upper bounds as well, in both deterministic and randomized
approximation settings, and for information possibly contaminated by noise. Almost
optimal approximations (networks) are essentially compositions of the best approxima-
tions from IBC and from NA. Thus (as shown for RBF’s in Kon and Plaskota (2000)),
complexity in the combined model can be essentially split into information complexity
and neural complexity. Interestingly, the word ‘essentially’ above can sometimes be
dropped (i.e., the lower bounds are sharp) as shown in an example of Section 3, where
approximation in Hilbert spaces is analyzed. Thus the combined model is not only
where IBC and NA meet, but also where they split.

Generally, randomized or Monte Carlo approximations are usually not much better for
information complexity in the worst case setting than worst case approximations. We
show a corresponding result for neural complexity and the above combined setting.

When only information is limited, optimal approximations often depend linearly on
information, and these are actually n-term approximations. Then we have NCwor(ε) ≤
ICwor(ε) and the question is whether it is possible to use fewer neurons than observa-
tions for an ε-appoximation. This is illustrated in the problem of L∞-approximation
of functions f : [0, 1] → IR from the Hölder class Cr,α or Sobolev class Wr,p, where
approximations are restricted to piecewise polynomials of degree s and are based on
observations of f . Let, for instance, s = r and information be exact. Then, in the
Hölder class, we need Θ(ε−1/(r+α)) observations and neurons, and (almost) optimal
approximations use equidistant knots; hence the knots are independent of f . In the
Sobolev class with 1 < p <∞ we need Θ(ε−1/(r+1−1/p)) observations, but we can reduce
the number of neurons to Θ(ε1/(r+1)). The final approximation uses different knots for
different f ’s.

The paper is organized as follows. In Section 2, we introduce essential notions of in-
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formation ε-complexity and neural ε-complexity. In Section 3, we define the combined
model and show basic facts about best approximations and complexity. We also give
an important example of approximation in a Hilbert space. In Section 4, we analyze
whether randomized approximations can be better than nonrandomized approxima-
tions. In Section 5, we briefly discuss noisy information. Our results are applied
in Section 6 to piecewise polynomial approximation of Hölder and Sobolev classes of
functions.

We use worst case machinery and deterministic or randomized approximations to an-
swer our complexity questions. In a forthcoming paper we will study the corresponding
questions in an average case setting.

2 The two notions of complexity

We first formally define the two crucial notions of ε-complexity. We use a rather general
framework. We assume that F is an arbitrary normed space with norm ‖ · ‖, and we
want to approximate elements f ∈ F . Typically, F is a space of multivariate functions
f : D → IR where D is a subset of IRd.

Denoting by f̃ = A(f) an approximation to f ∈ F , we define the error of A : F → F
on a given class F ⊂ F as

ewor(A) = sup
f∈F

‖f − A(f)‖.

2.1 Information ε-complexity

Suppose first that we do not have full knowledge of f . We can, however, collect some
information about f by evaluating (or observing) values of some functionals at f . More
specifically, the information is given as

Nf = (L1f, L2f, . . . , Lnf), (1)

where Lj are from a given class L of functionals. For instance, if F is a space of multi-
variate functions, then L may consist of function evaluations. If the Lj are selected in
advance, the information is non-adaptive. We also formally allow adaptive information
in which case the choice of Lj depends on previously obtained values (not on f itself!)
yi = Lif , 1 ≤ i ≤ j − 1, so that Lj = Lj(·; y1, . . . , yj−1). We call y = Nf information
about f . The mapping N : F → Y , where Y is the set of all possible values of infor-
mation, will be called information. See, e.g., Traub, Wasilkowski, and Woźniakowski,
1988, for more detailed definitions and discussion.

Any approximation A(f) is in this case a function of y = Nf rather than f . Hence,
the mapping A : F → F can be decomposed as A(·) = ϕ(N(·)) where ϕ : Y → F . We
write A = (N,ϕ). Radius of information measures uncertainty in information and is
defined as

rad(N) = inf
ϕ:Y →F

ewor(N,ϕ).
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Equivalently,
rad(N) = sup

y∈Y
rad(Fy),

where Fy = {h ∈ F : Nh = y } and rad(Fy) is the usual (Chebyshev) radius of Fy.

The radius of information has been extensively studied in information-based complexity,
see, e.g., Novak (1988), Traub, Wasilkowski, and Woźniakowski (1988). We recall that
the error rad(N) is achieved if (but not only if) ϕ(y) is the center of Fy, provided the
center exists. Furthermore, for any interpolatory approximation A, i.e., one for which
ϕ(y) is an arbitrary element from Fy, we have

ewor(N,ϕ) ≤ 2 · rad(N). (2)

Let Nn be the class of all information with at most n function evaluations for any f .
Then

rwor
n = inf

N∈Nn

rad(N)

measures how much the uncertainty can be reduced using at most n observations.

The information ε-complexity is defined as the minimal number of observations from
which it is possible to construct approximation with error ε for any f ∈ F . That is,

ICwor(ε) = min {n : there exists A = (N,ϕ) such that N ∈ Nn and ewor(A) ≤ ε }.
To stress the dependence on F and L, we will sometimes write ICwor(F ,L; ε) instead
of ICwor(ε).

Example 1 We recall one particular and well known result that will be used later.
Let F be an infinite dimensional separable Hilbert space over IR with inner product
〈·, ·〉 and corresponding norm ‖ · ‖. Let {ξj}j≥1 be a complete orthonormal system in
F . We define the class F to be an ellipsoid,

F =
{
f ∈ F :

∞∑
j=1

〈ξj, f〉2/γj ≤ 1
}
, (3)

where γ1 ≥ γ2 ≥ γ3 ≥ · · · ≥ 0 is a fixed sequence. Suppose that the available
information about f consists of observations of arbitrary functionals L ∈ F ∗ at f . It
is well known that then the best n observations are nonadaptive and given as

yj = 〈ξj, f〉, 1 ≤ j ≤ n, (4)

and the best approximation (assuming no restrictions) is

f̃ = ϕ(y) =
n∑

j=1

yjξj , (5)

which is also the center of the corresponding set Fy. Moreover,

rwor
n =

√
γn+1.

For instance, if γj ≈ j−2p with p > 0, then rwor
n ≈ n−p and ICwor(ε) ≈ ε−1/p.
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2.2 Neural ε-complexity

Suppose now that we have full knowledge of f , but we restrict approximations A(f) to
be k-term approximations. That is, let D ⊂ F be a given dictionary. We are interested
in approximations of the form

f̃ = A(f) =
k∑

j=1

ajdj, (6)

where aj ∈ IR and dj ∈ D.

Suppose for a moment that F is a space of multivariate functions. Then f̃ can be
viewed as a neural network with a single hidden layer consisting of k neurons dj ∈ D.
For instance, if the dictionary consists of radial basis functions then we deal with RBF
networks. If D consists of functions d = σ(〈�w, ·〉2 − z), where �w ∈ IRd and z ∈ IR are
arbitrary, and σ : IR → IR is a fixed activation function, then we deal with feedforward
perceptron networks. We will use the term network for the approximation (6).

Let Fk be the set of all networks (6) consisting of at most k neurons (or the set of
k-term approximations). The minimal error of such approximations on a class F ⊂ F
is defined as

swor
k = sup

f∈F
inf

f̃∈Fk

‖f − f̃‖,

or, equivalently,
swor

k = inf
A:F→Fk

ewor(A).

The quantity swor
k has been studied in approximation theory for different spaces F and

dictionaries D, see, e.g., DeVore and Temlyakov (1995, 1997), Mhaskar (1996).

We now define

NCwor(ε) = min { k : there exists A : F → Fk such that ewor(A) ≤ ε }
to be the minimal k for which it is possible to construct a k-term approximation for
any f ∈ F . We will call NCwor(ε) the neural ε-complexity. To stress the dependence
on F and D we will sometimes write NCwor(F ,D; ε) instead of NCwor(ε).

Example 2 Consider the problem of approximating an f in the ellipsoid (3) of Ex-
ample 1. We now assume unlimited information, but we want to produce a k-term
approximation to f using the dictionary

D = { ξj : j ≥ 1 }, (7)

where ξj ’s are as in Example 1. It can be easily seen that then the optimal k-term
approximation is

f̃ = ψ(f) =
∑
j∈S

〈ξj, f〉f,

where S ⊂ IN is the set of k indices for which the coefficients |〈ξj, f〉| are largest
possible.
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Note that the worst case error of ψ is attained at an f for which |〈ξj, f〉| are all the
same for 1 ≤ j ≤ k + 1 ≤ m, and 〈ξj, f〉 = 0 for j ≥ m + 1, where m is an integer.
Further considerations give the following formula. Let m∗ be the largest integer in the
set of all m ≥ k + 1 for which

m− 1 − k ≤ γm ·
m−1∑
j=1

γ−1
j , (8)

or m∗ = ∞ if (8) holds for all such m. (Note that m∗ <∞ if limj→∞ γj = 0.) Then

swor
k =




√
(m∗ − k)/

(∑m∗
j=1 γ

−1
j

)
if m∗ <∞,

limm→∞
√
m/

(∑m
j=1 γ

−1
j

)
if m∗ = ∞.

For instance, if γj ≈ j−2p, p > 0, then m∗ ≈ (1 + (2p)−1)k, swor
k ≈ (1 + (2p)−1)−p k−p,

and

NCwor(ε) ≈
(

2p

2p+ 1

) (
1

ε

)p

.

3 Complexity in the combined model

Our purpose is to study the combined model. That is, we assume that both information
and approximations are limited. For f ∈ F , we want to construct an approximation
(network) f̃ = A(f) of the form (6) based on information y = Nf about f of the form
(1). Note that then A can be decomposed into an information part N : F → Y and an
approximation part ϕ : Y → ∪k≥1Fk, so that A(f) = ϕ(Nf). Our goal is to determine
the number n of observations and the number k of neurons that are necessary and
sufficient to construct an approximation with error ewor(A) ≤ ε.

We first characterize the minimal error of approximation.

Lemma 1 Let N be any information (1). Then

max {rad(N), swor
k } ≤ inf

ϕ:Y →Fk

ewor(N,ϕ) ≤ 2 · rad(N) + swor
k .

Hence, for the minimal error of approximations that use n observations and k neurons,
we have

max { rwor
n , swor

k } ≤ inf
N∈Nn

inf
ϕ:Y →Fk

ewor(N,ϕ) ≤ 2 · rwor
n + swor

k .

Proof. Since the lower bound is obvious, we show only the upper bound. To this end,
we present an approximation A∗(f) = ϕ∗(y), y = Nf , whose error is not bigger than
the upper bound plus some η > 0. The approximation is given as

ϕ∗(y) = ψ(ϕI(y)),
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where ϕI : Y → F is an interpolatory approximation using N , and ψ : F → Fk is
a mapping with error ewor(ψ) ≤ swor

k + η. Hence the network is constructed in two
steps. We first choose the interpolatory approximation g = ϕI(y), and then construct
an almost optimal network for g consisting of at most k neurons.

Using the triangle inequality and (2), we now obtain for any f ∈ F
‖f − ϕ∗(Nf)‖ ≤ ‖f − ϕI(Nf)‖ + ‖g − ψ(g)‖ ≤ 2 · rad(N) + swor

k + η.

Since η can be arbitrarily small, this gives the upper bound.

The second part of the lemma follows by taking infima with respect to information
N ∈ Nn. �

Note that the upper bound of Lemma 1 can be improved in many cases. Let F̃ be
the convex hull of F . Suppose that for any information y we can find an element
a(y) ∈ F̃ such that supf∈Fy

‖f − a(y)‖ ≤ rad(Fy) + η. Then the minimal error of
k-term approximation can be bounded by

inf
ϕ:Y →Fk

ewor(N,ϕ) ≤ rad(N) + swor
k ,

i.e., we can get rid of the factor 2. Indeed, in this case we can apply the approximation
as in the proof of Lemma 1 with the interpolatory part ϕI(y) replaced by a(y), and
use the fact that the minimal errors swor

k of k-term approximations over F and over F̃
are equal.

The following simple example shows that, in general, we cannot improve the bounds
any further.

Example 3 Let F = IR2 with the l1-norm, and F = { f ∈ F : ‖f‖∞ ≤ 1 }. Let
information Nf = f2 (the second coordinate of f) and the dictionary D = {(1, 0)}.
Then the center of Fy is (0, y) and rad(N) = 1. We also have swor

0 = 2, but for k ≥ 1
we have swor

k = 1 and the best k-term approximation to f = (f1, f2) is ψ(f) = (f1, 0).
However, if only limited information y = f2 is available about f , then the best k-term
approximation is just zero, and its error is 2. Hence this error equals max{rad(N), swor

k }
for k = 0, and rad(N) + swor

k for k ≥ 1.

As a consequence of Lemma 1, we obtain the following theorem.

Theorem 1 In order to construct a network (6) in the class F with error at most ε,
it is necessary to use at least ICwor(F ,L; ε) observations and NCwor(F ,D; ε) neurons,
and it is sufficient to use ICwor(F ,L;αε) observations and NCwor(F ,D; βε) neurons,
where α, β > 0 are arbitrary numbers satisfying 2α+ β ≤ 1.

Proof. Necessity follows immediately from the lower bound of Lemma 1. For suffi-
ciency, let n = ICwor(αε) and k = NCwor(βε). We can choose N ∈ Nn such that for
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some ϕ we have ewor(N,ϕ) ≤ αε, and ψ : F → Fk such that ewor(ψ) ≤ βε. Proceed-
ing as in the proof of the upper bound of Lemma 1 we obtain that the error of the
approximation A(f) = ψ(ϕI(Nf)) is at most 2αε+ βε ≤ ε. �

Thus the problem of constructing ε-networks can be essentially split into two separate
and independent parts corresponding to information complexity and neural complexity.
It is enough to know both complexities to determine complexity of constructing ε-
networks.

For some concrete problems we are able to provide more precise analysis. Here is an
important example.

Approximation in a Hilbert space

Consider the problem defined in Examples 1 and 2. Suppose first that we want to
construct an approximation using n observations and k neurons. Then we can use the
following strategy. We first observe the coefficients (4), i.e., yj = 〈ξj, f〉 for 1 ≤ j ≤ n.
If n ≤ k then the final approximation is given by (5), otherwise it is given by f̃ =
A∗(f) =

∑
j∈S yj ξj, where S is the set of k indices j ∈ {1, 2, . . . , n} for which |yj| are

largest possible.

Bounds for the error of A∗ follow from Lemma 1. It turns out, however, that this error
actually equals the lower bound, which means that A∗ is optimal.

Theorem 2 We have
ewor(A∗) = max { rwor

n , swor
k },

i.e., A∗ is an optimal approximation that uses n observations and k neurons.

Proof. Let fn be the orthogonal projection onto span{ ξj : 1 ≤ j ≤ n }, i.e., fn =∑n
j=1〈ξj, f〉ξj. Then A∗(f) = A∗(fn) and

‖f −A∗(f)‖2 = ‖f − fn‖2 + ‖fn − A∗(fn)‖2.

Setting a2 =
∑n

j=1〈ξj, f〉2/γj ≤ 1 we have ‖f − fn‖2 ≤ (1 − a2) (rwor
n )2 and ‖fn −

A∗(fn)‖2 ≤ a2(swor
k )2, where we used the fact that both (rwor

n )2 and (swor
k )2 are ho-

mogeneous with respect to the squared ‘radius’ b of the ellipsoid Fb = { f ∈ F :∑∞
j=1〈ξj, f〉2/γj ≤ b }. Hence

ewor(A∗) ≤ max
0≤a≤1

√
(1 − a2)(rwor

n )2 + a2(swor
k )2 = max { rwor

n , swor
k }.

By Lemma 1, max { rwor
n , swor

k } is also the lower bound for any approximation that uses
n observations and k neurons. Hence A∗ is optimal and the formula for its error follows.
�
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Let us briefly discuss relations between rwor
n and swor

k . Observe first that if n ≤ k then
swor

k ≤ rwor
n , which is due to the fact that, in this case, (5) is an n-term approximation.

If k < n then any of the two minimal errors can dominate. For k = n we have

√
1

n+ 1
· rwor

n ≤ swor
n ≤ rwor

n . (9)

The lower bound follows from the fact that the squared minimal error of an n-term
approximation for

f = β ·
n+1∑
i=1

ξj,

where β =
(∑n+1

j=1 γ
−1
j

)−1
, equals just β, and β ≥ γn+1/(n + 1). Furthermore, both

bounds in (9) are sharp. Indeed, if γj = 1 for 1 ≤ j ≤ n+1 and γj = 0 otherwise, then
(n+ 1)−1/2 · rwor

n = swor
n . On the other hand, if γ = 1 for all j ≥ 1, then rwor

n = swor
n .

We can draw the following conclusion from Theorem 2. In order to construct an
approximation with error at most ε, it is necessary and sufficient to use n = ICwor(ε)
observations and k = NCwor(ε) neurons. By (9) we have NCwor(ε) ≤ ICwor(ε), and the
ratio of the two complexities can be arbitrarily large. For instance, if γj ≈ j−2p with
p > 0, then

NCwor(ε)

ICwor(ε)
≈ 2p

2p+ 1
,

which follows from Examples 1 and 2.

4 Randomization

We now consider non-deterministic approximations where the information is obtained
and/or the network is built depending on a random parameter t. Thus an approx-
imation procedure is now formally defined as a family A = {At}t∈T , where T is an
arbitrary measurable set in IRs, s ≥ 1, with some probability measure ω. For a given
t ∈ T we have At = (Nt, ϕt), i.e., the approximation to f is obtained as f̃ = ϕt(y),
where y = Nt(f) is information (1) about f . This means that we randomize with
respect to information and/or networks.

The main question is whether randomization can reduce complexity in the combined
model. To give an answer, we first formally define the notions of error and complexity
in the non-deterministic case.

The error of a random approximation A = {At} is defined as 1

eran(A, ω) = sup
f∈F

∫
T
‖f −At(f)‖ω(dt).

1To avoid technical difficulties with measurability of integrands, by an integral we mean here and
subsequently the upper integral.
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We also define the complexity of information N = {Nt} as

icran(N,ω) = sup
f∈F

∫
T
nt(N, f)ω(dt),

where nt(N, f) is the number of observations of f ∈ F with the random parameter
t ∈ T (or, equavalently, the cardinality of Ntf), and we define the complexity of the
network approximation ϕ = {ϕt} as

ncran(ϕ, ω) = sup
f∈F

∫
T
kt(ϕ, f)ω(dt),

where kt(ϕ, f) is the number of neurons used in the network approximation ϕt(f) of f
with parameter t.

Finally, we define randomized information complexity and randomized neural complex-
ity as

ICran(ε) = inf { icran(N,ω) : N = {Nt} and ω such that (10)

for some ϕ = {ϕt} is eran(N,ϕ, ω) ≤ ε },
and

NCran(ε) = inf
{

ncran(ϕ, ω) : ϕ = {ϕt} and ω such that (11)

sup
f∈F

∫
T
‖f − ϕt(f)‖ω(dt) ≤ ε

}
.

We now show a result corresponding to Theorem 1 from the deterministic setting.

Theorem 3 In order to obtain a randomized approximation (6) in the class F with er-
ror at most ε, it is necessary to use information with at least ICran(F ,L; ε) observations
and a network with at least NCran(F ,D; ε) neurons, and it is sufficient to use infor-
mation with ICran(F ,L;αε) observations and a network with NCran(F ,D; βε) neurons.
Here α, β > 0 are arbitrary numbers satisfying 2α + β < 1.

Proof. Since the lower bound is again obvious, we concentrate on the upper bound.
Let η > 0 be arbitrary such that (2α+ β)ε+ η ≤ ε. We take N = {Nt1}t1∈T1 and ϕ =
{ϕt1}t1∈T1 with t1 ∼ ω1, such that eran(N,ϕ, ω1) ≤ αε and icran(N,ω1) ≤ ICran(αε)+ η.
Then we define ϕ̃ = {ϕ̃t1}t1∈T1 such that for all t1 and y we have ϕ̃t1(y) ∈ F and

‖ϕ̃t1(y) − ϕt1(y)‖ ≤ inf
h∈F

‖h− ϕt1(y)‖ + η.

Note that then

‖f − ϕ̃t1(y)‖ ≤ ‖f − ϕt1(y)‖ + ‖ϕ̃t1(y) − ϕt1(y)‖ ≤ 2 · ‖f − ϕt1(y)‖ + η.

We also take ψ = {ψt2}t2∈T2 with t2 ∼ ω2 such that for all f ∈ F is
∫
T2
‖f −

ψt2(f)‖ω2(dtt2) ≤ βε, and ncran(ψ, ω2) ≤ NCran(βε) + η.

11



Now we let T = T1 × T2, ω = ω1 × ω2, and define information N∗ = {N∗
t }t∈T and

approximation ϕ∗ = {ϕ∗
t}t∈T as N∗

t = Nt1 and ϕ∗
t (·) = ψt2(ϕ̃t1(·)), where t = (t1, t2).

Then

‖f − ϕ∗
t (Ntf)‖ = ‖f − ψt2(ϕ̃t1(Nt1f))‖

≤ ‖f − ϕ̃t1(Nt1f)‖ + ‖ϕ̃t1(Nt1f) − ψt2(ϕ̃t1(Nt1f))‖,
so that for any f ∈ F∫

T
‖f − ϕ∗

t (Ntf)‖ω(dt)

≤
∫

T2

∫
T1

‖f − ϕ̃t1(Nt1f)‖ω1(dt1)ω2(dt2)

+
∫

T1

∫
T2

‖ϕ̃t1(Nt1f) − ψt2(ϕ̃t1(Nt1f))‖ω2(dt2)ω1(dt1)

≤ 2
∫

T1

‖f − ϕt1(Nt1f)‖ω1(dt1) + η + βε ≤ (2α + β)ε+ η.

We also have
icran(N∗, ω) = icran(N,ω1) ≤ ICran(αε) + η

and
ncran(ϕ∗, ω) = sup

f∈F

∫
T1

∫
T2

k(t1,t2)(f)ω2(dt2)ω1(dt1) ≤ NCran(βε) + η,

since for any fixed t1, the expected value of k(t1,t2)(f) is the expected number of neurons
in approximation of ϕ̃t1(Nt1f) ∈ F using the appoximation ψ.

Since η can be arbitrarily small, the proof is complete. �

Theorem 3 implies that randomization does not help much in the combined model if
and only if it does not help for both information complexity and neural complexity.
We obviously have

ICran(ε) ≤ ICwor(ε) and NCran(ε) ≤ NCwor(ε).

The question of whether randomization can significantly help for information complex-
ity has been studied in IBC. It is known that, even though we can randomize the choice
of functionals to be observed as well as the number of them, for our general approx-
imation problem the answer is usually negative. See, e.g., Novak (1988) for sufficient
conditions for randomization not to help.

The question of whether randomization helps for neural complexity seems not to have
been studied yet. Obviously, the only way to reduce the neural complexity would be
by randomizing the number k of neurons in approximations. It turns out, however,
that this can help only a little.

Theorem 4 For any ε > 0 and m > 1 we have

(
1 − 1

m

)
· NCwor(mε) ≤ NCran(ε) ≤ NCwor(ε).

12



Proof. It suffices to prove the left hand inequality. To this end, we first show the
following auxiliary fact. For f ∈ F and ε1 > 0, let

k(f, ε1) = min { k : ∃φ ∈ Fk s.t. ‖f − φ‖ ≤ ε1 }.

Suppose that there exists f ∈ F and a convex function γ : (0,∞) → (0,∞) such that

k(f, ε1) ≥ γ(ε1), ∀ε1 > 0.

Then
NCran(ε) ≥ γ(ε). (12)

Indeed, let ϕ = {ϕt} be such that
∫
T ‖f − ϕ(f)‖ω(dt) ≤ ε and assume that φ uses a

network from Fk with probability pk to approximate f . 2 Letting εk = infφ∈Fk
‖f − φ‖

we then have ε ≥ ∑∞
k=0 pkεk and the average number of neurons used for f is l =∑∞

k=0 pkk. This and convexity of γ give

l ≥
∞∑

k=0

pkk(f, εk) ≥
∞∑

k=0

pkγ(εk) ≥ γ
( ∞∑

k=0

pkεk

)
≥ γ(ε),

which yields (12).

Now, let ε > 0 and f ∈ F be a function for which NCwor(mε) is attained. Define

γ(ε1) =

{
(1 − ε1/(mε)) · NCwor(mε) 0 < ε1 < mε,
0 ε1 ≥ mε.

Then γ is convex and γ(ε1) ≤ k(f, ε1), ∀ε1. By (12) we then have

NCran(ε) ≥ γ(ε) =
(
1 − 1

m

)
· NCwor(mε),

as claimed. �

Remark 1 One can actually show the following. For f ∈ F and ε > 0, let k̃(f, ε) be
the lower convex envelope of k(f, ε), i.e., k̃(f, ε) ≤ k(f, ε), ∀ε > 0, and for any other
function k1(f, ε) satisfying the last inequality we have k1(f, ε) ≤ k̃(f, ε), ∀ε. (Note
that such a function exists.) Then

NCran(ε) = sup
f∈F

k̃(f, ε).

Thus, since k(f, ε) is not convex (exept for some trivial cases), randomization always
helps; however, by Theorem 4, we can gain only a little.

2We can assume without loss of generality that t �→ kt(ϕ, f) is measurable.
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5 Noisy information

In this section, we discuss a generalization of Theorem 3 to the case of noisy informa-
tion. That is, we assume that each piece of information is given as

yj = Ljf + zj, 1 ≤ j ≤ n,

where zj is a random noise in the jth observation. More precisely, we assume that zj ’s
are independent random variables distributed according to some known distribution pσj

on IR. The parameter σj represents noise level and σj = 0 corresponds to the situation
when there is no noise with probability one. A primary example is the Gaussian noise
in which case pσ = Normal(0, σ2).

Formally, noisy information is a pair (N,∆), where N represents the choice of function-
als Lj to be observed and ∆ represents the choice of precisions σj . Both, Lj and σj , as
well as the total number n of observations, can be in general selected adaptively based
on the previously obtained values y1, . . . , yj−1; see Plaskota (1996) for more details. An
approximation to f is, as always, given as ϕ(y) where y is noisy information about f .
Thus an approximation procedure is a triple A = (N,∆, ϕ).

Similarly to the noiseless case, in the randomized setting an approximation procedure
is a family A = {At}t∈T , t ∼ ω, where At = (Nt,∆t, ϕt) is a deterministic procedure
for any t.

The error of A in the ‘noisy’ case is defined by adding another integral which is due to
noise,

eran−noi(N,∆, ϕ) = sup
f∈F

∫
T

∫
Yf,t

‖f − ϕt(y)‖ πf,t(dy)ω(dt).

Here Yf,t ⊂ ∪∞
i=1IR

i is the set of all possible values of information for given f and
parameter t, and πf,t is the probability distribution of information about f in Yf,t.
Note that, since any deterministic approximation can be treated as non-deterministic
one by letting T be a singleton, we do not write separate definitions for the two kinds
of approximation.

We also have to introduce the cost of noisy information in order to be able to define
information complexity. Our model of cost is again taken from Plaskota (1996); namely,
the cost of obtaining a single value yj = Ljf + zj with noise zj ∼ pσj

equals c(σj),
where c : [0,∞) → [0,∞] is a given nonincreasing cost function. For instance, c(σ) = 1
if σ ≥ σ0 ≥ 0, and c(σ) = ∞ if σ < σ0, corresponds to the situation when all
the observations are performed with fixed precision σ0. These assumptions imply the
complexity of information,

icran−noi(N,∆, ω) = sup
f∈F

∫
T

∫
Yf,t

costf,t(y) πf,t(dy)ω(dt),

where costf,t(y) is the cost of obtaining information y about f with parameter t.

Finally, information ε-complexity, ICran−noi(ε), is defined as in (10) with N , icran, and
eran replaced by (N,∆), icran−noi, and eran−noi, respectively. We can similarly define
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information ε-complexity, NCwor−noi(ε), for noisy but non-randomized information.
Note that the presence of noise does not change the definition of neural ε-complexity
NCran(ε). However, in the combined model, the final approximation ϕt(y) to f depends
not only on the random parameter t, but also on the noise, because the information y
about f does.

It turns out that a result analogous to Theorem 3 holds in the case of noisy information.

Theorem 5 In order to obtain a randomized approximation (6) with error at most ε
using noisy information, it is necessary to pay at least ICran−noi(F ,L; ε) for observations
and use at least NCran(F ,D; ε) neurons, and it is sufficient to pay ICran−noi(F ,L;αε)
for observations and use NCran(F ,D; βε) neurons. Here α, β > 0 are arbitrary numbers
satisfying 2α + β < 1.

Proof. The proof follows the proof of Theorem 3 with obvious modifications corre-
sponding to the presence of noise. �

Recall that randomization does not help much for neural complexity. We also have that
randomization does not help for information complexity in the presence of noise, as
shown in Plaskota (1996a). Thus Theorem 5 can be interpreted as follows. Even
if randomized approximations are allowed, the best approximations use essentially
NCwor−noi(ε) observations and NCwor(ε) neurons.

6 Example: piecewise polynomial networks

We illustrate the obtained results using the well known example of one dimensional
piecewise polynomial networks. 3 We assume F = C(D) with D = [0, 1] and the
uniform norm,

‖f‖ = max
0≤x≤1

|f(x)|.
The neurons evaluate functions from the dictionary

D = Ds = {w(min(u, ·)) : w ∈ Poly(s), u ∈ D },
where Poly(s) are polynomials of degree at most s, s ≥ 1. Obviously, in this case the set
Fk of all k-term approximations (6) includes all continuous piecewise polynomials with
at most k pieces. We want to approximate functions from the Hölder class F = Cr,α,

Cr,α =
{
f ∈ Cr(D) : |f (r)(x1) − f (r)(x2)| ≤ |x1 − x2|α, 0 ≤ x1, x2 ≤ 1

}
with r ≥ 0 and 0 < α ≤ 1, or from the Sobolev class F = Wr,p,

Wr,p =
{
f ∈ Cr(D) : f (r)-abs. cont., ‖f (r+1)‖p ≤ 1

}
3Multivariate piecewise polynomial networks would be more interesting, but very little is known

about lower bounds for neural complexity in this case.
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with r ≥ 0 and 1 ≤ p ≤ ∞. Information y about f is given by

y = (f(x1) + z1, f(x2) + z2, . . . , f(xn) + zn ),

where the noise is Gaussian with fixed variance σ2. In this case, L = {L : ∃x ∈
D, s.t. Lf = f(x) for all f ∈ F }. We restrict our considerations to deterministic
approximations as randomization does not help much for these problems; see Novak
(1988) and Plaskota (1996a), and Theorem 4.

We first consider the deterministic and noiseless situation (σ = 0).

Theorem 6 (i) For information complexity we have

ICwor(Cr,α; ε) �
(

1

ε

) 1
r+α

and ICwor(Wr,p; ε) �
(

1

ε

) 1
r+1/q

,

where 1/p+ 1/q = 1.

(ii) For neural complexity we have the following. If 1 ≤ s ≤ r − 1 then

NCwor(Cr,α,Ds; ε) = NCwor(Wr,p,Ds; ε) = +∞.

If s ≥ r then

NCwor(Cr,α,Ds; ε) �
(

1

ε

) 1
r+α

and NCwor(Wr,p,Ds; ε) �
(

1

ε

) 1
r+1

.

Proof. The proof of (i) can be found, e.g., in Heinrich (1993) or Novak (1988). Part
(ii) can be shown using a standard technique see, e.g., DeVore, Howard, and Micchelli
(1989), or DeVore (1998). We only mention that in case F = Wr,p with 1 ≤ p < ∞,
the knots 0 = x0 < x1 < · · · < xk ≤ 1 of the (almost) optimal approximation φ(x) =∑k

j=1wj(min(xj , x)) essentially depend on f , and they are selected such that

(xj − xj−1)
r+1/q

( ∫ xj

xj−1

|f (r+1)(u)|pdu
)1/p ≤

(1

k

)r+1
, j = 1, 2, . . . , k. (13)

In all other cases, equidistant knots (and sampling) are optimal. �

We now comment on Theorem 6. For dictionary Ds with polynomials of degree s < r,
it is impossible to construct networks with finite error in any of the Hölder or Sobolev
classes, since the neural complexity is in this case infinite. Let s ≥ r. Then, to construct
a network with error ε > 0 in Hölder class Cr,α, it is necessary and sufficient to use
Θ(ε−1/(r+α)) function values and the same amount of neurons. Moreover, the (almost)
optimal sample points xj are equidistant and equal to the knots in expansion (6). In
particular, they are chosen independently of f . The same applies for the Sobolev class
Wr,∞, i.e., we have to use Θ(ε−1/(r+1)) equidistant samples and knots. The situation
changes for Wr,p with 1 ≤ p < ∞. If r = 0 and p = 1 then it is again impossible to
approximate with finite error in W0,1 since information complexity is infinite. For r > 0
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or 1 < p <∞ the equidistant sampling at Θ(ε−1/(r+1/q)) points is still (almost) optimal,
but we need only Θ(ε−1/(r+1)) neurons. The knots xj of the network approximating
f are in this case selected adaptively, i.e., these depend on the obtained information
about the values of f . For instance, assume a minimal smoothness r = 0, and p = 2.
Then we need Θ(ε−2) samples, but only Θ(ε−1) neurons.

We also comment on practical construction of (almost) optimal networks. The con-
struction is quite easy in cases where ICwor(F ,Ds; ε) � NCwor(F ,Ds; ε). We just take
piecewise polynomial interpolation φ of f based on equidistant sampling. In Sobolev
classes with ICwor(F ,Ds; ε) � NCwor(F ,Ds; ε), the situation is more complicated, since
the first step of the algorithm from the proof of Lemma 1 requires finding a function
fy ∈ Wr,p interpolating data yj = f(j/n), 0 ≤ j ≤ n, with n = n(ε) = Θ(ε−1/(r+1/q))
(which is known to exist). This is in general not an easy task. In case p = 2, fy can be
chosen as the natural spline of degree 2r+ 1 interpolating data y = Nf . In the second
step, we select k = k(ε) = Θ(ε−1/(r+1)) knots xj for fy using condition (13), and then
we interpolate fy at xj ’s by a network with k neurons. Note that the resulting network
φ = φ(y) does not necessarily interpolate the original function f at any of the xj .

In the ‘noisy’ case σ > 0, by Plaskota (1996a) we have

NCwor−noi(F , σ; ε) � σ2
(1

ε

)γ+2
ln
(1

ε

)
,

where F = Cr,α or F = Wr,p, and γ is the exponent for the class F in the noiseless
case, see Theorem 6. Hence, in any case, we need Ω(ε−2) samples, which is large as
compared to the number of neurons needed. For instance, for minimal smoothness
r = 0, and for p = 2, we have ICran−noi(σ, ε) � σ2ε−4 ln(1/ε) while NCwor(ε) � ε−1.
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