Suggestions for PS 10:

1. 1V.10: (a) try a countable set of elements of X.
(b) let C be an open cover of X. How much of X does a set in C cover? Does this extend into
a finite subcollection which covers X?

2. 1V.11: (a) Does the sequence argument work if we translate to nets?
(b) For two limits x and y, find open sets which separate them.

3. 1V.15: You can use previous results about such series. To show A is an algebra note
every f,g € C = C([0,27]) have series

o o
f= > ae™, g= > bpe™.
n=-oco n=-oco

If f, g € A the sums range over non-negative n. For f, g € A let fy and gy be their partial
sums. Show for each k

| [(Fg-fauon) €™ x| < [ fnll2llon-gll2+ [lgll2llfn-f]2

(try Holder), so fg € A. To show A closed, show if f, is Cauchy in A (in the uniform
convergence topology of continuous functions), then its limit is in A. How to show A
separates points (note all e for k > 0 are in A)?

4. 1V.16: We want the version of S-W theorem in Theorem IV.9. Why can we assume B is
not of the form {f € Cg | f(Xo) =0} for any xo?. To show B = Cg(X), show B is closed so it
suffices to show it is dense in Cr(X). Does the text proof work if we do not assume 1 € B?
Does Lemma 2 of the Appendix to IV.3 hold? We would need to prove first (see proof in the
book) that the algebra A’ of polynomials P(x) on [-1,1] without constant terms can still
approximate |x|. Note |x| can be approximated by A if the latter is all polynomials. Try to
replace P, (z) by P,(z) — P,(0). Thus the proof of Lemma 2 goes through without 1 in B.
For Theorem 1V.12, note 1 € B is only assumed for constructing f,y,. Show you need to
establish that without 1 it is still possible for any h € Cr(X) to find a fy, € B with f,y(X) =
h(x), fxy(y) =h(y). Note given x, y, if a is a function in B which has different non-zero values
there (why does such a function exist?), we can multiply a by a constant so a(x) = 2. If b(x) =
a%(x), why is a(x)b(y) - a(y)b(x) # 0? Show then there are constants ¢; with
(**) c1a(x) + c2h(x) = h(x), cia(y) + c2b(y) = h(y)?

5. 1V.19: Consider fi’é sk(X -y) (f(y) - f(x)) dy, and show this goes to 0 uniformly by
writing

1/2
/ sk(x - y) (f(y) - f(x)) dy = ( / + / ) sk(x - y) (f(y) - f(x)) dy ,
-1/2 As ~Ags



where As = (x-6,x+6). Now show for fixed 6 the second integral can be made small for large
k (uniformly in z of course), while the first integral is bounded for all £ by noticing that since
f is continuous on a compact interval, it is uniformly continuous (this implication may be
assumed). Why does this show, uniformly in X, supyea,|f(y) - f(X)| 550 0? Shows thus for

any e > 0 there is a 6 and a k, such that for & > k, both integrals are absolutely less than ¢/2.
Finally why does [1/2 s.(z — y) f(y) dy L, /@) uniformly?
—00

6. 1V.20: Set si(x) = (1-x?)¥/ly, and use the previous result; show fi sk(x-y) f(y) dy is a
polynomial.

7. 1V.31: Note in the proof of Theorem 1V.16 C'(X) should be Cr(X). Assume ¢, and ¢’ is
another pair of positive functionals with £ = ¢, - ¢, with ||¢|| = ¢/.(1) + ¢’ (1). Show for any
non-negative f(x),

£(f) = £4(F) - £(F) < £i(F)
S0
sup O (h) > sup  L(h) = L.(F).
0<h<f

0<h<f
Why does it follow for f > 0, Z,.(f) > ¢.(f)? Thus ¢, - ¢, is positive. However

LA+ =[] = @)+ Q).

Why does this show ¢/ (1) = ¢.(1)? Show thus forany 0 < f <1

(6. - L)f < (4 -6)(1)=0.



