Probability Theory
1. Background
2 notions of probability:

Probability = analysis

Probability = common notion

A few words on common notions..



2. Experiments and sample spaces

Define as experiment any sequence of events
with an outcome.

Example 1. Toss of a die
Example 2: Study on deaths of cancer patients.

Example 3: High temperatures of day



When we are interested in an experiment, we
want to somehow record its outcome, some
salient aspect of outcome -- set of all possible

outcomes (which has to be classified by
experimenter)

Possible outcomes form () = sample space.

Example 4: Dietoss. 2 =1{1,2,3,4,5,6}



Example 5: Cancer patients

= 4 Outcomes
R = received treatment
N = no treatment
L = lived
D = died
This extends to other characteristics - genetic
profiles in bioinformatics



3. Events and probabilities

Example 6: High temperature measurement
Sample space =Q = {t:t areal number}

So: Have set theory and real life situations.

f ACQ, A isan event.



Example 7: If A = {2,4,6} C {1,2,3,4,5,6}
then A Is an event.

Why an event ?

Intuitively, an event means something that has
occurred, and above the event A = {2,4,6}
represents the occurrence of an even
number.

Again can translate between set theory and
Intuitive notions of meanings of words.



Probabilist wants to assign probability a number
between (0 and 1 to every event.

Thus, e.g., if A = {eventof an even roll} =
{2,4,6}
want P(A) = [Rationales can vary]

So:. ldeally, want to assign numbers
(probabilities) to subsets



Example 8:

P(1) =3
P(2) = §
P@3) =3
P(6) = 3




Thus, each componentin Q has probability 7.

Each subset A can be obtained by adding
measure of component subsets A,.

Want P(Q) =1
why ?
So: given a setin a sample space want

probabilities...
P(A) = ?

P(Q) = 1.



4. Probability measures

Example 9. Consider an ideal random number
generator which generates a real number In
0,1}




In this case:
() =10,1];

P(Q2) = P([0,1]) =1

Now we have:

P[O, %] = proportional to likelihood of {O, %} =1

Pla,b] = b — a.

What subsets can we find probability measure of?



(i) Any interval (a,b): P((a,b)) =b—a
(1) Any finite union of disjoint intervals

P( fj (az,bz)) m— i(bz — &i)

1=1 1=1

Let's define the collection of sets whose
measures are easy to calculate through
formula (*):



Fo =
{all finite unions of disjoint open intervals (a;, b;)}

= { U (ai, bz)‘ Jflnlte}
e

Note It Is easy to define the measure of any set In
Fo using formula (*).

Note that F, I1s a field of sets, I.e. has all the
properties of a o-field except that it is closed on

only finite unions, not necessarily countable
ones.



5. o-Fields of subsets

The natural extension of this to the o-field F of
Borel sets on |0, 1| can be shown to be unique,
and is Lebesgue measure on |0, 1].

Definition 1: If P(€2) = 1 then the measure P is
called a probability measure on (2, and the
triple (2, F, P) is called a probability space.



6. More interesting example:
Coin tossing: oo number of tosses
() = {(all sequencesof H,T )}

H=1
1T =20

= () = all co sequences of H's and T"s

How to assign probabilities?



Let w € (), with
w = wiwows... = 011010100...

Let
T(w) — Wiworwsg... — .011011...

be the corresponding dyadic expansion.



Note: decimal expansion:

12345... = : | -
10 100
1 2
10 102
dyadic expansion:
0 1 1
01100111 = — + | |
2 22 23



Thus we work In base 2 and write numbers as
O's and 1's

Note that
T:Q — [0,1]

defines 1 — 1 correspondence;
dq (w) = W] = first dlglt

do(w) = wy second digit, etc.



Note:  decimals with first digit 0 arein [0, 1);
decmials with first digit 1 are in [3, 1].

Then A; = {w: di(w) =0} = T(4) = [0, 1)
= A; = {w : first toss in corresponding
sequence Is a talls}

We will assign P(A;) = 5 = prob. of heads on

first toss
= Lebesgue measure of T'(A;) = P(T(A;))



[note we are using the same notation P for:

e measures of subsets of () = all sequences of
coin tosses and for

e measures of subsets of |0, 1] corresponding
to subsets of 2

We anticipate this notation will not cause
problems - that



Continuing - consider the set

(w) =0, dy(w) = 1}

3):

E—bwewy——]

A2 — {w d1
= T(4;) = [4

Probabilistically: would like P(A4,) = 1

Also we have P(T(As)) = Lebesgue measure



Ag — {w: dl(w) — O, dg(w) — 1, dg(w) — 1}

<100 = [3)

— all numbers such that
011

anything



Again P(A3) = P(T(A3)) = &

1 s 1
2

This correspondence P(A) = P(T(A)) clearly
works for any A corresponding to a dyadic
interval T'(A).

By using countable additivity it also works for any
countable unions of sets corresponding to
dyadic intervals. That is for any disjoint
collection A; sets in () corresponding to dyadic
Intervals, we must have:



Since any open set (a,b) can be written as such
a union, we conclude that if T(A) = (a, b), then

P(A) = P(T(A))

Thus by unigue extension theorem
P(A) = P(T(A)) for any set A C Q2 whose
image T'(A) is a Borel setin [0, 1].



= Define probabillity of set A C {2 In coin toss
space to be Lebesgue measure
P(T(A)) C [0,1]

= Probability space (2, F,P)= Lebesgue
measure on |0, 1]



1. The span of probability
Computational biology -

A. Genomes:




B Many organisms are fully sequenced:
human, mouse, chicken, yeast, viruses,
microbes

B Human genes:. about 3Gbp; 22,000 genes

B In humans genes represent about 1.2% of
DNA

B 97% of genome considered "junk DNA"
(meaning its function is yet unknown)



B. Expression of genes: when are they
transcribed? Use gene expressmn arrays
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Source: UCSC

Measure expression (transcription) of several tens
of thousands of genes in a single sample.



C. Gene structures We now have 3D-structures
of around 70,000 proteins (via NMR or
crystallography). We have about 1,300,000
sequenced proteins.

Note: genes are up- and down-regulated
(through TF control) in groups:

functional genomics - understanding basics of
transcriptional regulation.



D. Hidden Markov models in computational
biology

Recall:

4 many genomic datasets from many
organisms.
Want to fully know genomic codes - major goal
of
computational biology.

 Needed (among others) for: drug design,
medical



diagnosis, medical treatment, many other
research
areas.

Initial use of HMM: Speech processing
Important characteristic for HMM - left to right
ordering as a

sequence of words/sounds.

Many computational biology problems can be
mapped Into



corresponding speech recognition and other
language
problems:

Example: protein family classification as speech
recognition.

Metaphor:

Different vocalizations of the same word

— finding different functional regions of proteins
In the
same family



Parsing phonemes into words
+ parsing genomic sequences into codons

HMM as a mathematical language model
— HMM as a genomic sequence model

We want a structured model of sequence data;

In particular of biological molecular sequences.

Input: DNA sequence X = {x1,...,x,} € X",
where ¥ ={A,C,G,T}



Output: Labeling of x; as belonging to an intron,
exon, or an intergenic region.



Existing tools: Genie, GenelD, HMMGene,
GenScan

Models consist of several sub-models for different
genomic regions:

5| IniSigenie Dpsieam | ——
Q-lﬂtart Codon [Exan [ Splice Site [IRli@R] Splice Site
Excn

Stop Codon | Exon | Splice Site [IMR] Splice Site |
3'




2. Back to coin tossing: Some proofs
But now let's prove some things.
Recall we have identified the oo sequences of

0's and 1's In coin toss space with binary
expansions



Recall that If w = WiWows. . . then d; (w) = W;.

| want to define

1
A= . lim — d; (w —
{w nl—[go n ; 2 }

— {w . average value of the digits Is % }

= {w: proportion of 0's and 1'sis equal
asymptotically }



This Is the set of flip sequences where If you
calculate the proportion of heads, it gets closer

1

and closer to 5 -

Many seem like not a large set; after all, aren't
there a lot of possibilities where he flips all
heads or at least heads 2/3 times? NO!

We will show

P(A) = 1

P(AY) = 0.



What does this say about binary expansion? It
says thatif A = set of binary numbers where
average value of the first n digitsis Z, then

m(A)=1. A are normal numbers.

Big deal?



Similarly, if B = {decimal numbers where

1

proportion of 0's approaches +;}, then

m(B) = 1.

In general, whatever base we're in  m (normal
numbers) = 1.

Ml ==



Llet A = {w — (w17w27w37"‘): %sz :%}
1=1

We wanted to show P(A) = 1.

Equivalently, we show

Theorem 1. If A ={w=wjwows,... % Z

- 1)

(= "normal numbers"),

then m(A)=1.



Remark: This is a special case of the strong law
of large numbers.



Proof (optional): For each number w € [0, 1],

W = Wiwawsg ...
let d,(w)=w, = { voord

Let 7,(w) = 2d,(w) — 1=

{1 if d,(w)=1
—1 if d,(w)=0



Note equivalence:

1000110... —
L-1,-1,-11,1,—-1... —

O NI






But:

Let

pick ¢ >0, n aninteger.



Now: consider

VAN

I




Now -- examine



[ sts =3 [awra@rs@r@r

&757776:1
Let's look at what the r, functions look like:

(w) = +1 iffirstdigitinw =1
"W =0 21 iffirst digit in w = 0




+1
— 1

If second digitin w =1
If second digitin w=20

constant on eac h
interval
k+1
(3 5%)
— —
1 -I constant on any imterval
|
;s 4 ( X ket y
r 23 23



Now: what pops up In

(@)
(b)
()
(d)

when

when

when

when

a=0F#v =0

not equal

a=0#Fv#6 get r

a=p=7#0b

get r

2
Oz’l“7 s

3
a s



(e) when a#0F8#v#6 get rorgryrs



Simple case: consider

1
/ To T3 dw
0

assume (8 > «

Look at any interval, (

o #

v



Then r,(w) isconstant (either +1 or —1)
on this interval. Butsince (> a, rz(w) Iis
+1 and —1 many times on this interval,

rs is constant on all intervals (QJ—ﬁ, J;—ﬁl)

and there are many of these in each interval

ko k41
20 90 |-




k

Thus, even though r, Is constantin (2—(1,

204
and 1 2°~~ times. Thus,

’f“), rg IS not, and alternates between —1



= /’I“a’l“g:O



By the same reasoning, If o # 8 # v # 6,

/dw rargTy7s = 0.
Similarly, the integral  [dw rory = [ dwryrs
=0

and fdw '1“(2%7“57“7 — fdw rs
ry =0



e

But;:

Now:



So:

FaTpTyTs —

—

Intregrate two



/ TaT@TTs dw
a,B,7,0=1

/rdw

,ﬂ 7,0

all 4 equal



— E / dw fri 7“%
O{,B,fy,&
two equal pairs

no. times all 4 are =to |

=7 +

number of times two
pairs are equal



no. of chances for a=4

:n—|—7{

no. chances for v=6

iz
(n—1)

o O Q
|
h 2 D

QD=2
|
2 O O

. match different
components



Recall Sy,



= P(w: [sp(w)| > ne)

n+3n(n—1) _







Llet A, ={w: we A, forall n sufficiently
large }

Claim: w(Ar) =1, sinceVN

A 2 ﬁ Ank
n=N






let N — oc.



S S

for n large enough A = () 4,

= P(A) = 1.




3. The scope of probability: Genomic Markov
Models

Hypothetical situation: choose a genome.
Model overall percentage of 2-mers (i.e., Markov
statistics)

)
)

genome (avallable DNA)
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Source: Genome signature comparisons among
prokaryote, plasmid, and mitochondrial DNA
Allan Campbell, Jan Mrazek, and Samuel Karlin,
Proc. Natl. Acad. Sci. USA, Vol. 96, pp. 9184-
9189, August 1999

Above represent relative abundances
For a base i define p; = relative abundance of ¢

For each successive pair:j, e.g. AG = CT,
(equivalent mirror reversed) let



pi; = proportion of successive pairs which are

Define R;; = £iL = relative overabundance of 2-

PiP;
mer over expected abundance If 7, 5
iIndependent.

[many simple statistics can be done on the
genome]
For humans:



pA = pr=.57/2 =285

PO — PG — .43/2 = .215

pa = .07;
C G
1.12 .83
1.2 1.25
99 1.00
74 .99

PO — 43

T
1.17
.20
1.25
1.2

T

88 |
1.17
83
1.12 |




A |.319

C | .343

T | 211
P

178
269
214
213

202
054
268
208

251
334
236
318

IS the transition matrix for a first order Markov
(background) model of the human genome.

Note that a 0" order model would be
A (O G T

)] = [.285 215 215 .285]



Lecture 2: Random variables and quantization

Example 1. throw 2 dice

p=
i
/j-ﬁ

X maps outcome to number



X = Random Variable

Recall: given (2,7, P) X: Q — R is
measurable If
X 1(a,b) € F forall a,b (since intervals
(a,b) generate all Borel
sets).



Definition 1. If X Is measurable from € to
R, then X IisaRandom Variable (RV)

Foranr.v. X:

@



If X 1Is arandom variable, we define

distribution function

Fz)”

P(X < x)




Properties of F' (easily derived)

i) Flx) - 1; x —
Flr) - 0; r— —o0

() F' has at most countably, many
discontinuities i.e., If xi,xs,... are points
of discontinuity, they can be listed in a
string.

Example 2: Suppose we record high, low
temperatures on a given day, form a sample
space






For each element of 2, let

X(H,L) = H— L = temperature

range. Might find that

X(H,L) =

F(z) = P((HL): (H-L)<u)
l—e™™ if x>0

= PX=so) 0 ifx<0

|
— N



[l.e., It's right continuous]

can check thisis a d.f.

If F' has a derivative, or equivalently if F'is the
integral of some function F(z) = [*_dx f(z),

then )
F'(x) = f(x) = density function
of X.



Example 3: heredensity = f(x) = {6

check: F(x) = /x f(x")dx'.



Example 4:  Normal Jlﬁw e V)7 =

Thus, each X — F(z) = [_dx f(z).

Now: F(r) = Plw: X(w) <x)



Define a measure ;1 on Borel sets Bin R, with
the property:

u(A) =Plw: X(w) € A)

Can check this is a probability measure in B.



Now:

u(—oo,z] = Plw: X(w) € (— o0o,x])
= Plw: X(w) <x)
— P(X<z) = F(z)

= u( —oo,z] determined by F(x).

But 1 Is a Stieltjes measure defined by the
increasing function F'(x), and so is totally
determined by F



1 Is called the distribution of X.

Now: Let X Dbe arandom variable,and g
be a function: define a new random variable

by
Y = g(X(w))
Ohsl®

—
\_////7

IR
i
Y



Then Y Is arandom variable. How to
calculate d.f.of Y ?

Fy(y) = P(Y <y)
= P(g(X) <y)
=  P(g9(X) € (—0o0,y])
= P(Xe g '(—o00,y))



Example 5:  Suppose X hasd.f.

Flz) = {1_%33
f(z) = {6096



7\

J\\

(0 if y<O
P(-\y<X<\/y) y=>0
(0 if y<O0
PX<y); y=>0

(0, y <0




4. Algebraic integration theory.

A new formulation of measure and integration
theory allows for non-commutative probabllity
and quantum probabillity as generalizations of
regular probability.

Key element: fundamental guantities are
random variables (which Iis what we observe).



Example 1. Consider the sample space (2 of
possible daily closing price records
(w1, ...,wso) over a given month, for Hewlett-
Packard corporation. We assume
0 < w; < 3$100.

Thus
Q= {w=(wi,...,w3) : 0 < w; <100} = [0,100]*.

For A C , let P(A) = probability that the
outcome vector x iIsinthe set A. Thus P Is a
measure on ().



There are lots of possible random variables
(functions on (2):

(1) R = R(w) =return = ==,

wo

(2) forgiven 1 < d < 30, let

Ld — Ld—1

rq = rq(w) = daily return =
Tq



(3) ¢ = o(w) = volatility = standard deviation of
returns

— \ 2_9d:1(rd — 1)

30
with = p(w) = > ry.
d=1

Many other financial metrics:

(4) Sharpe ratio = %.



Common point: these are all functions on the
fundamental probability (measure) space P on
Q.

Note these and all other observables are
functions on €2, 1.e., random variables.



5. Expectations.

Note: we are really interested in random variables
X (w) on € rather than (2 itself.

Given a random variable (RV) X (w) : 2 — R or C,

we define its expectation (or average value) to
be

E(X) = / X (w)dpu(w)

[standard def. of average of a function; recall
p(€2) = 1].



Consider the space B of all bounded random
variables X (w) on €). Note this is a Banach
space L (£2) with norm || X (w)|| = ess sup X (w)

wel)

[l.e. the maximum not counting sets of measure
0].

But it is also an algebra since if X(w) and Y (w)
are bounded random variables then so Is
X(w)Y (w).



[Note all definitions complex vector spaces also
work for real vector spaces below]

Definition 2. An algebra A Is a complex vector
space with multiplication defined on I, I1.e. for
X, Y € A, XY € A is defined and satisfies

i) X(Y+2)=XY + X7
i) (Y+2)X=YX+72X

Definition 3. A Banach algebra B is a Banch
space with the additional structure of an
algebra such that | XY || < || X]||||Y|| for
X,Y € B.



We will show that the structure of all random
variables X (w) on a probability space €2 will be
determined by their structure as a Banach

algebra, together with knowing only their
expectations.



Definition 4. An involution on an algebra A Is a
map X — X* that is a conjugate linear
Isomorphism, 1.e.,for X, Y € A and c € C,

() (cX)" =eX

(i) X** = X

(i) (X +Y) = X* +Y*
(iv) (XY)" = Y*X*,



Definition 5. An integration algebra is a system
(A, E, *) in which A is a complex associative
algebra (i.e. (XY)Z = X(YZ)), *is an
iInvolutionon A,and £ : A — C s an
expectation, I.e.

() B(X*)=E(X)

(i) E(X*X)>0

(i) E(XY) = E(YX)

(iv) |E(X"Y X) < c(Y)E(X*X),

where ¢(Y') is positive and depends only on Y.



Example 2. Consider the algebra of all bounded
random variables X (w) on a probability
(measure) space (). With the norm
| X = || X (w)||, this forms a Banach algebra
B.

If X = X(w) € B, we can define X* = X(w) (i.e.
complex conjugate) to be our involution.

We an define our expectation to be



B(X(w)) = / X (w)dP(w).

[can show has above properties of
expectation].
Note this algebra is commutative, i.e. XY =Y X.

Definition 6. The spectrum of B Is the collection
of all (nonzero) continuous linear functionals
¢ : B — C which are multiplicative, I.e., such
that



O(XY)

P(X)o(Y).



6. The algebra of random variables
determines the probability structure

Theorem 2. Assume we are given a probability
space () and any algebra A of bounded
random variables on (2, thus forming a natural
integration algebra (A,FE, x). Then the
structure of this integration algebra uniquely
determines () and the family of random
variables A, up to isomorphism.

Proof: We need to show that if two measure
spaces (1, {25 with their own specific algebras



A1, A, of functions have the same integration
algebra structures, so that (A1, F4, %) and
(Aq, E5, %9) are isomorphic as algebras, then
the two spaces (2; and (2, are equivalent as
measure spaces. We also need to show that
the corresponding families A; and A, are

equivalent as families of functions on these two
spaces.

So assume we have two measure spaces (2; with
algebras of functions A; on them. Assume that
as integration algebras (A;, F;, x;) are
Isomorphic. This means that there is a



bijective isomorphic mapping U : A; — Ao,
such that for X, X;, Xy € Ay,

(1) U(a1X1 + CLQXQ) — CLlU(Xl) -+ CZQU(XQ)
(2) U(X1(w) X2 (w)) = U(X1(w)) M (X2(w))
(3) E2(MX) = Ey(X).

(4) (UX)" = U(X")

We then need to show that €2; and €2, are
equivalent as measure spaces and A; and A,
are equivalent as families of functions on these
two spaces.



To do this we will find a measure preserving
mapping 7" : 21 — )y such that for X € Aq,

UX(w)=X(Tw).
We will show that this mapping gives the

equivalence between (£2;, A;) as families of
measureable functions.

To find such a mapping 7, first consider a set
E C ). Let



() = 1 weA
XE\Y) =910 otherwise

be the characteristic function of £. Then note that
X5(w) = xg(w), SO

(Mxg)” =M(xz) = M(xe) = Mxs.

Thus Mg Is the characteristic function of a
set, call it T'(E).

7. Next: Quantum (free) probability.






