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Continuous complexity theory gets its name from the model of mathematical
computation on which it is based.  In the mathematics of the standard combinatorial
computational complexity theory, modeling the inner workings of a computer takes center
stage, and complexities of problems are measured in terms of bit operations using the
Turing machine model, leading to hierarchies of complexity and to problems such as the
famous  conjecture.  In the continuous complexity model, real number7 ~ 57
operations such as multiplication and function evaluation are primitives, and complexity
analysis has a more analytic nature.  The continuous (or real-number) model of
computation is applicable for a number of reasons.  One is the expectation that in current
and future computations, many fundamental analytic operations (such as various types of
function evaluations) can be carried out in short enough times and within close enough
time orders of each other that other higher order computational factors (of which there
can be many) dominate complexity analyses.  The real-number model is also useful
because it permits us to use the power of analysis in the study of complexity theory.  This
model of computation is the basis of recent foundational work in computation theory
([BSS], [BCSS]), and of older work ([T1], [HS], [S]) on zero finding for polynomial and
other equations.  Mathematical analysis takes the helm as the primary tool instead of the
combinatorial techniques in classical computational complexity.

A second sometimes important element of the continuous theory is the notion of
partial information in mathematical computation, which is the primary topic of this book.
Computations in numerical analysis attempt to model infinite dimensional objects (e.g., a
function  on a domain ), while computers (in the real number model) deal with finite� +

dimensions (finite sets of reals).  Thus to solve an elliptic PDE  with  a(" ~ � (
differential operator and  defined on , the computer uses a finite set of real values� +

¸3 � ¹ � 3 ²�³ �²% ³� � ��~�
�( )  depending on .  The numbers  might range from values  at a fixed

set  of points (so-called , to integral functionals¸% ¹� �~�
� standard information³



�

� c� �%�²%³� �% ��  of  arising in a Fourier expansion.  The computer processes the array

5� ~ ²3 ²�³ÁÃ Á3 ²�³³� �   ( ), and returns another finite set of reals, used toinformation
construct the unknown .  We remark that among the many methods of solving elliptic"
problems numerically, it has been proved in the context of continuous complexity that the
so-called finite element method is optimal in a well-defined way (see [W]).  One of the
interesting aspects of continuous complexity theory is its use of functional analysis to
study uncertainty and its foundations.

Computational problems can be reduced to computing an output from an input.
Define  to be the mapping from input to desired output.  For example input may consist:
of a function  on the unit interval.  I� nformation  about  might be values of  at a5� � �
discrete set of points, a common information set in numerical analysis.  Desired output



:� � �²%³ �% � might range from the integral Int  = , to the recovery of  itself (from

�

�

partial information ).5�

The notion of partial information is central in computational solutions of
mathematical problems.  Indeed there are only two ways to get one's hands on the
functions and operators in numerical problems for which one seeks computational
solutions.  The first is to describe them analytically or symbolically, manipulate them in
exact form until an answer is obtained, and finally to extract the finite collection of
numbers we need to work with.  The second and more common way is to start with
information  about inputs (e.g., functions and operators) in partial form, as numbers5�
we must do something with.  Thus  has filtered  into the finite dimensional form .5 � 5�
How we now deal with this to get the final numerical approximation  of  is up�²5�³ :�
to us.  In neural network theory the so-called backpropagation and Boltzmann machine
algorithms as well as others for programming networks are effectively founded on the
above partial information model.  In learning an unknown input-output (i-o) function , a�
network obtains information about  using examples consisting of inputs  and their� %�
correct outputs .  Using a learning algorithm, it then embodies the approximation of�²% ³�
� % which best extrapolates the examples to untested inputs .

Effectively, the partial information paradigm can be seen to embody the question,
How can we optimally filter an infinite dimensional map (say ) through: ~ ( ¢ � ¦ "c�

finite dimensional spaces (to implement the map on a computer)?  Equivalently if
: ¢ - ¦ . - . is the map of interest (say  and  are normed linear spaces), we wish to
find a finite dimensional  and information operator  (along with a ) such that the@ 5 �

diagram

    
Fig.  1

commutes maximally.  Above  is the algorithm constructing an approximation�

�²5�³ � :� 5� from the useable finite dimensional information .



Measures of complexity in the real number model depend on the components  and5
� of the approximation process.  The complexity of  at its simplest can be defined as5
proportional to the rank , the number of function evaluations.  The complexity of the�
algorithm  can also be gauged using appropriate criteria.  In work on complexity of�

polynomial root finding and in the so-called BSS [BCSS] real model of computation,
information is assumed full (effectively  is the identity), and the focus is on complexity5
of �À

An interesting question in the context of continuous complexity is, what are the limits
of computation for the approximation of a “difficult” output  from input ?:� �
Equivalently, what are lower bounds on the complexity of such an approximation  (say
within  in an appropriate norm) using  computational method (i.e., any choice of � any 5
and ) limited only by a fixed bound on complexity (tractability)?  If we can make�

appropriate a priori assumptions about , e.g., regarding smoothness, there are theorems�
which bound from below the complexity of any -approximation.�

Obtaining the information  about  is often the rate limiting step in the production5� �
of the approximation of .  The analogy to thermodynamics made in the book is worth:�
mentioning:  in thermodynamics upper bounds are placed on energy output from systems
involving pairs of heat baths at different temperatures, independent of what methods are
used.  Crackpots have tried in the past to “beat” the thermodynamics laws, so far with no
success.  Similar bounds exist in computation, with limitations also imposed by specific
laws.  If we do not have enough information  (i.e., the rank  of  is too small), there is� 5�
no way our worst case error  can be decreased below a fixed  dependingP:� c ²5�³P� �

on .  These are rock-solid lower bounds on the amount of work for solving problems,�
which apply to all potential solution methods and so are difficult to obtain.  Upper bounds
are typically obtained by finding working algorithms.  Lower bounds tell us where not to
look for improvements on complexity: there is no benefit to looking for better
information (e.g. a better choice of  points at which to sample a function) if we are�
already near a lower complexity bound.

An important example of the tractability issues the book addresses is the “curse of
dimensionality”.  This can be blamed for problems ranging from the difficulty of building
a neural network which can compute desired outputs from inputs, to the difficulty of
predicting fluctuations of stock markets in mathematical finance.  A typical problem
occurs in the latter area.  Calculations of 50 year financial commitments often involve
360 dimensional integrals.  With all the bad news regarding the exponential rise of
required computational resources for dealing with such integrals, there is a Rosetta Stone
which over the past 50 years has indicated there is hope for us in connecting with the
realm of higher dimensions.  This is the Monte Carlo method, where points in the domain
of integration are chosen randomly with respect to the integration measure.  While worst-
case results indicate computational complexities for -approximations of integrals which�

rise on the order of (with  dimension and  the Sobolev regularity of the�² ³ � � �� 4 5� �°�

�

function), Monte Carlo gives us essentially .  There is no free lunch, and the�² ³ �� 4 5� �

�

price paid is that this complexity is actually an average over all choices of the  random�



points  at which  is to be evaluated, with no worst case guarantees.  Practically,¸% ¹ �²%³� �

this dimension independence of Monte Carlo says there is hope, and work by
Wozniakowski and others has shown that there are  choices of  whichdeterministic %�
work essentially as well, though only when averages are then taken over the function
space  under Gaussian  probability measures (and presumably other broader classes; see-
also [SW]).

A more formidable extension of high-dimensional integration is integration in infinite
dimension.  Consider a path integral, say over a Gaussian measure on a Hilbert or Banach
function space , as occurs in particle physics, statistical mechanics, solutions of PDE,/
and mathematical finance.  H ?  Given a function  ow can we compute such an integral � on
/ , we wish to compute

�
/

� � ²�³Á� (1)

with respect to a measure  on .  For functions with finite regularity  (belonging to a� / �
Sobolev space of order ), the problem of evaluating (1) with error  or less is effectively� �

intractable in the worst case, except (in the case of a Gaussian measure ) in trivial cases�

where the rank of the covariance operator  of  is finite.  Monte Carlo, however, stays*� �

true to form (as might be expected from its dimension independent complexity), and
yields complexity of order .  Thus, ) elements of real-number information need� �c� c�6²
to be obtained about  in order to obtain error of order  in approximating (1)  (see also� �

[Wo]).   Some of the true power of Monte Carlo is exemplified in infinite dimensions,
including so-called quantum Monte Carlo methods for evaluating eigenfunctions of
Schrodinger operators [CA].¨

A more formal framing of the complexity issues is as follows.  Computational input
for a problem consists of partial information  about an object  (possibly a function).5� �
The presumed generality of function spaces allows us to assume , a collection of� � -
functions known a priori to contain .  For example  might be a Sobolev space of� -
smooth functions, with a restriction on smoothness of the form .  SuchP�P � 2-

assumptions constitute a priori information about .  The information, e.g.,�
5� ~ ²�²% ³Á �²% ³ÁÃ Á �²% ³³ Á� � �   ( or more generallystandard information)

5� ~ ²3 �ÁÃ Á3 �³� �

is information.a posteriori 

Many input-output tasks, including perceptual ones (which computers now try to
model), require a judicious combination of the two types of information.  To give a
seemingly pedestrian example from everyday life, if one sees a black shape move across
one's field of vision and knows  there is a dog in the house, one might adda priori
information very quickly to strictly perceptual data by adding a head and legs to a vaguely
seen image.  Along with potential neural networks of the future, the brain itself can be
viewed as a Bayesian machine, which from incredibly sparse information  can5�
produce remarkably detailed and accurate conclusions .:�



In approximation theory a common assumption about functions  isa priori �
smoothness, which results in spline approximations as optimal interpolants of standard
information .   assumptions are often implicitly made, but sometimes it is5� A priori
important to state them, so the best combinations of the two types of knowledge can be
made.  A future challenge might be the study of other types of assumptions and their
usefulness in extracting better approximations from sparse information.

The book is organized as follows.  In Chapter 2 there is a brief introduction involving
a standard motivating example for the partial information model used in information-
based complexity theory.  This involves integration of a function  on , and the� ´�Á �µ
question of what choices of points  and constants  are optimal for¸% ¹ � ´�Á �µ ¸� ¹� ��~� �~�

� �

quadrature, i.e., the approximation

� �
�

�

�~�

�

� ��²%³�% � � �²% ³ (2)

(the choices of  from the trapezoidal and Simpson's rules come to mind most easily,¸� ¹�
though these do not constitute optimal algorithms).  The information aspect of this
procedure is clear, with standard information

5� ~ ²�²% ³ÁÃ Á �²% ³³À� �

The algorithm  consists of computation of the sum (2).  Examples of other aspects of the�

separation of information and algorithm operations follow after this.

Chapters 3, 4, and 5 address questions of tractability discussed above, from large
finite dimensional problems (such as those in mathematical finance), to infinite
dimensional ones (path integration).  There are computer experiments which show that
quasi-Monte Carlo methods (which are deterministic) beat Monte Carlo by factors of ten
to a thousand for problems of mathematical finance.  A possible explanation due to Sloan
and Wozniakowski [SW] is presented.

Chapter 7 is an introduction to nonlinear problems.  The occasional frustration of
workers who have dealt with these is summarized in the book's observation:  nonlinearity
is not a property - it is the lack of a property.  Nonlinear problems come in a menagerie
of forms, and so must often be considered individually.  quintessential problemA 
appearing in numerous mathematical applications is also the quintessential nonlinear
problem - optimization.  There have been some inroads into this by many, including some
workers in continuous complexity, though the field still sometimes seems virtually
undented.

A discussion of models of computation follows.  The issue of real number versus bit
computational models is summarized in the question, what should we do when a
continuous mathematical model meets a finite state machine?  Where the transition from
infinite to finite dimension occurs determines the model of computation.



Chapter 9 involves a comparison of intractability and undecidability.  Just as Godel's¨
undecidability has placed limitations on what is provable and eventually knowable, the
authors argue convincingly that intractability has the potential to do the same thing.  For
example, if the computation of a number  has a lower bound of 10  operations for the% ���

computation of the  digit, then effectively this number is unknowable within the�!�

present model of our universe.  Do such results have implications as fundamental as
Godel's?  It is not known, but cannot be ruled out (see also, e.g., [T2]).  The effective¨
question is, can intractability limit scientific knowledge?

Following this are chapters on mathematical analyses of complexity of linear
programming, verification, implementation testing, and computations in the presence of
noisy information.  At the end of the book, some topics are covered which stimulate the
imagination, including paradigms which assign numerical values to mathematical
hypotheses, and values to information in computation.  The latter are related to
comparison of  and  uncertainties in mathematical problems.  Thea priori a posteriori
book concludes with a recap of open problems and a very brief history of information-
based complexity theory, along with an extensive bibliography.

This book has the nature of an overview of the area, with a discussion of “hot” and
inspiring current applications.  For more concrete functional analytic foundations, reviews
of past work, and other overview issues, we refer to [PW], [PT], [TW], [TWW].

Overall this book is a good short introduction to a field which has found interesting
applications such as mathematical finance, and deserves a current treatment.  The
approach is philosophical, and so gives a good grounding in the essential issues of
complexity and information.  The book does not pretend to be all-encompassing, and
discusses only a few of the said thirty definitions of complexity which have been in use
[L].  Issues of computational tractability come in many forms, and the real-number model
of computation is a very important one to consider.  This reviewer likes overviews and
approaches to thinking about mathematical and practical issues on various levels.  For an
overview of the larger issues, this small book is excellent.
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