13 GENERAL MULTIRESOLUTION ANALYSIS

1. Other constructions:
Suppose we use another “pixel” function ¢(z):
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fig 31: another pixel function
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Can we use this to build approximations to other
functions? Consider linear combination:

20(x) + 3¢p(x — 1) — 2¢(x — 2) + ¢(x — 3)
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fig 32: graph of linear combination of translates of ¢
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Note we can try to approximate functions with other pixel
functions.

Question: Can we repeat the above process with this
pixel (scaling) function? What would be the
corresponding wavelet?

Assumptions: lp(z)] has finite integral and

[é(x)dz 0.
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More general construction:

As before define V, = all L? linear combinations of ¢
and its translates:

—{f@) =Y wdn@)|ay R f €L} ()
k

with
bor(z) = ¢(z — k).
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and

Vi={f(x) =) adu(x)la, €R; f €L}

k
D) = 2 6(22 — k)
etc.
We want the same theory as earlier.

[Note V;, no longer piecewise constant functions]
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Recall condition
(d) f(z) €V = f(2z) € Vo

This is automatically true by definition of V,,, since if
f(x) € Vi, then f has the form of an element of (2).
Then f(2x) has form of an element of (3), and f(2x)
e V.

Similarly can be shown that (d) holds for any pair of
spaces V,, and V., of above form.
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2. Some basic properties of F.T.:
Assume that f = F(f). Then

() F(f(z—c))(w) =e ™ f(w)
(b) F(f(cx)) = Lf(w/e)

Proofs: Exercises.
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3. Orthogonality of the ¢'s:
Another property of V; :

(f) The basis {¢(z—k)} for V;is orthogonal, i.e.
(p(z — k), p(x —€)) =0 for k # .

Not automatic. Let F(f) = F.T. of f = f(w).
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Require a condition on ¢ of the following sort: if &k # ¢,
then (note use w as Fourier variable) :

0= (¢(z = k), p(z = £)) = (F(o(x = k)), F(p(x = 1))
(e 6 (W), e ™ (w))

016 (w)[? du

—00
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Thus conclude if m # 0,

0= / 3w dw

o0

(L e

n+1
=S / e 3 (w) 2 deo

n=—oo
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2
—Z/ (3w — 2072 dw

n=—oo

2m 00
/ mez 16(w — 2nm) | dw

n=—0o0

[since we can show that the integral of the absolute sum
0 AN

converges because > |¢(w — 2nm)|?dw absolutely

n=—oo

integrable; see exercises]
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Conclude function Z |¢(w — 2nm)|2 on [0,2nx] isin L2

because it has ;quare summable Fourier coefficients
(in fact they are 0 if m # 0).

Further Z |6(w—2n )2 is 27 periodic in w, and has

a Fourler series

o0

i b(w —2nm)[? :Z Cm €™,

n=-—00 m=-—00
where
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1 2 ) o0 . .
Cn = 5 i e_men:Z_OOW(w—er)Pdw:O if m#0

And

[ bk - [ 1B
cp = — e w)|* dw = — w)|” dw
07 on oo 0 21 J_

1 [ ) 1
= o N ¢ (2)|" dz = Py

Thus
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o0

i 16(w — 2nm)|? = Z cme™ = %

n=—oo m=—oo

This condition equivalent to orthonormality of {¢(x — k)}.
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Vo C V;:
Recall the condition
(@ Wwch
What must be true of ¢ for this to hold in general?

This says that every function in V; is in V;. Thus since
o(x) €V, it follows ¢(x) € Vi, i.e.
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¢(z) = linear combination of translates of \/2 ¢(2x)

=) i du(x) (4)
P

() = 224 (22 — k)

[recall normalization constant \/5 IS so we have unit
L? norm].
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Ex: If ¢(x) = Haar wavelet, then

¢(x) = 6(2z) + ¢(22 — 1)

1

2 ¢10(z) +

1

2 ¢11(z)

= hio¢10(x) + h11¢11(x)
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fig 33: ¢(z) = ¢(2x) + ¢(22 — 1)
Thus in this case all h's are 0 except hig and hq;

hio = %; hi1 = %
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Note in general that since this is an orthonormal
expansion,

th = [lo(2)|* <

4. What must be true of the scaling function for (4)
above to hold?
Thus in general we have:
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00 N
d(x) = > hour(z) = Jim > hidu(x) (3)
—

k=—00

in L? norm. Denote
N
> hidu(x) = Fy(z)
k=N

Specifically,
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(2 Z hi¢ri(x)|| — 0.

[recall F is Fourier transform]
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Corollary of Plancherel Theorem:
Corollary:  The Fourier transform is a bounded linear

transformation. In particular, if the sequence of
functions {Fy(x)} convergesin L? norm, then

F(lim Fy)(w) = lim F(Fy)(w)

in L? norm, i.e., Fourier transforms commute with limits.
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Thus since oo sums are limits and F is linear:

5’:( zoo: hk¢1k($)) = EOO: hie F (o1 (w))

k=—00

[l.e., F commutes with co sums]
Let F(¢)(w) = ¢(w). Then generally:
F(dp)(w) = F(2Po(2x — k))(w)

=22 F(¢(2Vx — k))(w)
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[recall dilation properties of Fourier transform earlier]
= 212 5 F(¢(a — k) (w/2)
[recall translation by & pulls out an e~**]
= 27912 TR F () (/)

— 9—J/2 g—iwk/2 $<w/2j)
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Specifically for j = 1:
Flouw)(w) = V2e 2 L 3(u/2)

Recall (3):

¢(x) = EOO: hid1i(z)

k=—00

Fourier transforming both sides:
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Define

w/2 Z hk —Zk (w/2)

k=—00

note m is 27- periodic — Fourier series of m(w/2) given
above.

Note m(w) € L*[0,27], since > h? < oo.
k
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Thus by (5):

~

$(w) = m(w/2) $(w/2).

with m/( - ) a 2z-periodic L? function.

[Note: This condition exactly summarizes our original
demand that V; C 14!]

Note if V; C Vi, then it follows (same arguments) that 1}
C Vp,and V; C Vi in general.
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5. Some preliminaries:

Given a Hilbert space H and a closed subspace V, for
f € H write

f=v+0vt
where v € V and vt € V-+.
Definition: The operator P defined by
Pf=Plw+v)=uv
is the orthogonal projection onto V.
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Note P is a bounded linear operator (see exercises).

Easy to check that | P|| = 1if P # 0 (see exercises).
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Ex: V=R P(z,y,2)=(z,y9,0) = is the orthogonal
projection onto the z—y plane.

P(z,y,2) = (0,0, z) = orthogonal projection onto z axis.

z

(x02)

Y

A iy Q) = Fixy.z)

165



Ex: V C L?|-m,n] is the even functions. Then for
feL?

flx) + f(==)
2

Pf(x) = feven(x) =

(see exercises).

166



6. How to construct the wavelet?

Recall we have now given conditions on the scaling
function:

Condition
(@) LVocV,icVycVicVy C Vsl

IS equivalent to:

(i) o(w) = mo(w/2)d(w/2),

where my is a function of period 2.
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Condition

() There is an orthogonal basis for the space Vj in the
family of functions

b = ¢(x —k)

IS equivalent to:

(ii) > [d(w + 2mk)| Qi
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Condition
(b) NV, ={0}
can also be shown to follow from (ii) as follows:
Proposition: If ¢ € L*(R) and satisfies (ii), then
NV, ={0}.
0V;i=1{0}
Proof: Denote C. to be compactly supported
continuous functions. Let f € DZV}. Let € >0 be
j€

arbitrarily small.

169



By arguments as in problem 11.2 in R&S, C. is dense in
L?(R), so that there exists an f € C, with

If =7l <e
with || - || denoting L? norm. Let

P; = orthogonal projection onto V.
Then since f € V;:

If = Bifl = IPf = Pl = 1P(f =PI < If = Fll < e
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Thus by triangle inequality
17 < I1F = Pl + IBFI < e+ 1P
Since P;f € V;, we have

Pif =) cpdp(@).

k

where cj, = (¢jk, f) (recall {¢p(x)}2_ Iis an
orthonormal basis for V}).
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Thusif || f[|ec = sup[f(z)],
IBFIP =D lewl® =D [, PP
k k

2

[assuming [ is supported in [-R, R] ]

[or@ Fw) s
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<2‘7|f|ooz</ 162z — k )|d96>

[using Schwartz inequality (a(x)b(z)) < |la(x)||||b(x)|[]

<AFLY [ vde[ o k)Pde
k [_RvR]

[_RvR]

— 2| FI QRZ/ 6(2z — k)2 da
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=2k

TR 2R [ o)y
SR
where Sp i = Uezlk — 2R, k + 2/R] (note we replaced
7.]
k — —kin the union) assuming j large and negative,
so 2R < % Note that then the k£ sum becomes a

sum over disjoint intervals after the change of
variables above, and we therefore replace a sum over
k by a union over these intervals, as above]

j— —0o0

— |If]% 2R / X, () [6(y) 2dy — 0
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by the dominated convergence theorem, since if y ¢ Z,
XSR,j(y> — 0.

J— 0
Thus by (7), we have for j large and negative and all
e>0:
LA < I = Bif I+ 1P| < e + [P < 2

Thus ||f||=0and f =0. O
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Condition

(c) UV, isdensein L?(R)

also follows from (ii):

Proposition: If ¢ € L?(R) and satisfies (ii), then
JV; = L*R).

je7Z
Proof: Similarly technical proof.

176



Condition
d) fl@)eV, = f(2z)€ Vo

Is automatic from the definition of the V,.
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Condition

€ fl@eW = fle-k) €V

Is also automatic from definition.

Thus we conclude:

Theorem: Conditions (i) and (ii) above are necessary

and sufficient for the spaces {V;} and scaling function
¢ to form a multiresolution analysis.
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Thus if (i), (i) are satisfied for ¢ and we define the
spaces V; as usual, the spaces will satisfy properties
(a) - (f) of a multiresolution analysis.

Recall:  orthonormality of translates {¢(x — k)}rezis
equivalent to:
~ 1
(i ;w(w Th)[* = o
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Rewrite (ii):

Ek-: |mo(w/2 4 71'/{)\2 ‘gbf(w/Q + 7T]€)|2 _ %

= % - Zk: Img(w' + k)| ]a(w/ + 7k)|?
[W' = w/2]

=3 |mo(w’ + 7k P|p(w’ + k)|

k even

+ 3 [mo(w’ + 7k 2|o(w’ + k)2
k odd
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= Y |mo(w’ + 7 2k)|?[$(w’ + 7 - 2k)|?
%
+ > |mo(w’ + m(2k 4 1))]?
%
p(w' + m(2k + 1)|?
m”gmdic|m0(w’)]22@@0' + 27k) |2 + |mo(w’ + 7r)|22|$(w' + 7+
2 e

by (i
y (i) \mo(w’)|2-% _|_|m0<w/_|_ﬂ_)|2.%_
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This implies that
[mo(w")* + [mo(w' + m)* = 1.

What about wavelets? Recall we define W; =V, &V,
We now know that {¢;.(z)} form basis for V;. The
wavelets v, will form basis for W;.
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