16 Additional Topics: Compact and Continuous
Wavelet expansions

1. Other examples
Note again it is possible to get other wavelets this way: If

we demand
o(r) =.226 ¢(2x) + .854 p(2x — 1) + 1.24 p(2x — 2)

+.196 p(22 — 3) — 1.434 (22 — 4) — .046 ¢(2z — 5)
+.110 (22 — 6) — .008 (22 — 7) — .018 p(2z — 8)
+.004 (22 — 9) (28)
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Then this results with an mg(w)

mo(w) = 113 + .427 ™ 4 512 e*™ + .098¢*™ + ... 4 .002e"™“.
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Fig 44: Real (symmetric) and imaginary parts of my; note
condition (ii) of Cohen's theorem is satisfied.
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Can check it satisfies condition (i) of Cohen's theorem
and resulting ¢ is obtained:

3w) = ﬁmow/w).

It satisfies required properties (a) - (f) of a multiresolution
analysis. Corresponding scaling function s¢(x) and
wavelet 51 (x) are below
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Fig 45: Scaling function and wavelet for the above ¢ choice
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NOTE: Can show that if there is a finite number of terms
on the right side of , then corresponding wavelet
and scaling function are compactly supported.
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2. Numerical uses of wavelets
Note that once we have an orthonormal wavelet
basis {v;,}, can write any function:

f@) = apu(x),
7.k

with aj, = (f,%). Numerically, can find aj, = (Y, f)
using numerical integration to evaluate inner product.

With Daubechies and other wavelets, there are no closed
form for the wavelets, so above integrations must be
performed on the computer.
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But there are very efficient methods of doing this: in order
to get all the wavelets 7; into the computer, we just
need to input one - all others are rescalings and
translations of the original one.

There are efficient algorithms to get coefficients aj,; more
details in Daubechies' book.
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3. SOME GENERAL PROPERTIES OF
ORTHONORMAL WAVELET BASES:

Theorem: If the basic wavelet (x) has exponential
decay, then 1 cannot be infinitely differentiable.

(in particular, if ¢  has compact support, then
cannot be infinitely differentiable).

Proof: Daubechies, Chapter 5.
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Compactly Supported Wavelets:

So far we are able to get wavelets
i (x) = 22 4p(20x — k)

which form an orthonormal basis for L?. Note Haar
wavelets had compact support. When will wavelets
be compactly supported in general?

Recall we assume that given basic scale space V;, that
we have scaling (pixel) function ¢ such that
{¢(x — k)} form basis for V.
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Recall

WwcW,

o) e Vo = ¢@) €N

V2 ¢(22) € Vi

{V/2 ¢(2z — k)}22, form a basis for V;

Recall since ¢(x) € V1, we have for some choice of hy:
o) =Y he V2 ¢(2x — k).
0

Constants h; relate the space V; to V.
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We will see that:

Theorem:

Finitely many h; #0 < 1, ¢ have compact
support.
Proof:

< . Assume ¢ has compact support. Then note since
V/2¢(2z — ¢) are orthonormal,

hy = / V26(22 — 0)6()da

= ( for all but a finite number of 7 :
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fig 46 : Note h; = integral of product = 0 for all but finite
number of / to prove =-: (rough sketch only)
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Assume that A, are 0 for all but a finite number of k.
Then need to show ¢(x) has compact support.

Strategy of proof: look at gAb(w).

Recall we defined

E : —zkw
k

%\
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Recall:

—~ 1 o .
w)=—==| 1| my(277w).
S(w) ff_ll (279w)

27'(']

e From this show that ¢(w) extends to an analytic
function of w in whole complex plane satisfying:

[P(w)] < O(L+ Jw])™ eNlime

for constants M and N.
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e This implies by Paley-Wiener type theorems that
¢(z) = F~1 (5) is compactly supported. [
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4. GENERIC PRESCRIPTION FOR COMPACTLY
SUPPORTED WAVELETS:

e Start with finite sequence of numbers h; (define how
Vo will be related to 1)

e Construct

Kb i
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check that it satisfies Cohen's theorem conditions :
|mo(w)| # 0 for |w| < 7/3.
and

[mo(W)]* + Imo(w + )" = 1.

e Construct
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e Construct Fourier transform of wavelet by:

@(w) = /2 mo(w/2 + ) ?q;(w/Q),

e Take inverse Fourier transform to get ¢(x) = wavelet
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5. SOME FURTHER PROPERTIES OF WAVELET
EXPANSIONS

QUESTION: Do wavelet expansions actually converge
to the function being expanded at individual points z=?

Assume that scaling function ¢ is bounded by an
integrable decreasing function. Then:
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Theorem: If f is a square integrable function, then the
wavelet expansion of f

f(x) = i aji Yji()
7.k

converges to the function f almost everywhere (i.e.,
except on a set of measure 0).
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QUESTION: How fast do wavelet expansions converge
to the function f?

ANSWER: That depends on how “regular" the wavelet v

Is. More particularly it depends exactly on the Fourier
transform of .

593



Theorem: In d dimensions, the wavelet expansion

f@) = ap u(x)

Ik

converges to a smooth f in such a way that the partial
sum

> apti(@)

JSNk
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differs from f(z) at each x by at most C - 27¢, iff

/|1Z(w)|2 lw| ™27 dw < 0.
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6. CONTINUOUS WAVELET TRANSFORMS
Consider a function (z) € L* (i.e., v is square

integrable), such that ¢(x) decays fast enough at ~o
(faster than 1/z?), and such that

/_Z Y(x)dz = 0.

Then we can define an integral wavelet expansion
(integrals instead of sums) using re-scalings of v (x):
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Define rescaled functions
Yap(x) = lal?(a(z - b)).
[note a — 1/a in definition of Daubechies]
Here a,b € R. Thus a measures how much ¢ has been
stretched (dilation parameter), and b measures how

much ¢ has been moved to the right (translation
parameter).

New point: dilation parameter o and translation
parameter b can take on any real value.
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Now define wavelet expansions in this case (analogous
to Fourier transform -- called wavelet transform): given
f € L* (R), we define the transform (assuming that 1)
is real)

(W f)(ab) = / dz f(z) [l Poa(z — b))

~ [ do f(@) 5@

= <¢a,b7 f>
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How to recover f from (W f)(a,b)?

Claim:
fw=c [ ) / " dadb (WF)(a,b) bos(e)
where

Ccl = —2w/dw|w\—1|zz(w)|2.
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Pf. of claim (sketch; details in Daubechies, Ch. 2):

We will show that for any g(z) € L?,
<g(x), C /_ /_ dadb (W f)(a,b) wa,b(x)>
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To see this, note that
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[next use “Plancherel Theorem” for wavelet transforms]
= 0// dadb (Wg)(a,b)(W f)(a,b)
= C [ [ dadb(g(x),Yap(x))(W f)(a,b)(z)
~(sta).C [ [ dadd 07 f)(abyvuste) ),

as desired, completing the proof.
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Thus we know how to recover f(x) from W f(a,b)

(analogous to recovering f(z) from 7(w) in Fourier
transform).

QUESTION: What sorts of functions are (W f)(a,b)?

For some choices of 1, these are spaces of analytic
functions.
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7. Convolutions:

Definition: The convolution of two functions f(z) and
g(x) is defined to be

f(x)*g(x) = /_Oof(:c —y)g(y)dy.

Theorem 3: The convolution is commutative: fxg = gxf
Proof: Exercise.

Theorem 4: The Fourier transform of a convolution is a
product. Specifically,
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F(f(x)xg(x)) = v/ 2r f(w)(w)
Proof: Exercise.

Lemma5: For any function f, F(f(—z)) = f(w)

Proof: Exercise.

8. APPLICATION OF INTEGRAL WAVELET
TRANSFORM: IMAGE RECONSTRUCTION (S.
Mallat)
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Dyadic wavelet transform: a variation on continuous
wavelet transform.

Now define new dilation only by powers of 2; arbitrary
translations:

Vip(x) = 2/9(27 (z — b))
Define
V() = 2j¢(2jx).

(Still allow b € R to take all values, but restrict a = 27.)
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Define this dyadic (partially discrete) wavelet transform
by:

WG = [ £ opala

l.e., usual set of wavelet coefficients, except that b is
continuous.
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Note:

(WF)(j.b) = / F(2) 50() da
- / dz f(2) P92z — b))

— [ o f@) v 1)

= (f*1;)(b)
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(a convolution) where as above

Y;(x) = 21p(2/z) = shrinking of v by a factor 27,

New assumption: Fourier transform (w) satisfies

00 o - 1
> 1w = -

=00

Now: given f(z), consider dyadic wavelet transform;
a=2" only:
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Can show under our assumptions that can recover f in
this case too:
Recovery formula for f is:

(0.¢]

f@) =" (W) x)si(—x)

j=—oc

(convolution in variable x). Itis easy to check that this is
correct: if F denotes Fourier transform:

‘7:< _i_% (W) (g, z)xi(—) )
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= J ().

QUESTION: Given f(z), what sort of function is the
wavelet transform (W f)(4,b), as a function of j and
b?

Let V = the collection of possible functions
(Wf)(5,b) =  collection of possible wavelet
transforms. When is an arbitrary function ¢(j,b) a
wavelet transform?
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Can check that ¢ must satisfy a so-called reproducing
kernel equation: g¢(j,b) is the wavelet transform of
some function iff

9(4,b) = (Kg)(j, b ij )xpe( — b)xg(L,b)

f=—00

[this equation defines K g; note convolution isin b.]

Back to recovering f from wavelet transform:

614



Thus we can recover f as a sum of f at different scales:

F=3 (WGl ).

Jj=—00
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Since 1 is a known function, we can recover f from the
sequence of functions. Assume a(z) is a cubic B-
spline:

Fig. 47: A cubic B-spline a(x) is a symmetric compactly supported
piecewise cubic polynomial function whose transition points are
twice continuously differentiable
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Now let the wavelet be its first derivative: ¢ (x) = <~

N\

Fig 48: ¢(z) = “La(z)is the wavelet
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Using the wavelet ¢ (x) :

To see that these pieces of f represent f at different
scales, look at example:
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So: one can recover f from knowing the functions

(WF) (G, ).
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This is a lot of functions. What advantage of storing f in
such a large number of functions? We can compress
the data.

CONJECTURE: We can recover f not from knowing all

of the functions W (j,x), but just from knowing their
maxima and minima.
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Meyer has proved this conjecture false strictly speaking
certain choices of  (including the above derivative
Y (x) of the cubic spline). It has been proved true for
another choice, the derivative of a Gaussian.

@) = L

:%6

However, for either choice of ) numerically it is possible
to recover f(x) from knowing only the maxima and
minima of the functions W (3, x).

623



Numerical method:

Assume that we are given only the maxima and minima
points of the function W (j,x) for each j. How to
recover f?

Given f, first take its wavelet transform; get W (j,z).
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Define

[' = set of all functions ¢(j,x) which have the same set
of maxima and minima (in z) as W (j, x) for each j.

V = set of all ¢(j,z) which are wavelet transforms of
some function of z.

Idea is: the true wavelet transform W f(j, z) of our given
function f(z) is in I' (i.e. has the same maxima as
itself) and is in V' (i.e., in the collection of functions
which are wavelet transforms).
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Thus
WfelNnV.
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intuitive picture:

I = allfunctions with same
maxima as YW, x)

1Y = desired potnt

?V = all functions which are wavelet
transforms

fig 49

627



Thus if we know just the maxima of W f(j,x), we can try
to find W f(j, x)

That is:

1. We know maxima of W f(j,z), so

2. know I'= all functions with same maxima as
W £(j, )

3. Find W f(j,z) as “unique” point in T" which is also a
wavelet transform, i.e., unique pointin I'n V:
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Algorithm:

1.

Start with only the maxima information about W (j, x).
Call M the maxima information.

. Make initial guess using function ¢ (j, =) which has the

same maxima as W (j,x).

Find closest function in V = set of wavelet
transforms to g;(j,x). Call this function g,(j, x).

Find closest function in ' = functions with same
maxima as M to g-(j,x). Call this function g5(j,x).
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5. Find closest function in V' to gs(j, z); call this g4(j, z).
6. Find closest function in T" to gq4; call this gs.
7. Continue this way: at each stage j find the closest

function g; to g;—; in
the space V or I' (alternatingly).
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Eventually the g;(j,z) .— W f(j,z) as desired.
J— 0

I = allfunctions with same
maxima as Wi, =)

[ 1 = desired point

WL, ) )
T ?\f = all functions which are wavelet
transforms
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CONCLUSION: We can recover the wavelet transform
W f(j,x) of a function just by knowing its maxima in
xZ.

THE POINT: Compression. We can store the maxima of
W f using a lot less memory.

APPLICATION: Compression of images:
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Fig. %: The upper left it the oviginal lady image. The ipper right image i a réconRsiruction from
the mazimg representanion shown in the second column of fig. 8. This reconstruciion (v ~ormed
with & iterations and the roise to signal ratio is 6.6 1072, The lower left and lower right images
have been reconseructed from the maxima represenionion shown respecovely in e third ar.
Sourth column of fig. 8 (thresholding by the factors 4 and 8}, The light textures have disappeared
bur the srrong edges and rexrures remain unchanged.



Fig. 50
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Fig. 8: The firsi gives the modulus images Myf(ry) for 1554 of the lady image
shown at the wop left of fig. 9. The second column displays the position of the mazim:
Maif (x,5). The third and fourth columns display the posiion of the local mazima whose ampli-
tude are respectively larger than 4 and 8. The maxima thar have been remaved corresrond essen-
tially to the noise and the light rexture irvegularities,




Fig. 51

Wavelets and Wavelet Transforms in Two
Dimensions

Multiresolution analysis and wavelets can be generalized
to higher dimensions. Usual choice for a
two-dimensional scaling function or wavelet is a

product of two one-dimensional functions. For
example,

P2(7,y) = ¢(z)9(y)
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and scaling equation has form

Sz, y) = hwr-20(22 — k,2y — 1).
k.l

Since ¢(x) and ¢(y) both satisfy the sclaing equation

o) =Y hi - V20(2x — k),
k

we have hy = hih;.  Thus two dimensional scaling
equation is product of two one dimensional scaling
equations.
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We can proceed analogously to construct wavelets using
products of one-dimensional functions. However,
unlike one-dimensional case, we have three rather
than one basic wavelet. They are:

v (z,y) = ¢(z)(y)
WU (z,y) = p(z)d(y)

YU (z, ) = p(z)v(y).
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The generalization of the one-dimensional wavelet
equation leads to the following relations:

VD (z,y) = gy 2022 — k,2y — 1)
k.l
(@ Zg —k,2y—1)

YU (@) = g™ 2020 — K, 2y — 1)

k.l

I 7 7
where gl(gg) = higi, 921 ) = grhy, and g,(d ' = grar.
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We can generate two-dimensional scaling functions and
wavelets using the functions ScalingFunction and
Wavelet then taking the product. For example, here
we plot the Haar wavelets in two dimensions. Various
translated and dilated versions of the wavelets can be
plotted similarly.
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Fig. 52. Two dimensional Haar scaling function

o(r,y)
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Fig. 53: Haar wavelet ) (z, y)
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Fig. 54: Second wavelet ¢! (z, y) = ) (y, z)
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Fig. 55: Third wavelet /I (z, 1)
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As example of another wavelet, here is so-called "least
asymmetric wavelet" of order 8 in two dimensions :
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Fig. 56: Least asymmetric wavelet of order 8
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