15 Meyer and Daubechies Wavelets
1. Meyer wavelets: another example -

Scaling function:

1 if |w <27/3

¢(w) = ——1 cos[Zv(Llw|—1)] if 27/3 <|w| <4m/3
V2T | otherwise

-~

[error in Daubechies : 3/4x instead of 3/27 inside v]

517



where v is any infinitely differentiable non-negative
function satisfying

v(z) =
0 if <0
1 ifx>1

smooth transition in v from 0 to 1 as x goes from 0 to 1

and

viz)+v(l—x) =
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fig 34: v(z)and v(1 — x)
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fig 35: Fourier transform ¢(w) of the Meyer scaling
function
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Need to verify necessary properties for a scaling
function:
(i)

1
Z w+271k)|* = — (21)
P T2

To see this, consider the two possible ranges of values of
w:
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(@) |w+27ky| <27/3 for some k;. In that case (see
diagram above):

d(w + 27ky) = L d(w+2mk) =0if k # ky

Vor

since if |w+ 27k;| <27/3, then |w+ 27k| > 47/3 for
k # k1. Thus (21) holds because there is only one
non-zero term in that sum.
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(b) 27/3 < w+ 27k; < 4x/3 for some k. In this case we
also have

—Ar/3 <w+2m(ky — 1) < —27/3.
Also, for all values k # k; or k; — 1, can calculate that
21k ¢ [—47/3,47/3],
SO

d(w+ 27wk) = 0.

So sum has only two non-zero terms:
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27r2|$(w + 27k = 27r(|$(w + 21k |? + |B(w + 27 (ky — 1)|2).
%

= cos? _;TI/(;;W—!— 27k | — 1>] + cos? [gy(;rw—k%r(kl - 1) - 1>]
= cos? Zy<iw+ 3ky — 1) + cos? Zy<i(_(w+ 21 (ky — 1)) — 1)]
|2 2 | |2 2
= cos® 7Ty<3w+3l<:1—1) + cos? 7Tu(—gcu—?ﬂ’cﬁ—z)]
12 \27 | |2 2m
= cos® zy<iw+3k1—1) + cos? z(1—u<1— (—iw—3k1+2))>]
|2 2 | |2 2
= cos? 7Ty<3w+3k:1—1) + cos? 7T—7Tz/(3cu+3k1—1>]
12 \27 | 12 2 \2m
5 (e am =) s [ (o0 -1)
=cos’ |—v| —w+3k; —1])| +sin|=v| —w+ 3k —1
2 | 2"\ 2
=1
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Note that above |w+ 27(k; — 1)| = —(w+ 27(k; — 1)),

since quantity in parentheses always negative for our

range of w. In next to last equality have used cos

(g — 33) =sin x.

Note since cases (a), (b) cover all possibilities for w
(since they cover a range of size 2« for w + 27k;), we
are finished proving (21).
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Also need to verify:
(i)
$(w) = mo(w/2)$(w/2)

for some 2m-periodic m(w/2). Indeed, looking at
pictures:
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-87/3 —df3 Amis

8.3

fig 36: ¢(w) and ¢(w/2) (---)
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ratio of these two looks like:

=3 473

fig. 37: ( )/ o( w/2 \/ ) in the interval
T, 27)
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Note since ratio ¢(w)/d(w/2) = /27 d(w) in [—2m,2x],
we can define

~

¢(w
mo(w/2 — =
(w/2) = ¢(/ V27 p(w

if w e [—2m, 27).

Definition ambiguous when numerator and denominator
are 0.
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Definition also ambiguous for w ¢ [—27,27] since
numerator and denominator both 0. So define
mo(w/2) by periodic extension of above for all real w.

How to do that? Just add all possible translates of the
bump é(w) to make it 47-periodic:

mo(w/2) = \/%Z(ﬁ w + 47k).
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Check:

mo(w/2)d(w/2) = Z d(w + 47k p(w/2)

where we have used the fact that $(w+47r/<:) has no
overlap with ¢(w/2) if k £ 0.
[So we expect a full MRA.]
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2. Construction of the Meyer wavelet
Standard construction:

A~

P(w) = e mo(w/2 + ) $(w/2)

= 2N "G (w + 2m(2k + 1)) d(w/2)
k
_ /2 {E(w +27) 4 ¢(w — 27) [H(w/2)
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[supports of 2d and 3d factors do not overlap for other

~

values of k; note é=¢ since ¢ is reall
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fig 38: ¢(w + 27) + d(w — 27) (dashed) and ¢(w/2)
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fig 39: |d(w + 27) + ¢(w — 27) | H(w/2)
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Thus have 2 distinct regions:
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(a) For27/3 < w < 47/3 we see in diagram that
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= \/%sin [g”(%w — 1)]

So by symmetry same is true in —27/3 < w < —47/3, SO
replace w by |w| above to get:

2 () = \/%_ﬂsin [gv(%\wl _ 1)]

for 27/3 < |w| < 47/3
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(b) For 47/3 < w < 87/3,
27/3 <w/2 < 4w /3):

we see from diagram (note

e H(w) = V2m [B(w +2m) + Blw — 2m)| B(w/2)

= $(w/2)

1
= ——=CO0S

V2

1
——=CO0S

N

3z )
()]

s
4
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Again by symmetry same is true in —87/3 < w < —4n/3,
so replace w by |w|:

for 4n/3 < |w| < 8n/3
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Thus:
d(w) =
e/2sin [Zv(2|w| — 1], if 27/3 <|w| < 4m/3
\/% e/2cos [Zv( Elw| —1)], if 47/3 < |w| < 87/3
0 otherwise
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Fig. 40: The wavelet Fourier transform |¢(w)|
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Fig. 41: The Meyer wavelet ¢(z)
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3. Properties of the Meyer wavelet

Note: If v is chosen as above and has all derivatives 0 at
0Oand 1, can check that ¢ (w) is:
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e infinitely differentiable (since it is a composition of
infinitely differentiable functions), and one can check
that all derivatives are 0 from both sides at the break.
For example, the derivatives coming in from the left at

_ 27 .
w = 7 are:
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and similarly

(proof in exercises).

e supported (non-zero) on a finite interval
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Lemma:
(a) If a function ¢(x) has n derivatives which are
integrable, then the Fourier transform satisfies

[$(w)] < K1+ [w])

Conversely, if holds, then v (x) has at least n — 2
derivatives.

(b) Equivalently, if ¥(w) has n integrable derivatives,
then

()] < K1+ [z])™
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Conversely, if holds, then (w) has at least n — 2
derivatives.

Proof: in exercises.
Thus: ¥(x)
e Decays at oo faster than any inverse power of x

¢ Is infinitely differentiable
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Claim:
() =22 2z — k)

form an orthonormal basis for L?(R).

e Check (only to verify above results - we already know
this to be true from our theory):

[ @i = [ -1

o0 — 0
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[getting rid of the |-| and doubling; changing vars. in
second integral]
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o7 (3
wggdw{l—i—cos _21/(27rw 1)]})
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fletting s = 2w—1 = w=21/3(s+ 1)]

— ; (/Olds <1 + cos? [;V(S)D>
= % (/01/2ds(1 + cos? [gu(s)D + /1/12d8 (1 + cos® [gy(s)} )))
~ ; (/01/2ds(1 + cos? [gV@)D . /01/2d8 (1 + cos? [gy(s + 1/2)}>\
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[using v(s +1/2) =1 —v(1/2 — s)]

— % </01/2ds (1 + cos? [gu(s)]) + /01/2d8 (1 + cos® [g(l -v(1/2— 8))])>
=5([ oo o)) « [ as(a s o2 )
s=1/2-s §</01/2d5(1 + cos? [g’/(s)]) + /01/2(13 (1 + sin® {;TV(S)D>

_ ;(/1/2(13(2“)) _1
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e To show in another way that they form an orthonormal
basis, sufficient to show that for arbitrary f € L*(R),

i\<¢jk,f>\2 = /_oo\f(a:)|2dx

Ik 00
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[this is a basic analytic theorem].

Now note:
S (W A=Y / da (@) f (2)da
J:k J.k
00 2
=Y | [ TP
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Note if
Vip(z) = 22 4p(272 — k).
Then as usual:

@jk(w) _ 2—j/2 @(Q—jw) e‘ﬂ_'jk”.

Plug this in above and can do calculation to show (we
won't do the calculation):

Sl = [ " de|f(@)P,
J.k -

0
as desired.
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CONCLUSION:
The wavelets

i (x) = 272z — k)

form an orthonormal basis for the square integrable
functions on the real line.
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4. Daubechies wavelets:

Recall that one way we have defined wavelets is by

starting with the scaling (pixel) function ¢(z). Recall it
satisfies:

$(w) = mo(w/2)¢ (w/2)

for all w, where my(w) is some periodic function. If we
use my as the starting point, recall we can write

b(w) \/7Hm0 w/29).
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Recall m is periodic, and so has Fourier series:
mo(w) = Z ap e
k

If mo satisfies |mo(w)|* + |mo(w+ 7)|> =1, then it is a
candidate for construction of wavelets and scaling
functions.

For Haar wavelets, recall mg(w) = e™/?cos w/2,50 we
could plug into to get ¢, and then use previous
formulas to get wavelet ¢ (z).
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If we start with a function m(w), when does lead to
a genuine wavelet? Check conditions:

(1)

. /2]
9= llmte

_ \/%—Wmo(w/Q)ﬁmo(W/Qj)



j+1)

= mg(w/2) mo(w/2
T

= my(w/2)$(w/2)

Recall this implies that V; C V. where
< oo}

{ > il
(usual definition) with ¢.(z) = 2j/2¢(2jx — k)

k=—00
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(2) The second condition we need to check is that
translates of ¢ orthonormal, i.e.,

Zk:@(uﬂr 2k = %

mo(w) = finite Fourier series
N

= " ape”™* = trigonometric polynomial
k=N
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There is a simple condition which guarantees condition
(2) holds.

Theorem (Cohen, 1990): If the trigonometric polynomial
my satisfies my(0) =1 and

[mo(w)[* + [mo(w + m)|* = 1

(our standard condition on m), and also mg(w) # 0 for
lw| < 7/3, then condition (2) above is satisfied by
1 0.¢)

P(w) = \/—Z—WHWO(W/QJ)



Proof: Daubechies, Chapter 6.

Since condition (1) is also automatically satisfied, this
means ¢ is a scaling function which will lead to a full
orthonormal basis using our algorithm for constructing

wavelets.

Another choice of my is:
mo( ) =

[(1+V3)+ 3+ V3)e ™ + (3 /3)e ™ + (1 — /3) e3]

(Fourler series with finite number of terms).
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Fig 42: Real (symmetric) and imaginary (antisymmetric)
parts of mg(w)
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To check Cohen's theorem satisfied:
(i) Equation satisfied (see exercises).
(i) If mg(w) = Remy(w) + i Immg(w),
Imo(w)|? = |Re mg(w)|* + |[Immg(w)]* # 0
for |w| < 7/3, as can be seen from graph above.

So: conditions of Cohen's theorem are satisfied.

In this case if we define scaling function ¢ by computing
infinite product (perhaps numerically), and then
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use our standard procedure to construct wavelet (),
we get:




fig 43: pictures of ¢ and vy
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Note meaning of my: In terms of the original wavelet, this
states

é(z) = L [(1+v/3)o(22) + (3 + v/3)6(2z — 1)
+(3—V3)p(2x —2) + (1 — /3)8(2x — 3)]

(see above). Note this equation gives the
information we need on ¢, since it determines mg(w).
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