14. GENERAL WAVELETS
1. What are ;?

[Recall norms and inner products of functions are
preserved when we take Fourier transform. Let's
take FT to see.]

Note if we find W, =V, © 1}, then we will be done.

[Let's look at Fourier transforms of functions in these
spaces:]
Note that if f €V}, then
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f@) = ardle—k) =) ar dor()
k k
gives by F.T.:
Fw) =" ar Floor(2)) =D are ™ d(w) = my(w)d(w)
k

k
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where

me(w) = Zake_ik“’.
k

is a 2 periodic L?[0, 2] function which depends on f. In
fact reversing argument shows (9) and (10) are
equivalent.

Similarly can show under Fourier transform that ¢ € V;
equivalent to:

A~

G(w) = my(w/2) p(w/2).
with m,( - ) some other 27 periodic function on L?[0, 27].
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Notice functions m; and m, both have period 27 (look at
their Fourier series). Also note above steps are
reversible, so equation (10) implies (9) by reverse
argument.

Thus:
fevi & F=mp(w/2)dw/2)

Recall: we want to characterize f € W,; such an f has
the property that f € V; and f L V.
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Now note:

fLVy & fLouVke f L o,

& /_OO F(w) eiWk%dw =0

2m(m+1) —
/2 F(w) e ()

m™m

& 0= /w?”(w) eiwk%dw = Z

m
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2m
= Z / f(w+ 2mm) e @2 G (b + 2rm) dw
pl

_ /27T pikw Z}"(w + 27tm) ¢(w + 27m) dw .
0 m

where above identities hold for all &.

Hence [viewing sum as some function of w]

Z/f(w + 27m) $(w + 27m) = 0.

Thus:
188



0= F(w+ 2rm) ¢(w + 27wm)

= %:mf«w +2mm) /2)$((w + 2mm) /2)

x mo((w+ 27m)/2)((w + 27m) /2)

o~

=Y ms(w/2 4+ mm)p(wl2 + m)

A~

x mo(w/2 +m™m)e(w/2 + mm)

=Y+ 3 my(w/2 +7m) ¢(w/2 + mm)

m even modd
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X mo(w/2 4+ mm)d(w/2 + mm)

=Y ms(w/2+2mm)¢p d(w/2 + 27m)

m

x mo(w/2 4 2em)d(w/2 + 27m)

+ S my(w/2 + 7 + 2mm) d(wl2+m+2mm)

x mo(w/2 + 7 + 2rm)d(w/2 + 7 + 27m)

— mf(w/Q)mo(w/Z)%; H(w/2 + 2m) d(w/2 + 27rm)

+ mys(wl2 + m)mo(w/2 + )
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X S d(w/2 4 7+ 20m)P(wl2 4+ 7 + 27m)

m

— my(w/2)mo(@/2)Y (/2 + 2mm)

m

+my (w2 + m)mo(w/2 + 7)Y [d(w/2 + 7 + 27m)|?

m

= (my(w/2)mo(w/2) - 3 + my(w/2 + m)mo(w/2 + 7)) - 5
B) = my(w)mo(w’) +myp(w’ + m)my(w’ +m) =0

Thus (note my(w’) and my(w’+m) cannot vanish
together); let w’ — w:
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ms(w) = — —_ mo(w + 7) = Mw) mo(w + ),
where
Mw)= — my(w+ 7)
(w) ——)

and so A(w) is 2x periodic. Also,

mr(w+mT my(w+27
M)+ Mw+m) = — A -
combining fractig\s and using (3)

= 0.
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Define v(2w) = A(w)e ™.
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Then
V(2w 4+ 21) = Mw+ m) e @)

= —Aw)e @e ™ = ANw)e ™ = v(2w)
so v has period 2.

Ihus R R
fw) =my(w/2)¢(w/2) = Mw/2)mo(w/2 + ) $(w/2)

= v(w) € mo(w/2 + 1) $(w/2).
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Thus we define the wavelet <(z) by its Fourier
transform:

A~

P(w) = /2 my(w/2 + 7) d(w/2)

Thus
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Going back in Fourier transform, we would get (compare
with how we got f( ) = m(w/2)p(w/2))

Zamﬁx—

where a; are coefficients of the Fourier series of v(w),
ie.,
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To justify process of Fourier transformation as above,
need to also show that the coefficients a;, are square

summable (i.e. Y |ax|* < ), since we do not know
k

whether Fourier transform properties which we have
used in getting are valid otherwise.

Note since a, are coefficients of Fourier series of v, we
just need to show v is square integrable on [0, 27]
(recall this is equivalent to the a; being square
summable).
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To show that v is square integrable, note that with m; as
in (0):

use mys €L?[0,27] o

00 > fo dw\mf(w)\Q

A2 2T [N (w)? fmo(w + )|
_ (fg n ff”) dow A ()2

[mo(w + )2

[substitute w ' = w — 7 in second integral; then rename
w' = w again]
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_ / do [ M(w)? |mo(w + )|
0

+ / dw [M(w +7)* [mo(w + 2)|*
0

[recall that by periodicity |mq(w + 27)|* = |mo(w)|* and
use (13)]

i / Ao A@)I? (Jmo(w+ )2 + [mo(w)?)
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Thus we have that oo > fO% dwlv(w)]?, sothat v is
square integrable, as desired.
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This was only thing left to show (x — k) span W,.
Wish to show also orthonormal. Use almost exactly
the same argument as was used to show the same for

o(x —k):

Z Y(w + 27k =" Z|m0(w/2—|—7rk:—|—7r)|2\$(w/2—|—7rk)
z J

[now break up the sum into even and odd k again and
use the same method as before]

( >

202



= Zk: Imo(w/2 + 7 - 2k + ) |2|p(w/2 + 7 - 2k)|?

(16)
+ > mo(w/2+7- (2k+1) + 7r)\2
2

X [d(w/2 47 - (2k + 1))]?

= |mo(w/2 + m)[? Zk]?b(wﬂ + - 2k)[?

+ [mo(w/2)|? %‘@(wﬂ + - (2k+ 1))
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using () above 868 ({17 (102 + m)|2 + o (0/2)) -

By same arguments as used for ¢(x — k), it follows by
Y(x — k) orthonormal.

This proves our choice of v gives a basis for W, as
desired.
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Specifically,
Yor(z) = (x — k)

form an orthogonal basis for W, (in fact can show their
length is 1 so they are orthonormal).

In same way as for ¢, can show immediately that since
functions in W; are functions in W, stretched by
factor 2/, the functions

Yin(z) = 21/ V(2/x — k)
form a basis for W; (j fixed, k varies).
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Since L* =direct sum of the W, spaces, conclude

functions {v;(z)}35,__,, over all integers j and £ form

orthonormal basis for 2.

Conclusion:
If we start with a pixel function ¢(x), which satisfies

i)  dw) =mo(w/2)d(w/2) (with my some 2r-periodic
function)

(i) Slow+ ork|? =
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then the set of spaces V; form a multiresolution analysis,
l.e., satisfy properties (a) - (f) from earlier.
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Further, if define function v (x) with Fourier transform:

P(w) = e mo(w/2 + ) d(w/2)

(here my is from (i) above), then
Yin(z) = 277 (292 — k).

form orthonormal basis for L2

[Next we'll construct some wavelets]
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2. Additional remarks:

Note further that (17) has another interpretation without
Fourier transform :

Recall the two scale equation:

$(x) =Y hdu(x).
k:

Also then we have (see eq. (5)) that if
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then:
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Then we have from (17):

w(w)_ zwIQZ Th 6 k(w/2+) ¢((,U/2)

k:——oo
zw/2z Zk‘TF zkw/2 ¢(w/2)
k:——oo
= 1 — : ~
_ Z %hk(—l)kez(’“l)”ﬂ (;5(&)/2)
k=—00
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Inverse Fourier transforming:
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)kf ( i(k+1)w/2 Qb(CU/Z))

~1)"2¢(22 4 (k + 1))

(—1)*1V/2v/2¢(22 + k)



wherg B
gL = h_l_k(_l)—k—l — h_l_k<_1)k+1
dard form — _
stan ar_ orm h_l_k(—l)k 1 :

and (recall) h; defined by
O(x) =) hidu(x).
k
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3. Some comments on the scaling function:

Recall

~

O(w) = mo(w/2) $(w/2)

from earlier. This stated that the Fourier transform of ¢
and its stretched version are related by some function
mo(w/2), where my is a periodic function of period 2.

Lemma: The Fourier transform of an integrable function
IS continuous.

Proof: exercise
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Assumption: ¢(z) (the scaling function) is integrable
(i.e., its absolute value has a finite integral).

Fact: Under our assumptions, it can be shown that

/_00 dro(x) =1

o0

[proof is an exercise]
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Consequence: A consequence of the

assumption is that the Fourier transform
satisfies:

— dll? ¢ —Z-O.’L‘

_f

dz ¢(x o —

RCI
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Now recall we had

$(w) = mo(w/2)d(w/2)

for some periodic function m.
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Replacing w by w/2 above:
$(w/2) = mo(w/4)d(w/4);

Plugging into
@(w) = myo(w/2)my (w/4)$(w/4).
Now taking and replacing w by w/4, and then
plugging into

~

P(w) = mo(w/2)m0(w/4)m0(w/8)$(w/8).
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Continuing this way n times, we get:

~

d(w) = mo(w/2)mo(w/4)mo(w/8). .. mo(w/2")d(w/2").

or.




Now let n — oo on both sides of equation. Since ¢ is
continuous (above assumption), we get

B(w/2Y) = B(0) = ﬁ

Since the left side of converges as n — oo, the
right side also converges. After letting n — oo on
both sides of

gw ﬁ (w/27),



P(w) = \/%f[mo(w/zj).

Conclusion: If we can find my(w), we can find the
scaling function ¢.
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4. Examples of wavelet constructions using this
technique:

Haar wavelets: Recallthat we chose the scaling
function

¢(x>:{1 if 0<zx<1

0 otherwise '’

and then we defined spaces V.

From ¢ we constructed the wavelet ) whose translates
and dilates form a basis for L2.
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Such constructions can be made automatic iIf we use
above observations.

Note first in Haar case:
1
1 e iwe

Py ] L —iwz
gb(w):ﬁfoe d:c:—\/%m

o 1 o e W 1
\/% [ w + iwi|

0
h e —iw/2 Jiw/2
— _ _2 e iw/2 (e e >

V2rw 2i 2i
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For Haar wavelets we can find mg(w) from:

B(w) = mo(w/2)d(w/2),

SO

mo(w/2) = ?) = %ei”/4 72:25;121

1 i/ sin (2 - w/4)
sinw/4
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1

:—e_
2

iw/a 2Sinw/4cos w/4
sinw/4

1
5 e 9 cos w/4

= e ™/t cos w/4.
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Recall wavelet Fourier transform is:

~

(4) P(w) = e mg(w/2 + 7) (w/2)

In this case

Pw) =

ei/2 ¢ilw/4+7/2) cos (w /4 + 7/2) \/24_7rw e/t sinw/4.
[using

cos (w/4 + w/2) =cos w/4 cos w/2 — sin w/4 sin 7/2
= —sin w/4]
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4
= - egin2(w/4)

Vorw

Can check (below) this indeed is Fourier transform of
usual Haar wavelet v, except the complex conjugate
(which means the original wavelet is reflected about 0,
l.e., translated and negated, which still yields a basis
for Wy).
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To check this, recall Haar wavelet:

1 fo<az<1/2
w(x)_{—1 if 1/2<z<1

Thus:

- 1 > —iwz
Plw) = ﬁ/_m (o) e da

1 /2 ! —iwx
-l )
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N

/2 1 1 .
e—zwx da,; o —/ e—’LO).Z‘ dx
/0 \V2mJ1/2

( e—iw/2 1 ) 1 ( e W e—iw/2

w w \/ 2 1w

2e /2 e 41

— +
\/%iw \/%iw
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—iw/2 iw/2
2 (_e—w/2_|_e—¢w/2 (e +e /)>

V27 iw 2

2

\/ﬁiw

2 , :
= ( — e /2 4 e /2 005 2 w/4)

\/ﬂiw

( — e /2 4 e7/2 cog w/2>

[using cos 2z = 1 — 2 sin® z]
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= — ( — e /2 4 e /2(1 — ZSian/4)>

\/%iw
— 1 ; :
= (e“"/Q S|n2w/4)
V2T iw

— (e‘i‘”/2 sin%/ﬁl)
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