Suggestions for PS 12:

4. VI.9:

Let A be a self-adjoint operator on a Hilbert space \mathcal{H} . Prove that $||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|$

(a) Assume all suprema over ϕ, ψ, x are done over the unit ball, e.g., with $|\phi| \leq 1, \ |\psi| \leq 1, \ |x| \leq 1$, etc., unless stated otherwise. First you can show by multiplying ψ by a phase constant $e^{i\theta}$ that $\sup_{\psi,\phi} |\langle \psi, A\phi \rangle| = \sup_{\psi,\phi} \operatorname{Re} \langle \psi, A\phi \rangle$. First assume A is positive. Then show

$$\begin{split} \operatorname{Re}\langle\psi,A\phi\rangle &= \frac{1}{4}[\langle\psi+\phi,A(\psi+\phi)\rangle - \langle\psi-\phi,A(\psi-\phi)\rangle],\\ &\leq \frac{1}{4}\bigg(\|\psi+\phi\|^2\underset{x}{\sup}\langle x,Ax\rangle + \|\psi-\phi\|^2\underset{x}{\sup}\langle x,Ax\rangle\bigg)\\ &= \frac{1}{4}\big(2\|\phi\|^2 + 2\|\psi\|^2\big)\underset{x}{\sup}\langle x,Ax\rangle. \end{split}$$

which will prove the result.

(b) You can find a 2×2 matrix for a counterexample