12The Haar wavelet

1. Definition

Now define desired wavelet $\psi(x)$

$$\equiv \begin{cases} 1 & \text{if } 0 \le x \le 1/2 & -1 & \text{if } 1/2 \le x < 1 \\ & 0 & \text{otherwise} \end{cases}$$

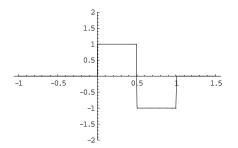


fig 16: $\psi(x)$

Now define family of Haar wavelets by translating:

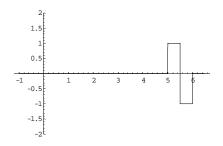
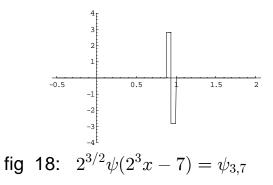


fig 17 :
$$\psi(x-5) = \psi_{0,5}$$

and stretching:



In general:

$$\psi_{jk} \equiv 2^{j/2} \, \psi(2^j x - k)$$

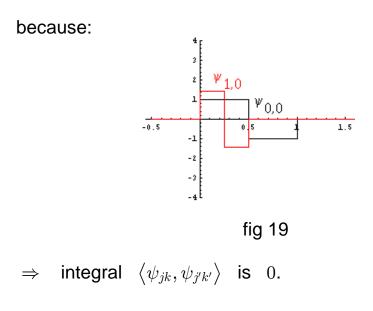
Show Haar wavelets are orthogonal, i.e.,

$$\left\langle \psi_{jk},\,\psi_{j'k'}
ight
angle \,\equiv \int_{-\infty}^{\infty}\!dx\,\psi_{jk}(x)\psi_{j'k'}(x)=0$$

 $\text{if} \quad j \neq j' \quad \text{or} \ k \neq k': \\$

(i) if
$$j = j', k \neq k'$$
:
 $\langle \psi_{jk}, \psi_{j'k'} \rangle = 0$
because $\psi_{jk} = 0$ wherever $\psi_{jk'} \neq 0$ and vice-versa.
(ii) if $j \neq j'$:

$$\left\langle \psi_{jk},\psi_{j'k'}\right\rangle =0$$



2. Can any function be represented as a combination of Haar wavelets? [A general approach:] Recall:

 $V_j =$ square int. functions of form $\sum_k a_k \phi(2^j x - k)$

= square int. functions constant on dyadic intervals of length 2^{-j} .

[note if j negative then intervals are of length > 1:]

 V_{-1} = functions constant on intervals of length 2

 V_{-2} = functions constant on intervals of length 4

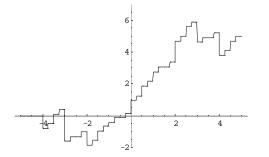


fig. 20: function in V_j (j = 2)

We have:

(a)
$$\dots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset V_3 \dots$$

[i.e., piecewise constant on integers \Rightarrow piecewise constant on half-integers, etc.]

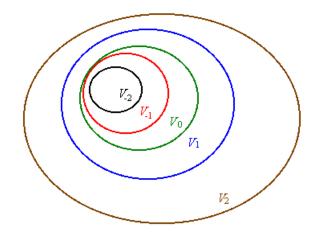


Fig. 21: Relationship of nested spaces V_j

(b)
$$\bigcap_n V_n = \{0\}$$
 (only 0 function in all spaces)

[if a function is in all the spaces, then must be constant on arbitrarily large intervals \Rightarrow must be everywhere constant; also must be square integrable; so must be 0].

(c)
$$\bigcup_n V_n$$
 is dense in L²(\mathbb{R})

[i.e. the collection of all functions of this form can approximate any function f(x)]

Proof: First consider a function of the form $f(x) = \chi_{[a,b]}(x)$. Assume that $a = k/2^n - a_1$, and $b = \ell/2^n + b_1$, where $a_1, b_1 < 1/2^n$.

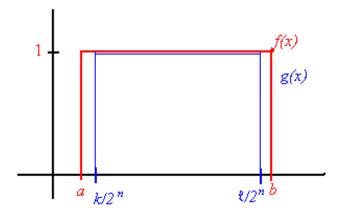


fig 22: Relationship of a, b with $k/2^n$ and $\ell/2^n$.

Let

$$g(x)=\chi_{[k/2^n,\ell/2^n]}(x)\in igcup_j V_j.$$

Then

$$\|f-g\| = \int dx \, (f-g)^2 = \text{area under } f-g \le 2/2^n$$

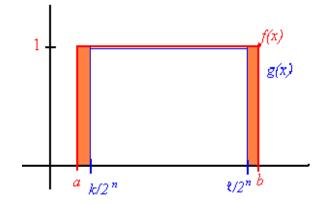


fig 23: area under f - g

Since *n* is arbitrary, || f - g || can be made arbitrarily small. Thus arbitrary char. functions *f* can be well-approximated by functions $g(x) \in \bigcup V_i$.

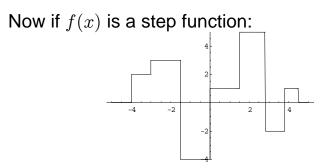


fig 24: step function

We can write $f(x) = \sum_{i} c_i \chi_{[a_i,b_i]}(x) =$ linear combination of char. functions.

So by above argument, step functions f can be approximated arbitrarily well by $g \in \bigcup V_j$.

Now step functions are dense in $L^2(\mathbb{R})$ (see R&S, problem II.2), so that $\bigcup_j V_j$ must be dense in $L^2(\mathbb{R})$. \Box

(d) $f(x) \in V_n \Rightarrow f(2x) \in V_{n+1}$

[because function constant on intervals of length 2^{-n} when is constant on intervals of length 2^{-n-1}]

(e)
$$f(x) \in V_0 \Rightarrow f(x-k) \in V_0$$

[i.e. translating function by integer does not change that it's constant on integer intervals]

(f) There is an orthogonal basis for the space V₀ in the family of functions

$$\phi_{0k} \equiv \phi(x-k)$$

where k varies over the integers. This function ϕ is (in this case) $\phi = \chi_{[0,1]}(x).$

 ϕ is called a *scaling function*.

Definition: A sequence of spaces $\{V_j\}$ together with a scaling function ϕ which generates V_0 so that (a) - (f) above are satisfied, is called a *multiresolution analysis*.

3. Some more Hilbert space theory

Recall: Two subspaces M_1 and M_2 of an inner product vector space V are *orthogonal* if every vector $w_1 \in M_1$ is perpendicular to every vector $w_2 \in M_2$.

Ex: Consider $V = L^2(-\pi, \pi)$. Then let $M_1 = \{f(x) : f(x) = \sum_{n=0}^{\infty} a_n \cos nx\}$

be the set of Fourier cosine series. Let

$$M_{2} = \{f(x) : f(x) = \sum_{n=1}^{\infty} b_{n} \sin nx\}$$

be the set of Fourier sine series.

Then if
$$f_1 = \sum_{n=1}^{\infty} a_n \cos nx \in M_1$$
 and if $f_2 = \sum_{k=1}^{\infty} b_n \sin nx$

 $kx \in M_2$, then using usual arguments:

$$\langle f_1, f_2 \rangle = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_n b_k \langle \cos nx, \sin kx \rangle = 0$$

Thus M_1 is orthogonal to M_2 .

Recall: A vector space V is a *direct sum* $M_1 \oplus M_2$ of subspaces M_1, M_2 if every vector $v \in V$ can be written uniquely as a sum of vectors $w_1 \in M_1$ and $w_2 \in M_2$.

V is an *orthogonal* direct sum $M_1 \oplus M_2$ if the above holds and in addition M_1 and M_2 are orthogonal.

Ex: If $V = \mathbb{R}^3$, and $M_1 = x - y$ plane $= \{(x, y, 0) : x, y \in \mathbb{R}\}$ $M_2 = z - axis = \{(0, 0, z) : z \in \mathbb{R}\},$ then every $(x, y, z) \in V$ can be written uniquely as sum of $(x, y, 0) \in M_1$ and $(0, 0, z) \in M_2$, so V is orthogonal direct sum $M_1 \oplus M_2$. **Ex:** $V = L^2[-\pi, \pi]$. Then every function $f(x) \in V$ can be written uniquely as

$$f(x) = \sum_{n=0}^{\infty} a_n \cos nx + \sum_{k=1}^{\infty} b_n \sin kx$$

[note first sum in M_1 and second in M_2] Thus $L^2 = M_1 \oplus M_2$ is orthogonal direct sum. Note: not hard to show

 M_1 = even functions in L^2

 M_2 = odd functions in L^2

[thus L² = orthogonal direct sum of even functions and odd functions]

Theorem 1: If *V* is a Hilbert space and if $M_1 \perp M_2$ and $V = M_1 + M_2$, i.e., $\forall v \in V \exists m_i \in M_i$ s.t. $v = m_1 + m_2$, then $V = M_1 \oplus M_2$ is an orthogonal direct sum of M_1 and M_2

Pf: In exercises.

Note: no assumption of uniqueness of v_i necessary above.

Def: If $V = W_1 \oplus W_2$ is an orthogonal direct sum, we also write

 $W_1 = V \ominus W_2; \qquad W_2 = V \ominus W_1.$

Recall: Given a subspace $M \subset V$,

 $M^{\perp}={\rm vectors}$ which are perpendicular to everything in M

$$= \{ v \in V : v \perp w \,\forall \, w \in W \}$$

- **Ex:** If $V = \mathbb{R}^3$, and $W = x \cdot y$ plane, then $W^{\perp} = z \cdot axis$
- **Ex:** If $V = L^2$, then if W = even functions, $W^{\perp} =$ odd functions.

Pf. exercise

Recall (R&S, Theorem II.3): Given a complete inner product space V and a complete subspace M, then V is an orthogonal direct sum of M and M^{\perp}

4. Back to wavelets:

Recall:

• $V_j =$ functions constant on dyadic intervals $[k2^{-j}, (k+1)2^{-j}]$.

• $\dots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \dots$

Since $V_0 \subset V_1$, there is a subspace $W_0 = V_1 \ominus V_0$ such that $V_0 \oplus W_0 = V_1$. Indeed, we can make $W_0 = \text{perp}$ space of V_0 as a subset of V_1 .

That is we can define $W_0 = \{v \in V_1 | v \perp V_0\}$; follows easily that W_0 is closed.

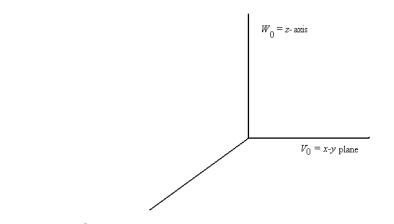


fig 25: Schematic relationship of V_0 and $W_0: V_0$ as the *x-y* plane and W_0 as the *z* axis ... $V_0 \oplus W_0 = V_1 = \mathbb{R}^3$. Similarly define

$$W_1 = V_2 \ominus V_1.$$

Generally:

$$W_{j-1} = V_j \ominus V_{j-1}$$

Then relationships are:

$$\dots V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \dots \\ W_{-2} \quad W_{-1} \quad W_0 \quad W_1$$

Also note, say, for V_3 :

 $V_3 = V_2 \oplus W_2$

 $= V_1 \oplus W_1 \oplus W_2$

 $= V_0 \oplus W_0 \oplus W_1 \oplus W_2$

 $= V_{-1} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2$

So if $v_3 \in V_3$ we have: $v_3 = v_2 + w_2$ $= v_1 + w_1 + w_2$ $= v_0 + w_0 + w_1 + w_2$ $= v_{-1} + w_{-1} + w_0 + w_1 + w_2$,

with $v_i \in V_i$ and $w_i \in W_i$.

[successively decomposing the v into another v and a w].

In general :

$$v_3 = v_{-n} + \sum_{k=-n}^2 w_k.$$
 (1)

Now let $n \to \infty$. Since all vectors in above sum orthogonal, we have (see exercises):

$$\|v_3\|^2 = \|v_{-n}\|^2 + \sum_{k=-n}^2 \|w_k\|^2.$$

Thus

$$\sum_{k=-n}^2 \|w_k\|^2 \, \leq \, \|v_3\|^2$$

 $\forall n$, so

$$\sum_{k=-\infty}^2 \|w_k\|^2 < \infty.$$

Lemma: In a Hilbert space H, if w_k are orthogonal vectors and the sum

 $\sum\limits_k \|w_k\|^2 < \infty$, then the sum $\sum\limits_k w_k$ converges.

Pf: We can show that the sum $\sum_{k=1}^{N} w_k$ forms a Cauchy sequence by noting if N > M:

$$\|\sum_{k=1}^{N} w_k - \sum_{k=1}^{M} w_k\|^2 = \|\sum_{k=M+1}^{N} w_k\|^2 = \sum_{k=M+1}^{N} \|w_k\|_{N, \overline{M \to \infty}}^2 0.$$

Thus we have a Cauchy sequence. The sequence must converge (*H* is complete), and so $\sum_{k=1}^{\infty} w_k$ exists. \Box

From above:

$$v_{-n} = v_3 - \sum_{k=-n}^2 w_k$$
.

Letting $n \to \infty$, get $v_{-n} \xrightarrow[n \to \infty]{} v_3 - \sum_{k=-\infty}^2 w_k$. Thus vectors v_{-n} have limit as $n \to \infty : v_{-n} \to v_{-\infty}$.

But notice

 \Rightarrow

$$v_{-n} \in V_{-n} \subset V_{-n+1} \subset V_{-n+2} \dots$$

$$v_{-n} \in V_{-n} \cap V_{-n+1} \cap V_{-n+2} \dots = \bigcap_{k=-n}^{\infty} V_k$$

Thus $v_{-\infty} \in$ intersection of all V_n 's =

 $\Rightarrow v_{-\infty} = 0$ (by condition (b) on spaces V_j).

Thus taking the limit as $n \to \infty$ in (1) :

$$v_3 = \sum_{k=-\infty}^2 w_k \, .$$

 $v_3 = v_{-n} + \sum_{k=-n}^2 w_k$

(1)

So by definition of direct sum:

$$V_3 = \dots W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2 = \bigoplus_{k=-\infty}^2 W_k$$

0

i.e., every vector in V_3 can be uniquely expressed as a sum of vectors in the W_j . Further this is an orthogonal direct sum since W_j 's orthogonal.

Generally:

$$V_n = \dots W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2 \oplus \dots \oplus W_{n-1}$$
$$= \bigoplus_{k=-\infty}^{n-1} W_k$$

Now note

$$L^{2} = V_{3} \oplus V_{3}^{\perp}$$
$$= V_{4} \oplus V_{4}^{\perp}$$
$$= V_{3} \oplus W_{3} \oplus V_{4}^{\perp}.$$

Thus comparing above get

$$V_3^{\perp} = W_3 \oplus V_4^{\perp}.$$

Similarly, $V_4^{\perp} = W_4 \oplus V_5^{\perp}.$ So $V_3^{\perp} = W_3 \oplus W_4 \oplus V_5^{\perp}.$ Generally: $V_3^{\perp} = W_3 \oplus W_4 \oplus W_5 \oplus \ldots \oplus W_n \oplus$ V_{n+1}^{\perp} .

Letting $n \to \infty$ and using same arguments, we see that the V_{n+1}^{\perp} components "go to 0" as $n \to \infty$, so that

$$V_3^{\perp} = W_3 \oplus W_4 \oplus W_5 \oplus \dots$$

Thus:

 $L^2 = V_3 \oplus V_3^{\perp} = \dots W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2 \oplus \dots$

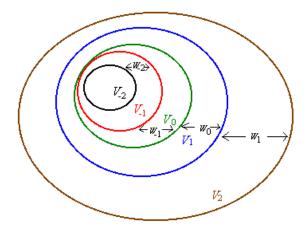
[Thus every function in L^2 can be uniquely written as a sum of functions in the W_j 's].

Thus:

Theorem: Every vector $v \in L^2(-\infty, \infty)$ can be uniquely expressed as a sum

$$\sum_{j=-\infty}^{\infty} w_j$$
 where $w_j \in W_j$.

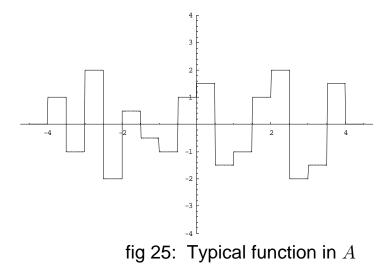
Conclusion - relationship of V_j and W_j :



5. What are the W_j spaces?

Consider W_0 .

Claim: $W_0 = A \equiv$ functions which are constant on halfintegers and take equal and opposite values on half of each integer interval.

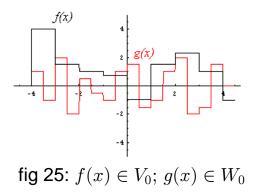


Proof: Will show that with above definition of A, $V_0 \oplus A = V_1$,

and that V_0 and A are orthogonal. Then it will follow that

$$A = V_1 \ominus V_0 \equiv W_0,$$

First to show V_0 and A are orthogonal: let $f \in V_0$ and $g \in A$. Then f looks like:



Thus

cn

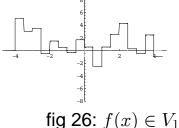
$$\langle f,g
angle = \int_{-\infty}^{\infty} f(x)g(x)dx$$

= $\left(\int_{-2}^{-1} + \int_{-1}^{0} + \int_{0}^{1} + \int_{1}^{2} + \dots\right)f(x)g(x)dx = 0$

since f(x)g(x) takes on equal and opposite values on each half of every integer interval above, and so integrates to 0 on each interval. Thus f and g orthogonal, and so V_0 and A are orthogonal.

Next will show that if $f \in V_1$, then $f = f_0 + g_0$, where $f_0 \in V_0$ and $g_0 \in A$ (which is all that's left to show).

Let $f \in V_1$. Then f is constant on half integer intervals:



Define f_0 to be the function which is constant on each integer interval, and whose value is the *average* of the two values of f(x) on that interval:

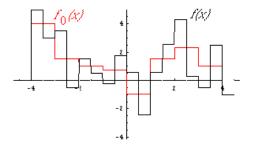
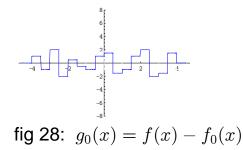


fig 27: $f_0(x)$ as related to f(x).

Then clearly $f_0(x)$ is constant on integer intervals, and so is in V_0 .

Now define $g_0(x) = f(x) - f_0(x)$:



Then clearly g_0 takes on equal and opposite values on each half of every integer interval, and so is in A. Thus we have: for $f(x) \in V_1$,

$$f(x) = f_0(x) + g_0(x),$$

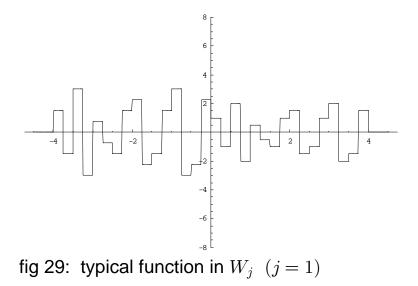
where $f_0 \in V_0$ and $g_0 \in A$. Thus $V_1 = V_0 \oplus A$ by Theorem 1 above.

Thus
$$A = V_1 \ominus V_0 = W_0$$
, so $A = W_0$.

Thus W_0 = functions which take on equal and opposite values on each half of an integer interval, as desired.

Similarly, can show:

 W_j = functions which take on equal and opposite values on each half of the dyadic interval of length 2^{-j-1} and are square integrable:



6 What is a basis for the space W_j ?

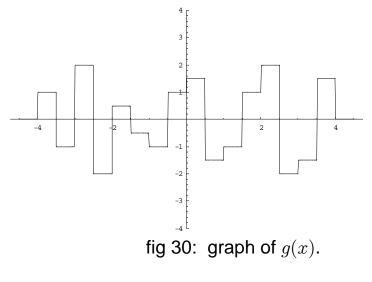
Consider W_0 = functions which take equal and opposite values on each integer interval What is a basis for this space? Let

$$\psi(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1/2 \\ -1 & \text{if } 1/2 < x \le 1 \end{cases}$$

Claim a basis for W_0 is $\{\psi(x-k)\}_{k=-\infty}^{\infty}$.

Note linear combinations of $\psi(x-k)$ look like:

$$g(x) = 2\psi(x) + 3\psi(x-1) - 2\psi(x-2) + 2\psi(x-3).$$
119



I.E., linear combinations of translates $\psi(x-k) =$ functions equal and opposite on each half of every integer interval.

Can easily conclude:

- $W_0 =$ functions in L^2 equal and opposite on integer intervals
- = functions in L^2 which are linear combinations of translates $\psi(x k)$.

Also easily seen translates $\psi(x - k)$ are orthonormal.

Conclude: $\{\psi(x-k)\}$ form orthonormal basis for W_0 .

Similarly can show $\{2^{1/2}\psi(2x-k)\}_k$ form orthonormal basis for W_1 .

 $\{2^{2/2}\psi(2^2x-k)\}_k$ form orthonormal basis for W_2 .

Generally,

 $\{2^{j/2}\psi(2^jx-k)\}_{k=-\infty}^{\infty}$ form orthonormal basis for W_j . Define $\psi_{jk}(x) = 2^{j/2}\psi(2^jx-k)$. Recall every function $f \in L^2$ can be written

$$f = \sum_{j} w_{j}$$

where $w_j \in W_j$. But each w_j can be written

$$w_j = \sum_k a_k \psi_{jk}(x)$$

[note j fixed above replace a_k by a_{jk} since need to keep track of j].

SO:

$$f = \sum_{j} \sum_{k} a_{jk} \psi_{jk}(x).$$

Furthermore we have shown the ψ_{jk} orthonormal. Conclude they form orthonormal basis for L^2 .

7. Example of a wavelet expansion:

Let
$$f(x) = \begin{cases} x^2 & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$
. Find wavelet expansion.

8. Some more Fourier analysis:

Recall Fourier transform (use ω instead of ξ for Fourier variable):

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{ix\omega} d\omega$$

$$\widehat{f}(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \, f(x) \, e^{-ix\omega}.$$

[earlier had $\hat{f}(\omega) = c(\omega)$]

Write $\hat{f}(\omega) =$ Fourier transform of $\hat{f}(\omega) = \mathcal{F}(f)$.

9. Plancherel theorem:

Plancharel Theorem:

(i) The Fourier transform is a one to one correspondence from L^2 to itself.

That is, for every function $f(x) \in L^2$ there is a unique L^2 function which is its Fourier transform, and for every function $\widehat{g}(\omega) \in L^2$ there is a unique L^2 function which it is the Fourier transform of. (ii) The Fourier transform preserves inner products, i.e., if \hat{f} is the FT of f and \hat{g} is the FT of g, then $\langle \hat{f}(\omega), \hat{g}(\omega) \rangle = \langle f(x), g(x) \rangle.$

(iii) Thus

 $||f(x)||^2 = ||\widehat{f}(\omega)||^2.$

Now for a function $f \in L^2[-\pi,\pi]$, consider the Fourier series of f, given by

$$\sum_{k=-\infty}^{\infty} c_k \, e^{ikx}.$$

The above theorem has analog on $[-\pi,\pi]$. Theorem below follows immediately from fact that $\{e^{inx}/\sqrt{2\pi}\}_{n=-\infty}^{\infty}$ form orthonormal basis for $L^2[-\pi,\pi]$.

Plancharel Theorem for Fourier series:

(i) The correspondence between functions $\in L^2[-\pi,\pi]$ and the coefficients $\{c_k\}$ of their Fourier series is a one to one correspondence, if we restrict $\sum c_k^2 < \infty$. That is, for every $f \in L^2[-\pi,\pi]$ there is a unique series of square summable Fourier coefficients $\{c_k\}$ of f such that $\sum |c_k|^2 < \infty$. Conversely for every square summable sequence $\{c_k\}$ there is a unique function $f \in L^2[-\pi,\pi]$ such that $\{c_k\}$ are the coefficients of the Fourier series of f.

(*ii*) Furthermore, $\sum_{k} \|c_k\|^2 = \frac{1}{2\pi} \|f(x)\|^2$