Suggestions for PS 13

1. VI.18: If U is a partial isometry from Ker U+ to Ran U, why does it hold that U* is a PI
from Ran U to Ker U+ and is the inverse of the map U on RanU? Note that both Ker U and
Ran U are closed, and similarly for U*. Why is Ker U = RanU** (use a previous lemma;
the same then holds replacing U by U*). For the inverse property for U*, try to show that if
zeKerUtandz =UzthenU*z = 2.

If P,=U"U and Py =UU™ are projections, why is U a Pl from Ran P; to Ran P;? If
x € Ran P, show ||Uz| = ||z||. Show Ker U = Ker P;, because U* never vanishes on Ran
U (why)?

For uniqueness in Thm. VI1.10, if |A|x = 0 how does it follow Az = 0? Note if |[A|z = 0 then
A*Ax = 0, so Ker |A| C Ker A. If there were another partial isometry U’ satisfying the
properties of U, why does it suffice to show Uz = U’z for z € Ker A+? By U|A| = U’| A,

it suffices to show Ran | A| contains Ker A+. How can you use Ran|A| = Ker |A|*?

3. Proof of Theorem VI1.1:

Only some parts of the R&S proof are clear. In particular you can assume
¢ :P(o(A)) — L(H) (with P(c(A)) polynomials restricted to o(A)) is an isometry. Why
does it extend to a bounded map on the continuous functions C'(c(A))? How do properties
(@), (b), (c) follow (in particular, why do they hold for polynomials?)  Why do these
properties uniquely determine ¢ on P(c(A))? Prove (d), (f), and (g). You can use the fact
that (e) will follow from Problem V11.8 (to be done).

4. Proof of Theorem VII.2:

Given f € B(c(A)) and bounded, show that for any two bounded sequences { f,.(z)} and
{f,(z)} of continuous functions coverging to f pointwise, the sequence {f,(A) — f,(A)}
converges to 0 in the strong topology; this will show that there must be a unique strong limit
to any sequence { f,,} which converges to f(x). To do this, assume that this is not so for some

pair {f,,f,} and let g, = f, — f,. Show there would be a vector z such that limsup

llgn(A)z|| > e for some €>0. However show this would mean that
(gn(A)?2,2) = [|g(z)|*dp. fails to go to 0. Show this contradicts the dominated
convergence theorem. Therefore indeed, if f,, — f pointwise, then f,,(A) has a unique strong
limit, which we define to be f(A).

To prove property (a), you need to show that for f,g € B(o(A)), f(A)g(A) = (fg)(A). Let
frnand g, be sequences of unifromly bounded continuous functions converging to f,g
respectively. Then f,(A)g.(A) = (fngn)(A). The right hand side converges to (fg)(A)
strongly, and you need to show the left side converges to f(A)g(A).

Show the latter follows from the general fact that if operators C,, and D,, converge strongly to
C and D respectively, then C,, D,, converges strongly to C'D. You can show this by looking
at



¢,.D, —CD = C, (D, — D)+ (C,—C)D.
Show for any z (C,, — C')Dz ,—-~_ 0, while

Col(Dy, — D)z] , —_ 0

n — oo

since C,, is bounded (use the uniform boundedness principle to show this) while (D,, — D)x

—
o U

Show that this combined with the previous agrument proves (a)

To prove (b) note that if ), —=  C strongly, then |[C|| < limsup||C,||. Show this by
letting ||z|| =1, and showing ||Cz|| = lim||C,z|| < limsup||C,||||z|| < limsup||C,]||.

This will give you (b) since for any f € B(c(A)) there is a sequence of continuous functions
fo which converge to it and such that ||fu|lec <|[f]|o + 2. Thus show
[ (A)| < limsup|[ £, (A)]] < limsup]|f[[oc = [[f][o, @s desired.

Show (c) and (d) follow immediately, the latter from the strong convergence above of f,,(A).

Show (e) follows directly from the above continuous approximation, and (f) does as well from
the definition of a positive operator, while (f) also follows from the approximation.

5. VII.8: (a) How can you use the definition of an inverse and Theorem V11.1?
(b) Consider a continuous nonnegative function n(x) bounded by 1 with support in
[A—e€e,A+¢€],andequal to L on [\ —e/2, A+ ¢/2]. Why does n(f(A)) have norm 1 (choose
a ¢ of norm 1 such that ||n(f(A))¢|| = 1 (or at least arbitrarily close to 1)). Note

I(f (@) = Mn(f (@)l <6

(why?). Hence [|(f(A) — A)n(f(A))[l < e (why?) Try letting o> = n(f(A))¢.

(c) If XeRan f = f(o(A)), then f(A) — X can make vectors of norm 1 arbitrarily small.
Does it have a bounded inverse? Conversely, if A ¢ Ran f, use (a) to show that A € p(A), the
resolvent set.

Additional Suggestion: to prove part (b), you may also want to use the first proposition of
Section VI1.2 on the relationship of the support of the spectral measures and the spectrum.
Note the typo in the problem. In part (b) f(A) shouldjust be f.



