11 Basics of Wavelets

References: |I. Daubechies (Ten Lectures on Wavelets;
Orthonormal Bases of Compactly Supported
Wavelets)

Also: Y. Meyer, S. Mallat
Outline:

1. Need for time-frequency localization
2. Orthonormal wavelet bases: examples
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3. Meyer wavelet
4. Orthonormal wavelets and multiresolution analysis
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Signal:
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fig 1
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Interested in “frequency content” of signal, locally in time.
E.G., what is the frequency content in the interval [.5,
.6]?

Standard techniques: write in Fourier series as sum of

sines and cosines: given function defined on [— L, L]
as above:
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1 — i
5 @0 + Z a, cosnz(m/L) + b, sinnx(xw/L)

n=1

(an, b, constants)

a, = %/_Lda: f(x)cosnz(n/L)
b, = %/_L dz f(x)sin nx (w/L)
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(generally f is complex-valued and a,,b, are complex
numbers).
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THEORY OF FOURIER SERIES
Consider function f(z) definedon [— L, L].

Let L?[—L, L] = square integrable functions
L
= {f [—L,L] — (C‘ / dz | f*(x)) <oo}
—L

where C = complex numbers. Then L? forms a
Hilbert space.

285



Basis for Hilbert space:

{ % cosnz(m/L), %sin nx(mw/L) }

(together with the constant function 1/+/2L).

These vectors form an orthonormal basis for L2
(constants 1/+/L give length 1).
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2. Complex form of Fourier series(see previous
lecture):

Equivalent representation:

Canuse Euler's formula e = cosb +isinb. Can show
similarly that the family
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9

1 ’ n=00
{ 6m:c(7r/L) }

= {\/12—L cosnz(m/L) +

is orthonormal basis for 2.
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Function f(z) can be written

F) =3 ()

where o
L _—
= (00f) = [ drdu(@)f)
and
¢, (x) = n'" basis element = ﬁem(w/m _
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3. FOURIER TRANSFORM
Fourier transform is “Fourier series” on entire line

(— 00,00):
Start with function f(z) on (—L,L):
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fig 2
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Z Cn¢n Z Cp emm W/L)/\/7

n=—oo n=—oo

Let &, =nn/L; let A{=n/L;

et c(¢) = env/2m/ (V2L A).

292



Then:
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i Cneinm(ﬂ'/L)/\/ﬁ
= EOO: (cn/V/2L) €
> e/ (VaLAE)eEAE.

o0

= 3 eVm/(VRLag)eag
=—— D cl&)e AL

27 n=-—00
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Note as L — oo, we have A¢ — 0, and
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») = enV/2m/ (V2LAE)
=/_de1’( ) 0u(e) - V2 (V2L A¢)
:/_I;dxf(:r) \/%e na(r/L)




Now (informally) take the limit L — oo. The interval
becomes

[— L,L] — (— 00, 00).

We have

—

L — oo \/ﬂ

00
fundamental thm. calculus 1 /
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[note this is like Riemann sum of calculus, which turns
into integral].

Finally, from above

_ 1 _ing
0(6)—\/%/_Ldﬁ(w)e

—mg

Leoo\/%/ dz f(z :
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Thus, the informal arguments give that in the limit, we
can write

) e dg,

1 0.0
= — c
vV 2 /—oo (€
where ¢(&) (called Fourier transform of f)

1S

dz f(x

=7z /..

(like Fourier series with sums replaced by integrals over
the real line).
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Note: can prove that writing f(z) in the aboveintegral
form works for arbitrary f € L*( — oo, 00).
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4. FREQUENCY CONTENT AND GIBBS
PHENOMENON
For now work with Fourier series on R. If f(x)

discontinuous at x =0, e.g. if f(z) = Lz,
2

T

15




first few partial sums of Fourier series are:

5terms of FS:

4sinx  4sin 3x
+

4sin 5z
+

s

3

5%

fig 3



10 terms:

4sinxz  4sin3z  4Sinb5x
+ +
™ 3T 5%

4sin 10z
_|_7
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20 terms:
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40 terms:

(kﬁ/\ ;\/\ﬂ
U

o
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Note there are larger errors appearing near “singularity”
(discontinuity).

Specifically: *“overshoot” of about 9% of the jump near
singularity no matter how many terms we take!

In general, singularities (discontinuities in  f(x) or

derivatives) cause high frequency components so that
FS
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F@) =3 coe™/Vor

n=—oo

has large ¢, for n large (bad for convergence).

But notice that singularities are at only one point, but
cause all ¢, to be large.

Wavelets can deal with problem of localization of
singularities, since they are localized.
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Advantages of FS:

e “Frequency content"” displayed in sizes of the
coefficients a;, and by.

e Easy to write derivatives of f in terms of series (and
use to solve differential equations)

Fourier series are a natural for differentiation.

Equivalently sines and cosines are eigenvectors of the
. . 2
derivative operator -4

da?"
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Disadvantages:

e Usual Fourier transform or series not well-adapted for
time-frequency analysis (i.e., if high frequencies are
there, we have large a; and b, for kK = 100. But what
part of the function has the high frequencies?

Where = <0? Where 2 <z <3?
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Possible solution:

Sliding Fourier transform -

&) gt - kxp )

Jix)

r

fig 5
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Thus first multiply  f(x) by “window” g¢(x — kxy), and
look at Fourier series or take Fourier transform: look
at

I L -
/ dz f(z) gjr(x) = / dz f(z) glz — kxo)eVT" = ¢y
—L —L

Note however: functions g (x) = g(z — kxzo)e”T* not
orthonormal like sines and cosines; do not form a nice
basis — need something better.
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5. Wavelet transform
Try: Wavelet transform - fix appropriate function h(z).

P2 )
L5
1
0.5

, . . LA f}\. K
—w 0.5 1 1.5 2

0.5

-1
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Then form all translations by integers, and all
'scalings' by powers of 2:

hi(z) = 2920 (20z — k)

(27/2 = normalization constant)
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fig. 6: h(2x) and h(4x —3)
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Let
Cik = /da:f(a:) hjk(z).
If h chosen properly, then can get back f fromthe cj:

f@) = cjthjp()

Jk

These new functions and coefficients are easier to
manage. Sometimes much better —
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Advantages over windowed Fourier transform:

e Coefficients cj, are all real

e For high frequencies (5 large), functions h(t)
have good localization (get thinner as j — 00;
above diagram). Thus short lived (i.e. of small
duration in z) high frequency components can be
seen from wavelet analysis, but not from windowed
Fourier transform.

Note hjy has width of order 27/, and is centered
about k277 (see diagram earlier).
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DISCRETE WAVELET EXPANSIONS:
Take a basic function h(z) (the basic wavelet);

=L LX)
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fig 7
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let

hi(x) = 272h(27z — k).

Form discrete wavelet coefficients:

Cjk = /dlﬁ f(@) hj(x) = (f, hji)-
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Questions:

e Do cj, characterize f?
e Canwe expand f in an expansion of the
hjk?
e What properties must A have for this to happen?
e How can we reconstruct f in a numerically stable way
from knowing c;;.?

We will show: It is possible to find a function h such that

the functions hj; formsuch a perfect basis for
functionson R .
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Thatis, hj; are orthonormal:

<hjk7 hj/k/> = /hjk<$)hj/k/(£lj)d$ =0
unless j=745 and k=K.
And any function f(x) can be represented by the h:

f@) = cphjp().

Jk

So: like Fourier series, but h;. are better (e.g., non-zero
only on a small sub-interval, i.e., compactly supported)
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6. A SIMPLE EXAMPLE: HAAR
WAVELETS

Motivation: suppose have basic function

1f0<z<1 e
@) = { 0 otherwise  PasIc Pixel”

We wish to build all other functions out of pixel and
translates ¢(x — k)
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1) $(x-9)

fig 8: ¢ and its translates
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Linear combinations of the ¢(z — k):

flz) =2¢(x) +3p(x — 1) = 2¢(x — 2) + 4¢(x — 3)

]

P N W b~ O

fig 9: linear combination of ¢(z — k)
324



[Note that any function which is constant on the integers
can be written in such a form:]
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Given function f(x), approximate f(x) by a linear
combination of ¢(z — k):

6 F

|

-4 - 3 ]

fig 10: approximation of f(x) using the pixel ¢(x) and its
translates.
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Define 1| = all square integrable functions of the form

9(x) = S ad(z — k)
k

= all square integrable functions which are constant on
integer
intervals
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T

fig 11. a function in Vj
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To get better approximations, shrink the pixel :

fig 12: ¢(x), ¢(2x), and ¢(2%x)
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fig 13: approximation of f(x) by translates of ¢(2x).
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Define

Vi = all square integrable functions of the form

g(x) = Zak¢(2x — k)

k

= all square integrable functions which are constant on
all half-integers
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fig 14: Function in V}
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Define V; = sq. int. functions

g(z) = ard(2’x — k)
k

= sg. int. fns which are constant on quarter integer
intervals
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fig 15: function in V5
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Generally define V; = all square integrable functions of
the form

g(x) = Zak¢(2jx — k)

k

= all square integrable functions which are constant on
277 length intervals

[note if 5 is negative the intervals are of length greater
than 1].
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