12 The Haar wavelet
1. Definition

Now define desired wavelet (x)

_f1rifo<z<1/2 —1if1/2<2<1
0 otherwise
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fig 16: ¢(x)

Now define family of Haar wavelets by translating:
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fig 17 : Y(z —5) =1ys
and stretching:
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23/24p(282 — 7) = 437
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In general:
i = 202 (2w — k)

Show Haar wavelets are orthogonal, i.e.,

(0.¢]

(Y, Yywr) E/ dz 0 (2) Y () = 0

—0o0

if j#j or k#k:
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iy if j=7,k#K:

(i, Yyr) =0
because v, =0 wherever ;s #0 and vice-versa.
(i) it j#J"

(i, Yy ) =0
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because:

4r
g.
tF Y10
' ¥,0
0.5 Sl 05 j 1.5
-:F
-2k
-4l
fig 19

= integral (¢, ) is 0.
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2. Can any function be represented as a combination
of Haar wavelets?

[A general approach:]

Recall:

V; = square int. functions of form Zakgb(Qja: — k)
k

= square int. functions constant on dyadic intervals of
length 277.

[note if | negative then intervals are of length > 1:]
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V_; = functions constant on intervals of length 2

V_, = functions constant on intervals of length 4

fig. 20: functionin V; (j = 2)
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We have:
(a) LVeocVaiacVycVicVoC Vsl

[l.e., piecewise constant on integers = piecewise
constant on half-integers, etc.]
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Fig. 21: Relationship of nested spaces V;
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(b)y NV, ={0} (only 0 function in all spaces)

[if a function is in all the spaces, then must be constant
on arbitrarily large intervals = must be everywhere

constant; also must be square integrable; so must be
0].
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(c) UV, isdenseinL?(R)

[i.e. the collection of all functions of this form can
approximate any function f(x)]

Proof: First consider a function of the form f(x) =

Xap) (T). Assume that a=k/2"—-a;, and
b=1/0/2" 4 by, where a;, by < 1/2",
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g(x)

¢ i g b

fig 22: Relationship of a, b with /2" and ¢/2".
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Let

9(x) = Xpj2r/2 (2) € (V5

J

Then

I —gll = / dz (f — g)* = area under f — g < 2/2"
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fig 23: areaunder f — g
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Since n is arbitrary, || f —g| can be made arbitrarily
small. Thus arbitrary char. functions f can be well-
approximated by functions g(x) € |JV;.
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Now if f(x) is a step function:

[ =15
I

4
—4

fig 24: step function

We can write
f(x) = > ¢iXjap)(x) = linear combination of char.

functions.
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So by above argument, step functions f can be
approximated arbitrarily well by g € V.
J

Now step functions are dense in L?(R) (see R&S,
problem 11.2), so that | JV; must be dense in L*(R). O
J
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(d) flx)eV, = [f(2z) €V,

[because function constant on intervals of length 27"
when is constant on intervals of length 27771]

€ flz)eVy = flz—k) € W

[i.e. translating function by integer does not change that
it's constant on integer intervals]
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(f) There is an orthogonal basis for the space Vj in the
family of functions

b = ¢(x—k)

where k varies over the integers. This function ¢ is (in
this case) ¢ = x,11(x).

¢ is called a scaling function.

Definition: A sequence of spaces {V;} together with a
scaling function ¢ which generates 1} so that (a) - (f)
above are satisfied, is called a multiresolution
analysis.
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3. Some more Hilbert space theory
Recall: Two subspaces M; and M, of an inner product

vector space V are orthogonal if every vector w, € M;
Is perpendicular to every vector wy € M.
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Ex: Consider V = L*(—m, ). Then let
My ={f(z): f(z)= Zancos na}
n=0
be the set of Fourier cosine series. Let

={f(x Zb sinnx}

be the set of Fourier sine series.
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Then if fi => a,cos nx e M; and if f, => b,SIn
k=1

n=1

kx € M>, then using usual arguments:
(f1, f2) = ZZanbk (cos nz,sinkzx) =0
n=1k=

Thus M; is orthogonal to M,.

Recall: A vector space V is a direct sum M; & M, of
subspaces M, M, if

every vector v € V' can be written uniquely as a sum of
vectors wy, € M; and we € M.
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V is an orthogonal direct sum M; & M, if the above
holds and in addition M; and M, are orthogonal.

Ex: IfV =R3, and
M, = x —yplane = {(z,y,0) : x,y € R}
My, = z —axis = {(0,0,z2) : z € R},

then every (x,y, z) € V can be written uniquely as sum of
(x,y,0) € My and (0,0,z) € M,, so V is orthogonal
direct sum M; & M,.
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Ex: V = L?|—=,n]. Then every function f(z) € V can be
written uniquely as

f(z) = Zancos na + ansin kx
n=0 k=1

[note first sum in M; and second in Ms]
Thus L? = M, & M, is orthogonal direct sum. Note: not
hard to show

M, = even functions in L?

M, = odd functions in L?
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[thus L2 = orthogonal direct sum of even functions and
odd functions]

Theorem 1: If Vis a Hilbert space and if M; L M, and
V=M+M, ie, V oveV I m; € M; S.L.
v=mq +me, then V = M; & M, is an orthogonal
direct sum of M; and M,

Pf: In exercises.

Note: no assumption of uniqueness of v; necessary
above.
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Def: If V=W; & W, is an orthogonal direct sum, we
also write

Wi =V Wy, Wy =V & Wj.

Recall: Given a subspace M C V,

M+ = vectors which are perpendicular to everything in
M

={veV:vlwVweW}
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Ex: If V=R3 and W =uz-y plane, then W+ = z-
axis

Ex: If V =L2, thenif W = even functions, Wt =
odd functions.

Pf. exercise
Recall (R&S, Theorem 11.3):  Given a complete inner

product space V and a complete subspace M,
then V is an orthogonal direct sum of M and M+
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4. Back to wavelets:

Recall:
e V= functions  constant on  dyadic
intervals[k277, (k + 1)277].
o ...VoCcV,,iCVy,CVi CVW...

Since Vy C Vi, there is a subspace W, =V; & V; such
that V, & Wy, = V;. Indeed, we can make W, = perp
space of | as a subset of V.

That is we can define Wy, ={ve Vijv L Vy}; follows
easily that 1, is closed.
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W . = z-awis

¥y = x plane

fig 25: Schematic relationship of V; and W,: V, as
the z-y plane and W, as the =z axis ...
Vo Wy =V, =R3.
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Similarly define

Wy =V, 6V,
Generally:

W=V, 0V,

Then relationships are:
LV CcVoy CVy CVy C Wl
W W4 Wy Wi

91



Also note, say, for Vs:
V3 = Vo & Wh

= VieW, & W,
=Viep Wy W, H Wy

=V, W 1 &Wy bW, & W,
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Soif v3 € V5 we have:

V3 = V2 + Wy
= v tw + w2
= Vo +wo w1 +ws

— V.1 +w_1+wy +w; + wsy,

with v; € V; and w; € W;.

[successively decomposing the v into another v and a w].
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In general :

2
v3 = U_, + Z W (1)
k=—n
Now let n — oo . Since all vectors in above sum

orthogonal, we have (see exercises):

2
losll* = llv—all® + > llwel®

k=—n
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Thus

2
> lwel® < Jlos)?

k=—n

¥ n, SO
2

> lwkl? < oo

k=—00

Lemma: In a Hilbert space H, if w; are orthogonal
vectors and the sum

S Jwe|]? < oo, then the sum " w; converges.
k k
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N
Pf:  We can show that the sum > w; forms a Cauchy
k=1
seqguence by noting if N > M

szk—zwk\|2—|’Z wlf =3 el 772, o0
k=M 41 k=M+1

Thus we have a Cauchy sequence. The sequence must

o)
converge (H is complete), and so > wy, exists. O
k=1
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From above:

2
V_y = V3 — E Wy, .

k=—n
2
Letting n — oo, get Vop —2,U3 —», Wi  Thus

k=—00

vectors v_,, havelimitas n —oo: v_,, — V_.
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But notice
=

Vo €V N Vo NVoppo o= [ Vi

k=—n

Thus v_,, € Intersection of all V,'s =

= V_» = 0 (by condition (b) on spaces V).
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Thus taking the limitas n — oo in (1) :

2
’U3:’U_n—|—§ Wi

k=—n

get

2
V3 — E W .

k=—0¢
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So by definition of direct sum:

2
%:---W—Z@W—l@WO@Wl@WQZ @Wk

k=—00

l.e., every vector in V3 can be uniquely expressed as a
sum of vectors in the W;. Further this is an orthogonal
direct sum since W,'s orthogonal.
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Generally:
Vi=..WodW_ 1 0WydW & Wo® ... 5W,_4

n—1
= @ Wi,

k=—o00

101



Now note

L2:‘/:3@‘/3J‘
=V @ Vi

=V; @& W3 @ Vi

Thus comparing above get

Vit = Wi @ Vi
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Similarly,
Vi =W, @ Vit
So
Vit =Wy @ W, @ V-

Generally:

Vib=Ws o Wy @ Ws @...

1
Vn—H'
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Letting n — oo and using same arguments, we see that
the VL, components “go to 0" as n — oo, so that

Vit =Wy oW, aW; @ ...
Thus:
I =WVoVi=. . WodoW oWoaW, oW, d...

[Thus every function in L? can be uniquely written as a
sum of functions in the W,'s].
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Thus:

Theorem: Every vector v € L?(—o0,00) can be uniguely
expressed as a sum

o0
> w; where w; € W;.

Jj=—00
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Conclusion - relationship of V; and W;:
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5. What are the W; spaces?
Consider W,.
Claim: W, = A = functions which are constant on half-

integers and take equal and opposite values on half of
each integer interval.
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fig 25: Typical function in A
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Proof: Will show that with above definition of A,
Vo A=11,
and that 1V, and A are orthogonal. Then it will follow that
A=VioVy=W,,

First to show V; and A are orthogonal: let f € V,, and
g € A. Then f looks like:
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fig 25: f(z) € Vo; g(z) € Wy
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Thus

(o= [ " f@)gla)da

_ (/21+/01—|—/01+/12+...>f(:z:)g(:c)dm ~0

since f(z)g(x) takes on equal and opposite values on
each half of every integer interval above, and so
integrates to 0 on each interval.
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Thus f and g orthogonal, and so V;, and A are
orthogonal.

Next will show that if f € Vi, then f = f,+ go, where
fo € Vo and gg € A (which is all that's left to show).
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Let f € V1. Then f is constant on half integer intervals:

H s %ﬁuﬂﬂp

) =)

fig 26: f(x) € V3
Define f, to be the function which is constant on each

integer interval, and whose value is the average of the
two values of f(z) on that interval:
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fig 27: fo(z) asrelated to f(x).

Then clearly fy(z) is constant on integer intervals, and so
Isin Vg.
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Now define go(z) = f(z) — fo(x) :

H“mem

]
]

- 710
L,_IZLIJA.

IS
O
.
i

b &b L &

fig 28: go(z) = f(x) — fo(x)
Then clearly g, takes on equal and opposite values on

each half of every integer interval, and so is in A.
Thus we have: for f(x) € V7,
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f(@) = fo(x) + go(x),

where f, € Vy and go € A. Thus V; =V & A by Theorem
1 above.

Thus A=V Vy =Wy, s0 A=W,.
Thus W, = functions which take on equal and opposite

values on each half of an integer interval, as desired.
O
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Similarly, can show:

W; = functions which take on equal and opposite values
on each half of the dyadic interval of length 2=7~! and
are square integrable:

117



H ﬂﬂﬁﬂ N

UiRREN e

fig 29: typical functionin W; (j=1)
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6 What is a basis for the space W;?

Consider W, = functions which take equal and opposite
values on each integer interval
What is a basis for this space? Let

1 fo<z<1/2
w(x)_{q if 1/2<z<1

Claim a basis for Wy is {¢(x — k)}32 .

Note linear combinations of ¢(z — k) look like:

g(x) = 2¢(x) + 3¢(:E1—191) — 2¢(x — 2) 4+ 2¢(x — 3).
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fig 30: graph of g(x).
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lL.E., linear combinations of translates
Y(x — k) = functions equal and opposite on each half
of every integer interval.

Can easily conclude:

Wy = functions in L? equal and opposite on integer
intervals

— functions in L? which are linear combinations of
translates (x — k).
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Also easily seen translates (x — k) are orthonormal.
Conclude: {y(x — k)} form orthonormal basis for W,.

Similarly can show {2!/2y(2z — &)}, form orthonormal
basis for W;.

{22/24)(2%2 — k)}, form orthonormal basis
for W5.

122



Generally,

{2924(27x — k)}3°__ form orthonormal basis for ;.

Define v (z) = 2//2(2/z — k).
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Recall every function f € L? can be written
f=2 w
j
where w; € W;. But each w; can be written

wy =Y ar(w)

k

[note j fixed above replace a; by aj since need to
keep track of j].
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SO:
F=2 aptul(@).
7k

Furthermore we have shown the 13 orthonormal.
Conclude they form orthonormal basis for L2,
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7. Example of a wavelet expansion:

2 fo<z<1

: Find wavelet expansion.
otherwise

Let f(z) = {g

126



8. Some more Fourier analysis:

Recall Fourier transform (use winstead of & for Fourier

variable):
_ /oo 7(w)em“ dw
\/ 271' —00

dz f —zxw.

=7z

[earlier had f(w) = c¢(w)]

127



Write f(w) = Fourier transform of f(w) = F(f).
9. Plancherel theorem:

Plancharel Theorem:

(i) The Fourier transform is a one to one correspondence
from L2 to itself.

That is, for every function f(x) € L? there is a unique L>
function which is its Fourier transform, and for every
function g(w) € L? there is a unique L? function which
it is the Fourier transform of.
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(i) The Fourier transform preserves inner products, i.e.,
if f is the FT of f and 7§ is the FT of g, then

G(w),@(w)} - <f(513),g($)>
(iii) Thus
If@)1* = IF ()l
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Now for a function f € L?[— «,n], consider the Fourier
series of f, given by

The above theorem has analog on [—m,7]. Theorem
below follows immediately from fact that

{emr /\/2n}% __ form orthonormal basis for L?[—, 7.

n=—oo
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Plancharel Theorem for Fourier series:

()

The correspondence between functions f
€ L*|—m,m] and the coefficients  {c.} of their
Fourier series is a one to one correspondence, if we

restrict > ¢} < oo. Thatis, for every f € L?[— 7,7
k

there is a unique series of square summable Fourier
coefficients {c;} of f such that > |ei|? < o0.
k

Conversely for every square summable sequence
{c;.} there is a unique function f € L*[ -, n] such
that {c;} are the coefficients of the Fourier series of

f.
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(i) Furthermore, > |lc || 2 = = f(z)|?
k
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