/. Random variables as observables

Definition 7. A random variable (function) X on a
probability measure space is called an
observable

Note all functions are assumed to be measurable
henceforth.



Note that if (2, F,[P) is a probability space, then
the family of (essentially) bounded random
variables (functions on 2) X (w) has the
structure of an integration algebra (A, E), with

E(X) = / X (w)dP(w).

In probabllity we interpret €2 as the space of all
possible outcomes, and for each outcome w,
we define X (w) to be the value of the
observable X given the outcome w € ().

We can call X(w) an observable.



We may study the integration algebra directly,
since it determines the structure of the
probability space up to iIsomorphisms
(measure-preserving transformations).

Note that the algebra A of observables is
commutative, since X (w)Y (w) = Y (w) X (w).



Generalization: Consider that in qguantum
mechanics observables also form an algebra
which is more general, since it iIs non-
commutative. But each observable still has an
expected value.

Example 3. Consider the motion of a particle on
the line R'. Let’ H = L*(R). If ¢(z) € H and
||| = 1 then 1) represents a probability
amplitude that particle is located at . Also
[4(x)|? represents the probability that particle is

located at x.



The operator B = M, (multiplication by =) on
L?(R) is the position operator. If particle is in
state ¢ (x), then its expected position is
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The operator C = %a% (differentiation with respect

to z) on L*(R) is the momentum operator. The
expected momentum Is
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Generally any observable quantity corresponds to
a self-adjoint operator A on ‘H, and its
expectation value (in a given state ¢ € 'H) Is

E(A) = (¥, A).



8. Random variables as observables, Il

We now view a random variable X (w), w € Qas
having a value for each outcome In the
universe () of outcomes. In other words, X
has a value for each of the possible 'worlds'
(possible w representing our reality) that we
are in.

We have seen that just know expectation values
of an algebra of random variables on €} Is
sufficient to determine the structure of ().



Henceforth we will focus on the algebra structure
of the (bounded) random variables
A={X(w): XisaRVonQ}.



Now consider H = L% (Q). If ¢)(w) € H, then
p(w) = |Y?*(w)| € Ly (), and represents a
probability distribution on the possible
outcomes w € Q). If X € A, then in probabillity

E(X) = / X (w)p(w)dw

_ /Q P(w) X (@)(w)dP(w)



Thus we can interpret a state )(w) to be a
probability distribution p(w) = |¢(w)|* on .

It represents our current knowledge of the world
as a probability distribution p(w) on €.



9. An alternative interpretation of ¥ (w)

Note that If we have a state v, it forms a linear
functional ¢ on the set of observables X € A.
Specifically, define

H(X) = Ey(X) = / X ()2 (2)dP(w) = (1, X))

Thus a state ) can be Iinterpreted as a linear
functional ¢ : A — C.



Definition 8. More generally, we will define a
state to be any bounded linear functional ¢ on
A.



10. Summary of commuting observables

So far we have showed that studying an algebra
A of random variables on a probability space
IS entirely equivalent to knowing the algebra
structure of A, i.e. knowing XY and aX + bY
(for a,b € C) if we know X and Y.

We call the algebra A of observables commuting
because XY =YX If X,Y € A.



We have seen that if 1(w) € L*(Q), then
[Y]?(w) € L1(Q) and represents a new
probability distribution on €.

Note that the expectation with respect to this new
distribution Is

E,(X) = /Q X(w) W2 (@)dP (W)
Py(w)

Note that this is equivalent to definining a new
measure on



P, = [4*(w)dP ().

l.e., Radon-Nikodym derivative

d Py 2
I N Y] (w).

We have defined the state ) through its
expectation £, above as a linear functional on

X e A.

More generally, we have now defined a state as
any linear functional ¢ : A — C.



But note that this £, Is an expectation on the

algebra A of random variables (i.e. satisfies the
4 properties defined earlier).

Thus we have a

Proposition. Given a probability space (2, an
algebra A of random variables on (2, and
Y(w) € L*(Q) with ||| = 1, there is a unique
expectation £, defined on A given by

E,(X) = / X (@) (@) dP(w).



Note that this expectation can be interpreted as
giving the average value of any observable X
given the underlying state ) on ().



11. Non-commuting observables

Recall from above we have an algebra A of
observables X together with an expectation £
on the algebra (we denote £ = E, for now).
These form a integration algebra defined
above.

We define the total measure of the integration
algebra to be E (1) (i.e. expectation of the
function X =1).



If £(1) =1 (i.e. total measure is 1) we will call A a
probability algebra.

Thus a probability algebra A is just a
generalization of the collection of random
variables on a probability space ().

Let's generalize the above ideas to the case
where observables do not commute, i.e. we
have an algebra A of observables where
XY #YX.



